Applied Thermodynamics: Software Solutions

Part-IV Dr. M. Thirumaleshwar

Dr. M. Thirumaleshwar

Applied Thermodynamics: Software Solutions

Part-IV (Psychrometrics, Reactive systems)

 Applied Thermodynamics: Software Solutions: Part-IV (Psychrometrics, Reactive systems) 1st edition © 2014 Dr. M. Thirumaleshwar & <u>bookboon.com</u> ISBN 978-87-403-0788-7

Contents

1 1.1 1.2 1.3 1.4 1.5 1.6

Dedication	Part I
Preface	Part I
About the Author	Part I
About the Software used	Part I
To the Student	Part I
How to use this Book?	Part I
Gas Power Cycles	Part I
Definitions, Statements and Formulas used[1-6]:	Part I
Problems on Otto cycle (or, constant volume cycle):	Part I
Problems on Diesel cycle (or, constant pressure cycle):	Part I
Problems on Dual cycle (or, limited pressure cycle):	Part I
Problems on Stirling cycle:	Part I
References:	Part I

MAN OLIVER WYMAN

Oliver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk usep industry knows by events because expensions and by operations, take management, organizational transformation, and leadership development. With offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

2	Cycles for Gas Turbines and Jet propulsion	Part II
2.1	Definitions, Statements and Formulas used[1-7]:	Part II
2.2	Problems solved with Mathcad:	Part II
2.3	Problems solved with EES:	Part II
2.4	Problems solved with TEST:	Part II
2.5	References:	Part II
3	Vapour Power Cycles	Part II
3.1	Definitions, Statements and Formulas used[1-7]:	Part II
3.2	Problems solved with Mathcad:	Part II
3.4	Problems solved with TEST:	Part II
3.5	References:	Part II
4	Refrigeration Cycles	Part III
4.1	Definitions, Statements and Formulas used[1-7]:	Part III
4.1.1	Ideal vapour compression refrigeration cycle:	Part III
4.2	Problems solved with Mathcad:	Part III
4.3	Problems solved with DUPREX (free software from DUPONT) [8]:	Part III
4.4	Problems solved with EES:	Part III

Day one and you're ready

Day one. It's the moment you've been waiting for. When you prove your worth, meet new challenges, and go looking for the next one. It's when your dreams take shape. And your expectations can be exceeded. From the day you join us, we're committed to helping you achieve your potential. So, whether your career lies in assurance, tax, transaction, advisory or core business services, shouldn't your day one be at Ernst & Young?

What's next for your future? ey.com/careers

ERNST & YOUNG Quality In Everything We Do

© 2010 EYGM Limited. All Rig

4.5	Problems solved with TEST:	Part III
4.6	References:	Part III
5	Air compressors	Part III
5.1	Definitions, Statements and Formulas used[1-6]:	Part III
5.2	Problems solved with Mathcad:	Part III
5.3	Problems solved with EES:	Part III
5.4	References:	Part III
6	Thermodynamic relations	Part III
6.1	Summary of Thermodynamic relations [1-6]:	Part III
6.5	References:	Part III
7	Psychrometrics	8
7.1	Definitions, Statements and Formulas used [1-11]:	8
7.2	Problems solved with Mathcad:	31
7.3	Problems solved with Psychrometric chart:	62
7.4	Problems solved with EES:	73
7.5	Problems solved with TEST:	96
7.6	References:	141

In the past four years we have drilled

81,000 km

That's more than twice around the world.

Who are we?

We are the world's leading oilfield services company. Working globally—often in remote and challenging locations—we invent, design, engineer, manufacture, apply, and maintain technology to help customers find and produce oil and gas safely.

Who are we looking for?

- We offer countless opportunities in the following domains:
- Engineering, Research, and Operations
- Geoscience and Petrotechnical
- Commercial and Business

If you are a self-motivated graduate looking for a dynamic career, apply to join our team.

careers.slb.com

Schlumberger

What will you be?

