18 TROUBLESHOOTING

CONTENTS

18	TROUBLESHOOTING		
18.1	Initial T	2	
	18.1.1	This Is Not Abnormal	2
	18.1.2	Not Cooling or Heating Well	2
	18.1.3	Not Operate	2
18.2	Alarm (Codes	3
18.3	Trouble	4	
	18.3.1	Contents of Check Mode 1	5
	18.3.2	Contents of Check Mode 2	8
18.4	Trouble	10	
	18.4.1	Simple checking by 7-Segment Display	10
	18.4.2	Checking Method by 7-Segment Display	10
	18.4.3	Running Current of Compressor	15
18.5	Protect	ion control code on 7-segment display	16
18.6	Self checking of PCB's using Remote Control Switch		
18.7	Self Checking of Remote Control Switch		

18.1 INITIAL TROUBLESHOOTING

18.1.1 THIS IS NOT ABNORMAL

- Smells from Indoor Unit Smell adheres on indoor unit after a long period of time. Clean the air filter and panels or allow a good ventilation.
- Sound from Deforming Parts During system starting or stopping, an abrading sound might be heard. However, this is due to thermal deformation of plastic parts. It is not abnormal.
- Steam from Outdoor Heat Exchanger During defrosting operation, ice on the outdoor heat exchanger is melted, resulting in making steam.
- Dew on Air Panel When the cooling operation continues for a long period of time under high humidity conditions (higher than 27°C DB/80% R.H), dew can form on the air panel.
- Refrigerant Flow Sound While the system is being started or stopped, sound from the refrigerant flow may be heard.

18.1.2 NOT COOLING OR HEATING WELL

- Check for obstruction of air flow of the outside or inside units.
- Check if too much heat source exists in the room.
- Check if the air filter is clogged with dust.
- Check to see if the doors or windows are opened or not.
- Check if the temperature condition is not within the operation range.

18.1.3 NOT OPERATE

- Check for electrical wiring.
- Check for dip switch setting.
- Check whether the "SET TEMP" is set at the correct temperature.
- In the case that "RUN" lamp on remote control switch is flickering every 2 seconds, check for connection of remote control line.
- In the case that "RUN" lamp flashes 5 times (5 seconds) with unit number and alarm code displayed, refer to the next item "18.2 Troubleshooting by Alarm Code" and the "Service Manual".
- In the case that no alarm code is indicated and normal operation is not available, refer to the "Service Manual" because abnormality of some device is suspected.

18.2 ALARM CODES

If RUN lamp flashes for 2 seconds, there is a failure in transmission between Indoor Unit and Remote Control Switch. Possible causes are:

Remote Cable broken

ΕE

Inverter

Compressor Protection

- Contact Failure in Remote Control Cable
- IC or Microcomputer defective

In any case, ask your contractor for service

If RUN lamp flashes 5 times (5 seconds) with unit number and alarm code displayed, note the alarm code (see table below) and ask your contractor for service.