Contents

8	Reactive Systems	143
8.1	Definitions, Statements and Formulas used [1-11]:	143
8.2	Problems solved with Mathcad:	166
8.3	Problems solved with EES:	198
8.4	Problems solved with TEST:	228
8.5	References:	288
9	Compressible fluid flow	Part V
9.1	Definitions, Statements and Formulas used	Part V
9.2	Problems solved with Mathcad, EES and TEST	Part V
9.3	References	Part V

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

7

ALM & JERRY

Dove

7 Psychrometrics

Learning objectives:

- 1. In this chapter, **'Psychrometrics'** i.e. is the study of properties of air-water vapor mixtures is dealt with.
- 2. We give the definitions of various terms and also the thermodynamic equations to determine various psychrometric properties.
- 3. Psychrometric chart, which is very useful to analyse psychrometric processes, is presented.
- 4. Various psychrometric processes adopted in air-conditioning are explained with the help of Psychrometric chart.
- 5. **Two very good stand-alone calculators** to quickly calculate various Psychrometric properties are explained.
- 6. Usefulness of Psychrometric chart is demonstrated by solving many problems.
- 7. Several very useful Functions are written in Mathcad to calculate various psychrometric properties. A summary of various Mathcad Functions written is also provided.
- 8. Also, many problems are solved in Mathcad, EES and TEST to illustrate the problem solving techniques in this chapter.

7.1 Definitions, Statements and Formulas used [1-11]:

7.1.1 'Psychrometrics'

'Psychrometrics' is the study of properties of air-water vapor mixtures. We also study various processes involving the air-water vapor mixtures and the important applications are in the fields of comfort air conditioning , paper and textile engineering processes etc.

7.1.2 Properties of atmospheric air:

Atmospheric air is considered as a mixture of air and water vapor. Further, both air and water vapor are considered as ideal gases (without much error, i.e. less than 0.2%).

Therefore:

Atmospheric pressure: $p = p_a + p_w$, where

 $p_a = partial pressure of air, and$

 p_w = partial pressure of water vapor.

Enthalpy of dry air: $h_{air} = cp.T = 1.005 * T, kJ/kg$

$$\Delta h_{air} = cp. \Delta T = 1.005 * \Delta T, kJ/kg$$

Enthalpy of water vapor:

Enthalpy of water vapor at 0 C is 2500.9 kJ/kg.

Average value of cp in the temp range -10 C to 50 C is 1.82 kJ/kg.C.

Therefore, enthalpy of water vapor at temp T is determined as:

 $h_{g}(T) = 2500.9 + 1.82 * T, kJ/kg,... T in deg.C$

Total enthalpy of moist air:

h(T) = 1.005 * T + w * (2500.9 + 1.82 * T), kJ/kg

Sat. pressure of water vapor (psat): is related to the 'dry bulb temp' (i.e. the ordinary temp measured with a thermometer in atmospheric air. Sat. pressure of water with temp can be read from the Steam Tables [Ref: www.thermofluids.net – TEST Software]

deg-C	kPa
Tomp	Sat.
remp.	press.
7 °C	p_sat@T
0.01	0.6113
5	0.8721
10	1.2276
15	1.7051
20	2.339
25	3.169
30	4.246
35	5.628
40	7.384
45	9.593
50	12.349
55	15.758
60	19.940
65	25.03
70	31.19

Following is the mathematical relation for the vapor pressure(Pa) of water with temp (deg.C) [11]:

$$psat = exp \left[\frac{-5.8002206 \cdot 10^{3}}{T + 273.15} + 1.3914993 - 48.640239 \cdot 10^{-3} \cdot (T + 273.15) \dots + 41.764768 \cdot 10^{-6} \cdot (T + 273.15)^{2} - 14.452093 \cdot 10^{-9} \cdot (T + 273.15)^{3} + 6.5459673 \cdot \ln(T + 273.15) \right]$$

At T = 20 C, we get: psat = 2339 Pa, which matches very well with the above Table.

Specific humidity or humidity ratio (w): is defined as:

$$w = \frac{m_{w}}{m_{a}} \qquad kg \text{ water vap/kg dry air}$$

i.e.
$$w = \frac{\frac{p_{w} \cdot V}{R_{w} \cdot T}}{\frac{p_{a} \cdot V}{R_{a} \cdot T}} \qquad \dots \text{ using Ideal Gas relation}$$

i.e.
$$w = 0.62198 \cdot \frac{p_{w}}{p_{a}}$$

i.e.
$$w = 0.62198 \cdot \frac{p_W}{p - p_W}$$
 kg water vap/kg dry air

where p is the total pressure = atmospheric pressure = 101325 Pa

Relative humidity (RH or φ): It is the ratio of amount of water vapor present in air to the max. amount of water vapor that it can hold at that temperature.