Refrigerant Cycle Number

Number of connected Units

Code No.	Category	Content of Abnormality	Leading Cause	
01	Indoor Unit	Tripping of Protection Device	Failure of Fan Motor, Drain Discharge, PCB, Relay.	
02	Outdoor Unit	Tripping of Protection Device	Activation of PSH	
03	Transmission	Abnormality between Indoor (or Outdoor) and Outdoor (or Indoor)	Incorrect Wiring. Failure of PCB. Tripping of Fuse. Power Supply OFF	
04	Inverter	Abnormality between Inverter and Control PCB	Failure in Transmission between PCBs	
05	Transmission	Abnormality of Power Source Wiring	Reverse Phase Incorrect Wiring.	
06	Voltage Drop	Voltage Drop by Excessively Low or High Voltage to Outdoor Unit	Voltage Drop of Power Supply. Incorrect Wiring or insufficient Capacity of Power Supply Wiring.	
07		Decrease in Discharge Gas Superheat	Excessive Refrigerant Charge. Expansion Valve Open Lock.	
08	Cycle	Increase in Discharge Gas Temperature	Insufficient Refrigerant. Ref. Leakage, Clogging or Expansion Valve Close Lock	
09	Outdoor Unit	Tripping of Protection Device	Failure of Fan Motor.	
11		Inlet Air Thermistor		
12	0	Outlet Air Thermistor	Foilure of Thermister, Sensor, Connection	
13	Sensor on	Freeze Protection Thermistor	- Failure of Thermistor, Sensor, Connection.	
14		Gas Piping Thermistor		
19		Tripping of Protection Device for Fan Motor	Failure of Fan Motor	
21		High Pressure Sensor		
22	Sonsor on	Outdoor Air Thermistor		
23	Outdoor Unit	Discharge Gas Thermistor on Comp.	Failure of Thermistor, Sensor, Connection	
24		Evaporating Thermistor		
29		Low Pressure Sensor		
30		Incorrect Wiring Connection	Incorrect Wiring Connection between Outdoor Unit, CH Unit and Indoor Unit	
31		Incorrect Setting of Outdoor and Indoor Unit	Incorrect Setting of Capacity Code.	
32	Svetom	Abnormal Transmission of Other Indoor Unit	Failure of Power Supply, PCB in other Indoor Unit. Failure of other Indoor Unit of the same Refrigerant Cycle	
35	System	Incorrect Setting in Indoor Unit No.	Existence of the same Indoor Unit No. in the same Refrigerant Cycle	
38		Abnormality of Protective Circuit in Outdoor Unit	Failure of Indoor Unit PCB. Incorrect wiring. Connection to PCB in Indoor Unit.	
39		Abnormality of Running Current at Constant Compressor	Overcurrent, Blown Fuse of Failure of Current Sensor.	
43		Pressure Ratio Decrease Protection Activating	Failure of Compressor, Inverter	
44		Low Pressure Increase Protection Activating	Overload to Indoor in Cooling. High Temperature of Outdoor Air In Heating Expansion Valve Open Lock	
45	Pressure	High Pressure Increase Protection Activating	Overload Operation. Excessive Refrigerant. Clogging of Heat Exchanger	
46		High Pressure Decrease Protection Activating	Insufficient Refrigerant.	
47		Low Pressure Decrease Protection Activating	Insufficient refrigerant .	
51		Abnormality of Current Sensor for Inverter	Failure of Sensor on Inverter PCB	
52		Overcurrent Protection Activating	Overload, Overcurrent, Locking to Compressor.	
53	Inverter	IPM Protection Activating	Automatic Stoppage of IPM (Overcurrent, Low Voltage or Overheating).	
54		Increase in Inverter Fin Temperature	Abnormal Inverter Fin Thermistor. Abnormal Outdoor Fan	
56		Abnormality of Detection for Fan Motor Position	Abnormal detection Circuit of Transmission	
57	Outdoor Fan	Fan Controller Protection Activating	Abnormal Fan Speed	
58		Abnormality of Fan Controller	Overcurrent, Abnormal Fan Controller Fin	
59	AC Chopper	AC Chopper Circuit Protection	Failure of FET, Power Supply, CT for Fan Motor	
FF	Invortor	Compressor Brotestion	3 Time Occurrence of Alarm Giving Damage to Compressor within 6	

hours

18.3 TROUBLESHOOTING IN CHECK MODE

Use the remote control CHECK switch in the following cases.

- 1. When the RUN lamp is flashing
- 2. To trace back the cause of trouble after restarting from stoppage with the RUN lamp flashing
- 3. To check during normal operation or stoppage
- 4. To monitor the temperature of intake and discharge air.

Although the wireless controller is used for wall type indoor unit with built-in receiver part, the alarm code can be checked by connecting PC-P1HE.

18.3.1 CONTENTS OF CHECK MODE 1

The next indication is shown by pressing the part " \bigcirc " of "TEMP" switch. If the part " \bigcirc " of "TEMP" switch is pressed, the previous indication is shown.