$$\phi = \frac{m_{w}}{m_{g}} = \frac{\frac{p_{w} \cdot V}{R_{w} \cdot T}}{\frac{p_{g} \cdot V}{R_{w} \cdot T}} = \frac{p_{w}}{p_{g}} \qquad \text{where } p_{g} = \text{psat at } T$$

Also:

Also:
$$\phi = \frac{\mathbf{w} \cdot \mathbf{p}}{(0.62198 + \mathbf{w}) \cdot \mathbf{p}_g}$$

and $\mathbf{w} = \frac{0.62198 \cdot \phi \cdot \mathbf{p}_g}{\mathbf{p} - \phi \cdot \mathbf{p}_g}$

Degree of saturation (μ): It is the ratio of actual specific humidity and the saturated specific humidity, both at the same temp T.

$$\mu = \frac{w}{w_{s}} = \frac{\frac{0.622 \cdot \frac{p_{w}}{p - p_{w}}}{0.622 \cdot \frac{p_{s}}{p - p_{s}}}$$

i.e.
$$\mu = \frac{p_{\rm W}}{p_{\rm S}} \cdot \frac{p - p_{\rm S}}{p - p_{\rm W}}$$

Also:

$$\mu = \frac{\phi}{1 + \frac{(1 - \phi) \cdot w_s}{0.62198}}$$

For dry air, i.e. when $\varphi = 0$, we have: $\mu = 0$, and

For sat. air, i.e. when $\varphi = 100\%$, we have: $\mu = 1$, i.e φ varies between 0 and 1.

Dew-point temperature (dpt): It is defined as the temp at which condensation begins when air is cooled at constant pressure.

i.e. dpt is the sat. temp of water corresponding to the vapor pressure.

i.e. $dpt = T_{sat} at p_w$

Dew point temp (deg.C), between 0 and 70 C, as a function of partial pressure of water vapor in air (pw), is given by following eqn:

Remember that p_w is related to dry bulb temp and RH. So, dew point temp (dpt) can be written in terms of dry bulb temp (dbt) and RH.

Dry bulb temperature (dbt): It is the temp measured with an ordinary thermometer placed in air.

Wet bulb temperature (wbt): It is the temp measured by a thermometer when its bulb is enveloped with a cotton wick saturated with water and held in a flowing stream of air.

A 'Psychrometer' measures both the dry bulb temp and wet bulb temps.

At any dbt, greater the difference between the dbt and wbt, smaller is the amount of water vapor held in the mixture.

Adiabatic saturation temperature[Ref:1]:

When unsaturated air flows over a sheet of water in a long, insulated chamber, water evaporates and the specific humidity of air increases, and both air and water get cooled. If the chamber is long enough, the air comes out saturated. Its equilibrium temp is known as "adiabatic sat. temp." This temp is generally between the dry bulb temp and the dew point temp.

Generally, wet bulb temp is equal to the adiabatic saturation temp. for air-water mixtures at atmospheric pressure.

Making a mass balance and an energy balance and simplifying, we get:

$$\mathbf{w}_1 = \frac{\mathbf{cp} \cdot \left(\mathbf{T}_2 - \mathbf{T}_1\right) + \mathbf{w}_2 \cdot \mathbf{h}_{fg2}}{\mathbf{h}_{g1} - \mathbf{h}_{f2}} \qquad \dots \text{kg H2O/kg dry air}$$

and.

 $w_2 = \frac{0.622 \cdot p_{g2}}{P_2 - p_{g2}}$...kg H2O/kg dry air

Discover the truth at www.deloitte.ca/careers

In the above, h_g is the enthalpy of water vapor, h_f is the enthalpy of liquid water, 1 and 2 refer to inlet and exit of the chamber. p_{g2} is the sat. pressure of water at T2. While doing calculations, we can substitute wet bulb temp (wbt) for T2, in the above equations.