- 1. The unit is not operated by pressing operation switch.
- 2. The above function is available only when alarm occurs.
- 3. The PCB check by remote controller is not available.
- 4. The indication is the data when connecting PC-P1H, not the data before the alarm occurs.

This is an indication for internal information for the remote control switch. This does not have any specific meaning.

The total frequency is indicated when several compressors

The capacity of the Indoor Unit is indicated as shown in the

Capacity Code of Indoor Unit

Indication Code	Equivalent Capacity (HP)
06	0.8
08	1.0
10	1.3
13	1.5
14	1.8
16	2.0
18	2.3
20	2.5
22	2.8
26	3.0
32	4.0
40	5.0

"n" indicates total number of Indoor Units; $n = \mathbf{1} \sim \mathbf{7}, \mathbf{A}, \mathbf{b}, \mathbf{C}, \mathbf{d}, \mathbf{E}, \mathbf{F}, \mathbf{L}$ (10) (11) (12) (13) (14) (15) (16)
J3: 01 ~ 16 (01: when shipment (DSW5), **Decimal indication** J4: 00 ~ 0F (00: when shipment (DSW5),

Indication with 16 numbers

In case of models without Expansion Valve (MV2), the same figure is indicated

The total current is indicated when several compressors are running. In case of inverter compressor, the running current of primary side of inverter is indicated

18.3.2 CONTENTS OF CHECK MODE 2

The latest data of the first three indoor units only connected serially are indicated when more than three indoor units are connected to one remote control switch.

By pressing the " \bigcirc " part of "TEMP" switch, the next display is indicated. If the part " \bigcirc " of "TEMP" switch is pressed, the previous display is indicated.

18.4 TROUBLESHOOTING BY 7-SEGMENT DISPLAY

18.4.1 SIMPLE CHECKING BY 7-SEGMENT DISPLAY

All the Indoor Units Connected to the Outdoor Unit

During auto-addressing, the following items can be checked using the outdoor unit's on-board 7-segment LED display.

- 1. Disconnection of power supply to the Indoor Unit.
- Reverse connection of the operating line between the Outdoor and Indoor Units
- 3. Duplication of Indoor Unit number.

18.4.2 CHECKING METHOD BY 7-SEGMENT DISPLAY

By using the 7-segments and check switch (PSW) on the PCB1 in the Outdoor Unit, total quantity of combined Indoor Units, 7-segments operation conditions and each part of refrigerant cycle can be checked.

SEG3 SEG2 SEG1

- To start checking, press the "PSW2" switch for more than 3 seconds.
- To proceed checking, press the "PSW2" switch for less than 2 seconds.
- To proceed reversely, press the "PSW3" for less than 2 seconds.
- To cancel this checking, press the "PSW2" switch for more than 3 seconds. The display will be changed to the indication one step before. Then, press the PSW2"switch once again for more than3 seconds.

PCB Relay	Part Name	PCB Relay	Part Name	
Y20A		Y52C1	Relay for Compressor	
Y20B	Relay for Solenoid Valve (SVA/B/C)	Y52C2		
Y20C		Y52C3		
Y20D	Relay for Cranckcase heater	Y52C4		
Y211	Balay for (year) (also	AC Chopper	Relay for AC Chopper Fan	
Y212	Relay 101 4-way valve	YFAN2	Relay for 2 nd fan at fix speed	
YRS	Relay for Relay Contactor			

Error! Error! Style not defined.

Error! Error! Style not defined.

Return to START "5["

i NOTE 1

 For RAS-24/30FS5, 7-segment information for all indoor Unit data has been added one number before data, as indicated beside. Example: Indoor Unit Expansion Valve opening of Ref. Cycle No. 6 Indoor Unit No. 0

Cycle Adress

18.4.3 RUNNING CURRENT OF COMPRESSOR

Inverter Primary Current

The inverter primary current is estimated from the running current of the compressor MC1 indicated on 7-segments, as the right chart shows.