Relative humidity from DBT and WBT:

Method 1: Following simple formula may be used for computer calculations:

 $phi(DBT, WBT) := \frac{[psatt(WBT) - (DBT - WBT) \cdot 63]}{psatt(DBT)}$

Ex: phi(20, 15.7) = 0.647 = 64.7%

When the wet thermometer is frozen, the constant in above eqn. changes to 56

Method 2: Using Carrier's Formula to get partial pressure of water:

$$pw = (pw_s)_{wbt} - \frac{\left[P - (pw_s)_{wbt}\right] \cdot (dbt - wbt)}{1527.4 - 1.3 \cdot wbt}$$
 Pa

In the above formula, pressures are in Pa, temps in deg.C

i.e.
$$pw(dbt,wbt,P) := \left[psatt(wbt) - \frac{(P - psatt(wbt)) \cdot (dbt - wbt)}{1527.4 - 1.3 \cdot wbt} \right] \dots Pa$$

Ex:
$$pw(35, 25, 101325) = 2.513 \times 10^3$$
 ... Pa

 $RH = \frac{pw}{pw_s}$

And,

Therefore: $RH(dbt, wbt, P) := \frac{pw(dbt, wbt, P)}{psatt(dbt)}$

Ex: RH(20,15,101325) = 0.588 = 58.8%

			Relativ	ve Humidity - R	?H (%)			
Difference Between Dry Bulb and Wet Bulb			Di	ry Bulb Tempe	rature - <i>T_{db}</i> (^o	C)		
Temperatures $T_{db} - T_{wb}$ (°C)	15	18	20	22	25	27	30	33
1	90	91	91	92	92	92	93	93
2	80	82	83	84	85	85	86	87
3	71	73	75	76	77	78	79	80
4	62	65	67	68	70	71	73	74
5	53	57	59	61	64	65	67	69
6	44	49	52	54	57	59	61	63
7	36	42	45	47	51	53	55	58
8	28	34	38	41	45	47	50	53
9	21	27	31	34	39	41	45	48
10	13	20	25	28	33	36	40	43

Method 3: Following Table from Engineering Toolbox may be used [Ref: 13]

For example: For a DBT = 20 C, WBT = 15 C, difference is = DBT – WBT = 5 C, and from the above table, under the column for DBT = 20 C, we get: RH = 59%

Method 4: Use stand-alone Psychrometric calculators ... This is explained later in section 7.1.5

Sp. volume of moist air (m3/kg) is given by:

$$v = \frac{\left(\frac{1}{P}\right) \cdot 287.055 \cdot (dbt + 273.15) \cdot (1 + 1.6078 \cdot w)}{1 + w} \qquad m^{3/kg} \text{ of moist air}$$

where P is the total pressure = atmospheric pressure = 101325 Pa.

7.1.3 Psychrometric chart:

This is a plot with DBT on x-axis and sp. humidity (w) as the ordinate. Volume of mixture (m^3 / kg dry air), WBT, RH and enthalpy of mixture appear as parameters. Chart is generally plotted for 760 mm Hg (or 1 atm. or 101325 Pa).

Following schematic from Ref. 1 shows various lines:

Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

16 Download free eBooks at bookboon.com

In the Psychrometric chart, for sat. air, DBT, WBT and DPT coincide as shown below:

And, Constant enthalpy line and WBT lines almost coincide in the Psychrometric chart:

Psychrometrics

An actual Psychrometric chart given by ASHRAE is shown below:

In the following chart, note that humidity ratio is given on the ordinate as: (grams of moisture per kg of dry air)

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**

And, different zones of temp and humidity are shown in the following fig.:

Comfort zone for humans is generally in the following range:

DBT: between 22 C and 27 C

RH: between 40% and 60%

7.1.4 Air-conditioning processes:

Important air-conditioning processes are summarized in following figure:[1]

Generally, **heating and humidifying** is done in winter and **cooling and dehumidifying** is required in summer air conditioning.

a) Sensible heating [5]:

Here, air enters at T1, gets heated to T2, while the heater coils temp is T3. Sp. humidity, w remains constant.

Heat transferred, $Q = m_a * (h2 - h1)$, kJ/s

Bypass Factor (BF) is defined as:

$$BF = \frac{DBT_3 - DBT_2}{DBT_3 - DBT_1} = \text{length (2-3) / length (1-3)}$$

Bypass Factor is a function of coil design and air velocity.

Bypass Factor can be considered as the fraction of air which does not come in contact with coil surface.

b) Sensible cooling:

Here, air enters at T1, gets cooled to T2, while the cooling coils temp is T3. Sp. humidity, w remains constant.

Heat transferred, $Q = m_a * (h1 - h2)$, kJ/s

So what are you waiting for?

Click here to get started.