The running current of the compressor MC2, MC3, MC4, is detected by current sensor. $(CT2 \sim CT4)$

Running Current of Compressor MC1 indicated on 7-segment

		Course of Stoppone for	Remark		
Code	Cause	Cause of Stoppage for Corresponding Unit	Indication during Retry	Alarm Code	
1	Automatic Stoppage of Transistor Module (IPM Error) (Over Current, Decrease Voltage, Increase Temperature)	ריו	רי ק	53	
Ę	Instantaneous Over Current		F (7	52	
Ξ	Abnormal Inverter Fin Thermistor	[1]	F (7	54	
Ч	Electronic Thermal Activation	17	רי ק	52	
5	Inverter Voltage Decrease	18	P (8	05	
5	Increase Voltage	18	P (8	05	
8	Abnormal Current Sensor	17	רי ק	57	
9	Instantaneous Power failure Detection	8	-	-	
11	Reset of Micro-Computer for Inverter	18	-	-	
12	Earth Fault Detection for Compressor (Only Starting)	17	P (7	53	
El	Abnormal Power Source Phase	(B	-	-	

■ Cause of Stoppage for Inverter (Content of Check Item " (「 「 」)

18.5 PROTECTION CONTROL CODE ON 7-SEGMENT DISPLAY

- 1. The protection control indication can be seen on 7-segment when a protection control is activated.
- 2. The 7-segment continues ON while function is working, and goes out when released.
- 3. When several protection controls are activated, code number with higher priority will be indicated (see below for the priority order).
- Higher priority is given to protection control related to frequency control than the other.

Priority Order:

- Pressure Ratio Control
- High-Pressure Rise Protection
- Current Protection
- Discharge Gas Temperature Rise Protection
- Low-Pressure Fall Protection
- Reversing Valve Switching Control (For 16, 20HP) and FS(3/5) Series)
- High-Pressure Decrease Protection
- Oil Return Control
- Running Current Limit Control (for 24/30 FS5)
- In relation to retry control, the latest retrial will be indicated unless a protection control related to frequency control is indicated.

Code			Protection Control		
P	Π	1	Pressure Ratio Control (*)		
P		ΓĻ	High-Pressure Increase Protection (*)		
P		רה	Current Protection (*)		
P	Π	Ч	Inverter Fin Temp. Increase Protection (for 24, 30HP)		
P	Π	5	Discharge Gas Temperature Increase Protection (*)		
P	Π	5	Low-Pressure Decrease Protection		
P	Π	Ţ	4-Way Valve Switching Control (For 16, 20HP)		
P	Π	8	Oil Return Control		
P	Π	9	High-Pressure Decrease Protection		
P	Π	R	Running Current Limit Control (for 24, 30 FS5		
P	1	1	Pressure Ratio Decrease Retry		
P	1	Γų	Low-Pressure Increase Retry		
P	1	Π	High-Pressure Increase Retry		
P	1	Ч	Over Current Retry of Constant Compressor		
P	1	5	Vacuum/Discharge Gas Temperature Increase Retry		
P	1	5	Discharge Gas SUPERHEAT Decrease Retry		
P	1	7	Inverter Trip Retry		
P	1	8	Insufficient Voltage / Excessive Voltage Retry		

In the case that degeneration control is activated, c is indicated instead of \overline{D} (*mark)

- Retry indication continues for 30 minutes unless a protection control is indicated.
- Retry indication disappears if the stop signal comes from all rooms.

The protection control code being indicated on 7-segment display is changed to an alarm code when the abnormal operation occurs. Also, the same alarm code is indicated on the remote control switch.

■ ACTIVATING CONDITION OF PROTECTION CONTROL CODE

For following the conditions as the temperature change, etc., the control of frequency, etc. is performed to prevent the abnormal conditions by the protection control. The activating conditions of protection control are shown in the table below.

Code	e Protection Control		Activating Condition	Remarks	
P0 (Pressure Ratio Control		Compression Ratio $\ge 9 \rightarrow$ Frequency Decrease (Pd/(Ps+1.3)) $\le 2.2 \rightarrow$ Frequency Increase	Ps: Suction Pressure of Compressor	
PDZ	High-Pressure		$Pd \ge 2.4 Mpa \rightarrow Frequency Decrease$	Pd: Discharge Pressure of Compressor	
РОЗ	Current Protec	tion	Inverter Output Current \geq 25A (220 V), 14A (380, 415V) \rightarrow Frequency Decrease	-	
РОЧ	Inverter Fin Te Increase Prote	emperature ection	Inverter Fin Temperature \leq 94 $^{\circ}$ C \rightarrow Frequency Decrease	-	
POS	Discharge Gas Temperature In Protection	s ncrease	Temperature at the top of compressor is high \rightarrow Frequency Increase (Maximum temperature is different depending on the frequency.)	-	
P06	Low-Pressure Protection	Decrease	Low-Pressure Is Excessively Low \rightarrow Frequency Increase (Minimum pressure is different depending on the ambient temperature.)	-	
000	4-Way Valve	For 16, 20HP	When Switching, ΔP <0.5MPa \rightarrow Frequency Increase ΔP <1.3MPa \rightarrow Frequency Decrease		
יעיק	Control	For 24, 30HP	When Switching, ΔP <1.0MPa \rightarrow Frequency Increase ΔP <2.1MPa \rightarrow Frequency Decrease	Δr = ra - rs	
	Oil Deturn	For 5, 20HP	Frequency less than 40Hz is maintained for more than 1 hour \rightarrow Frequency \geq 40Hz		
P08	Control	For 24, 30HP	Frequency less than 120Hz at cooling (150Hz at heating) is maintained for more than 1 hour \rightarrow Frequency \geq 120Hz at cooling (150Hz at heating).	-	
P09	High-Pressure Fall Protection		Pd ≤ 0.69MPa → Frequency Increase (When Cooling Operation) Pd ≤ 1.42Mpa → Frequency Increase (When Heating Operation)	Pd: Discharge Pressure of Compressor	
РОЯ	Running Current Limit Control (for 24, 30HP		Running Current for Comp. \geq Setting Value \rightarrow Frequency Decrease	Setting Value: Upper limit of total running current is set 80%, 70% and 60% at normal operation using input on PCB.	
P	Pressure Ration Decrease Retr	р Ту	Compression Ratio (Pd/(Ps+1.3)<1.8)	When activating 3 times in an hour, "43" alarm is indicated.	
P 12	Low-Pressure Increase Retry	1	Ps>0.9MPa	When activating 3 times in an hour, "44" alarm is indicated.	
	High-	For 5 to 20HP	Pd>2.65MPa (In case of 20 ~ 30Hz: Pd>2.5MPa)	When activating 3 times in an hour,	
P 13	Rising Retry		Pd>2.65MPa	"45" alarm is indicated.	
P IH	Overcurrent Retry of Constant Compressor		Current \geq Maximum Value(*1), or Current<0.9A	When activating 3 times in an hour, "39" alarm is indicated.	
P 15	S Vacuum/Discharge Gas Temperature Rising Retry		In Case of Ps<0.02MPa over 12 minutes, Discharge Gas Temperature \ge 132°C over 10 minutes or Discharge Gas Temperature \ge 140 °C over 5 seconds	When activating 3 times in 30 minutes, "47"(Ps) or "08" (Discharge Gas) alarm is indicated.	
	Discharge Gas	For 5 to 20HP	Discharge Gas SUPERHEAT less than 10 deg. is maintained for an hour	When activating 2 times in 2 hours	
P 16	SUPERHEAT Decrease Retry	For 24, 30HP	Discharge Gas SUPERHEAT less than 10 deg. is maintained for 30 minutes.	(90min. for 24, 30HP), "07" alarm indicated.	
רי ק	7 Inverter Trip Retry		Automatic Stoppage of Transistor Module, Activation of Electronic Thermal or Abnormal Current Sensor	When activating 3 times in 30 minutes, "51", "52" and "53" alarm is indicated.	
P 18	B Insufficient Voltage / Excessive Voltage Retry		Insufficient/Excessive Voltage at Inverter Circuit or CB Connector Part	When activating 3 times in 30 minutes, "06" alarm is indicated.	