Bypass Factor (BF) is defined as:

$$BF = \frac{DBT_2 - DBT_3}{DBT_1 - DBT_3} = \text{length (2-3) / length (1-3)} \dots \text{for cooling}$$

c) Heating and humidifying:[12]

Here, first, the air is heated from 1 to 2, and then humidified by spraying water. Process is shown on the Psychrometric chart below:

For the above case, we have:

Dry air mass balance: $m_{a1} = m_{a2} = m_a$ Water mass balance: $m_{a1} \cdot w_1 = m_{a2} \cdot w_2$ i.e. $w_1 = w_2$ Energy balance: $Q_{in} + m_a \cdot h_1 = m_a \cdot h_2$ i.e. $Q_{in} = m_a \cdot (h_2 - h_1)$

Download free eBooks at bookboon.com

Psychrometrics

d) Cooling and dehumidifying:[12]

Water mass balance: $m_{a1} \cdot w_1 = m_{a2} \cdot w_2 + m_w$ i.e. $m_w = m_a \cdot (w_1 - w_2)$

Energy balance: $Q_{out} = m_a \cdot (h_1 - h_2) - m_w \cdot h_w$

e) Adiabatic Steaming:[12]

Note that in the above case, there is heating and humidification.

f) Evaporative cooling:[12]

Evaporative coolers or swamp coolers are used in hot and dry (i.e. desert) climates.

Here, the principle used is: as water evaporates, the latent heat of vaporization is absorbed from the water body and the surrounding air. As a result, both the water and the air are cooled.

The schematic diagram of the apparatus and the process on the Psychrometric chart are shown below.

Note that evaporative cooling process follows a constant wet bulb temp line on the Psychrometric chart.

For the above process (1-2), we can write:

WBT = constant, and, h = constant.

g) Adiabatic mixing of air streams [1]:

Schematic diagram and the process on the Psychrometric chart are shown below:

For the above case:

Dry air mass balance: $m_{a1} + m_{a2} = m_{a3}$

Water mass balance: $m_{a1} \cdot w_1 + m_{a2} \cdot w_2 = m_{a3} \cdot w_3$

Energy balance: $m_{a1} \cdot h_1 + m_{a2} \cdot h_2 = m_{a3} \cdot h_3$

Then, we get:

$$\frac{m_{a1}}{m_{a2}} = \frac{w_2 - w_3}{w_3 - w_1} = \frac{h_2 - h_3}{h_3 - h_1}$$

Note: When two air streams at two different states 1 and 2 are mixed adiabatically, the state of the mixture (i.e. state 3) lies on the straight line connecting states 1 and 2 on the Psychrometric chart, and the ratio of the distances 2-3 and 3-1 is equal to the ratio of mass flow rates m_{a1} and m_{a2} .

Psychrometrics

h) Wet cooling towers [1]:

Here, warm water is sprayed from top of the tower and air is forced to flow from bottom of tower to the top. A small fraction of water evaporates and cools the remaining water. Temp and moisture content of air increase as air travels to the top of tower. Make up water must be added to the cycle to replace water lost by evaporation.

ORACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

Click on the ad to read more

Applied Thermodynamics: Software Solutions: Part-IV (Psychrometrics, Reactive systems)

Psychrometrics

For the above, we have:

Dry air mass balance: $m_{a1} = m_{a2} = m_a$

Water mass balance: $m_3 + m_{a1} \cdot w_1 = m_{a2} \cdot w_2 + m_4$

Energy balance:
$$m_{a1} \cdot h_1 + m_3 \cdot h_3 = m_{a2} \cdot h_2 + m_4 \cdot h_4$$

Solving for ma:

$$\mathbf{m}_{\mathbf{a}} = \frac{\mathbf{m}_{3} \cdot (\mathbf{h}_{3} - \mathbf{h}_{4})}{(\mathbf{h}_{2} - \mathbf{h}_{1}) - (\mathbf{w}_{2} - \mathbf{w}_{1}) \cdot \mathbf{h}_{4}} \qquad kg/s$$

Volume flow rate of air in to the cooling tower:

$$V_1 = m_a \cdot v_1$$
 where v1 is the sp. vol. of air (m^3/kg dry air) at state 1

Mass flow rate of make up water:

$$m_{makeup} = m_a \cdot (w_2 - w_1)$$
 kg/s

7.1.5 Two free calculators for Psychrometric properties:

Quite a large number of calculators are available for calculation of Psychrometric properties.

Here, we explain two very good stand-alone calculators. i.e. they don't require to be installed in the PC, but will work if the program is put in a folder.

1. PsychroCalc from <u>www.numlog.ca</u>:

Two inputs have to be provided: one is necessarily the dry bulb temp. Other one is any of the following: wet bulb temp, or dew point temp or RH. Total pressure can be atmospheric or any other Altitude. SI or IP Units can be chosen.

As an example, following screen shot shows the properties when DBT = 20 C and WBT = 15 C are input and Calculate button is pressed:

			_	~	_				
Dry Bulb Temp.:	20		°C	(• Wet B	ulb Temp.:	.5		°C	
• Pressure:	101325		Pa	C Dew P	oint Temp.:			°C	
C Altitude:	0		m	C Rel. H	umidity:	0.0		%	
SI Units	C IP Units			(Calculate	1	Clear		
īdb = īwb =	20.0 15.0	°C °C							1
dp = lelHum = IR =	11.8 58.9 8.58 0.842	°C % gH2O/kgAir m3/kg							
1U =	0.584	k1/kg							
/P =) =	1378.1 101325.0	Pa Pa							
									1000
									2
Tdb = 0 Twb = Tdp = 0	dry bulb tem wet bulb ter dew point te	nperature mperature emperature	RelH HR V =	Hum = relative h = humidity ratio specific volume = degree of sat	umidity uration	h = VP : p =	enthalpy = vapour pres pressure	ssure	
			MU	= degree of sat	uration				

Note that Dew point temp, RH, humidity ratio, sp. volume, degree of saturation (mu), enthalpy, vap. pressure and the atm. pressure (chosen) are given in output.

2. This is browser based calculator from Sugar Engineers' Library. You have to save the page from the Internet web site (<u>http://www.sugartech.com/engrdata/index.php</u>) just once, and thereafter you can use it without being connected to Internet. Here also, DBT is the necessary input, and for the second input, you can use WBT, RH, or DPT. In addition, you can enter Altitude also, if required. SI or IP units can be chosen.

Following screen shot shows the results for DBT = 20 C, WBT = 15 C, Altitude = 0 (i.e. sea level):

Sugar Engineers' Library

Home News Prices Engineering Guides Material Properties Whats New Factories Links Contact Search

Psychrometric Calculations

The formulations used here to calculate moist air properties are based on perfect gas relations published in 1989 <u>ASHRAE</u> Fundamentals Handbook, which should be accurate. Nevertheless, It is strongly recommend that you to compare the results calculated by this worksheet with a psychrometric chart. There is **no error checking** so you should use reasonable input values.

Inj	outs		Outputs			
Unit Chosen:	⊙ SI	OIP				
Parameter Name	Value	Unit	Atmospheric Press	1.0132387597!	bar	
Dry Bulb Temp.:	20	С	Sat. Vapor Press.	23.387977529	mbar	
Wet Bulb Temp.: 💿	15	С	Partial Vapor Press.	13.784642579	mbar	
Relat. Humidity: O	58.939010704:	%	Humidity Ratio	0.0085787306	kg/kg	
Dew Point Temp	11.772225697;	С	Enthalpy	41.880514658	kJ/kg	
Altitude	0.0	m	Specific Volume	0.8410950650!	m3/kg	
Cal	culate				C	

Click on the ad to read more

7.2 Problems solved with Mathcad:

Prob.7.2.1 Write Mathcad Functions for Psychrometric properties:

Mathcad Solution:

First, let us write Functions for saturation pressure of water as a function of sat. temp and vice versa. Also, we shall write Functions to determine enthalpies of sat. liquid, sat. vapor and latent heat of vaporization for water:

These Functions use the sat. temp table from TEST [Ref:12]

Ref: TEST								
Units:	deg.C	;	kPa kJ/kg			kJ/kg		
	(0.01)		0.6113		(0.01)		(2501.4)	
	5		0.8721		20.98		2510.6	
	10		1.2276		42.01		2519.8	
	15		1.7051		62.99		2528.9	
	20		2.339		83.96		2538.1	
	25		3.169		104.89		2547.2	
tsat :=	30	psat :=	4.246	hf :=	125.79	hg :=	2556.3	
	35		5.628		146.68		2565.3	
	40		7.384		167.57		2574.3	
	45		9.593		188.45		2583.2	
	50		12.349		209.33		2592.1	
	55		15.758		230.23		2600.9	
	60		(19.94)		251.13		(2609.6)	