- 1. During protection control (except during alarm stoppage), the protection control code is indicated.
- 2. The protection control code is indicated during protection control and turns off when canceling the protection control.
- 3. After retry control, the condition of monitoring is continued for 30 minutes.
- 4. The maximum value (*1) is as follows:

Model	380-415V 50 Hz		380V 60 Hz	
8HP	12	12.1A		.6A
10HP	15	.0A	15	.8A
16HP	17.8A		18.8A	
20HP	17.8A		18.8A	
Model	Comp. 1	Comp. 3, 4	Comp. 2	Comp. 3, 4
24HP	17.8A	21.6A	18.8A	22.8A
30HP	17.8A	31.7A	18.8A	33.4A

18.6 SELF CHECKING OF PCB'S USING REMOTE CONTROL SWITCH

Following troubleshooting procedure is utilized for function test of PCB's in the Indoor Unit and Outdoor Unit

1 second

To next page

Indi- cation	Contents				
$\Box\Box$	Normal				
	Abnormality (Open-circuit, Shor-circuit, etc.) in circuit for:				
Π (Intake Air Temp. Thermistor				
02	Discharge Air. Temp. Thermistor				
ΠB	Liquid Pipe Temp. Thermistor				
ДЧ	Remote Thermistor abnormality	PCE			
85	Gas Pipe Temp. Thermistor	Jnit I			
80	Remote Sensor	or L			
08	Transmission of Central Station	opu			
ΠR	EEPROM				
$\Box b$	Zero Cross Input Failure				
EE	Transmission of indoor during this				
<u>ח</u> ח	Transmission of Outdoor Unit				
ĒЧ	ITO Input Failure				
FS	PSH Input failure				
FĒ	Protection Signal Detection Circuit	CB			
FT	Phase Detection	nit P			
FB	Transmission of Inverter	r Ur			
FR	High Pressure Sensor	tdoc			
Fb	Comp. Discharge Gas Temp. Thermistor	Oui			
FE	Low pressure Sensor				
Fd	Heat Exchanger Evaporation Temp. Thermistor				
FF	Ambient Air Temp. Thermistor				

For performing the above checking in the case that the wireless remote control switch is used with the built-in receiver part of the wall type indoor, perform the following procedures:

- 1. Turn OFF the power supply.
- 2. Disconnect the connector (CN25) on PWB(M).
- 3. Connect PC-P1HE.
- 4. Turn ON the power supply

After completion of checking, turn OFF the power supply again and make connectors as before checking.

From previous page

i NOTE:

If this indication is continued and " \checkmark' is not shown, this indicated that each one of indoor unit is not connected to the remote control switch. Check the wiring between the remote control switch and indoor unit.

- (THEOK)
- 2. In this troubleshooting procedure, checking of the following part of the PCB's is not available.

PCB in Indoor Unit: PCB in Outdoor Unit: Relay Circuit, Dip Switch, Option Circuit, Fan Circuit, Protection Circuit. Relay Circuit, Dip Switch, Option Circuit

- 3. In the case that this troubleshooting is performed in the system using the central station, indication of the central station may change during this procedure. However, this is not abnormal.
- 4. After this troubleshooting, the memory of abnormality occurrence times described before will be deleted.

Indicating

18.7 SELF CHECKING OF REMOTE CONTROL SWITCH

Cases where CHECK switch is utilized.

- 1. If the remote control switch reads malfunction
- 2. For regular maintenance check.

To the next page