In the following Functions: P....in Pascals, T ... in deg.C

$PSATT(T) := linterp(tsat, psat, T) \cdot 1000$	Ex:	$PSATT(25) = 3.169 \times 10^3 Pa$	
$TSATP(P) := linterp\left(psat, tsat, \frac{P}{1000}\right)$	Ex:	TSATP(1754) = 15.386 C	
HFSATT(T) := linterp(tsat, hf, T)	Ex:	HFSATT(30) = 125.79 kJ/kg	
HGSATT(T) := linterp(tsat, hg, T)	Ex:	HGSATT(30) = 2.556×10^3 kJ	/kg
HFGSATT(T) := HGSATT(T) - HFSATT(T)	Ex:	HFGSATT(15) = 2.466×10^3 k	J/kg

Other Functions:

Sal. pressure over water: Range: U to 200 C:

T in deg.C, pressure in Pa.

1. Sat. pressure:

$$psatt(T) := exp \left[\begin{array}{c} \frac{-5.8002206 \cdot 10^3}{T + 273.15} + 1.3914993 - 48.640239 \cdot 10^{-3} \cdot (T + 273.15) \dots \\ + 41.764768 \cdot 10^{-6} \cdot (T + 273.15)^2 - 14.452093 \cdot 10^{-9} \cdot (T + 273.15)^3 + 6.5459673 \cdot \ln(T + 273.15) \end{array} \right]$$

Ex: psatt(20) = 2.339 × 10³ Pa

2. Sat. temp:

p := 2339 Pa T := 30 C....trial value

Given

psatt(T) = p

$$tsatp(p) := Find(T)$$

i.e. tsatp(p) = 20.001 C

Ex: tsatp(7384) = 40.001 C

2. Relative humidity 4:

 $\phi(pw,dbt) := \frac{pw}{psatt(dbt)} \qquad \dots pw \text{ is the prtial pressure of water at dry bulb temp, dbt}$

3. Partial pressure of water, pw:

Pw(dbt,RH) := RH·psatt(dbt) Pa

Ex: $Pw(20, 0.5) = 1.169 \times 10^3$ Pa

Psychrometrics

4. Humidity ratio, w:

$$\mathrm{w}(\mathtt{P},\mathtt{pw}) \coloneqq \frac{0.622 \cdot \mathtt{pw}}{\mathtt{P} - \mathtt{pw}} \qquad \text{kg H2O/kg dry air} \quad \mathtt{P} \text{ is total pressure = atmosph. pr.}$$

 $W(\texttt{dbt},\texttt{RH},\texttt{P}) \coloneqq \frac{0.622 \cdot \texttt{RH} \cdot \texttt{psatt}(\texttt{dbt})}{(\texttt{P} - \texttt{RH} \cdot \texttt{psatt}(\texttt{dbt}))} \qquad \qquad \texttt{kg H2O/kg dry air } \dots \texttt{P} \dots \texttt{in Pa}$

Ex: $W(20, 0.5, 101325) = 7.262 \times 10^{-3}$ kg water/kg dry air

 $ws(P,dbt) := \frac{0.622 \cdot psatt(dbt)}{P - psatt(dbt)} \qquad \dots \text{ at sat. pressure}$

i.e. ws(101325,20) = 0.0147 kg/kg dry air

5. Degree of saturation, µ:

$$mu(dbt, RH, P) := \frac{W(dbt, RH, P)}{ws(P, dbt)}$$

Ex: mu(20,0.5,101325) = 0.494

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on **+44 (0)20 7000 7573**.

* Figures taken from London Business School's Masters in Management 2010 employment report

6. Dew point temp, deg.C: ... between 0 and 70 C:

Also:

7. Dew point temp, deg.C: ... between 0 and 70 C: ... in terms of DBT and RH:

```
dewpt(dbt,RH) := dpt(Pw(dbt,RH)) C.
```

Ex: dewpt(20,0.5) = 9.147 C

8. Sp. volume of moist air (given in Psychrometric charts) ... in m3/kg :

$$v(dbt, RH, P) := \frac{\left(\frac{1}{P}\right) \cdot 287.055 \cdot (dbt + 273.15) \cdot (1 + 1.6078 \cdot W(dbt, RH, P))}{1 + W(dbt, RH, P)}$$
m^3/kg of moist air

Ex: v(20,0.5,101325) = 0.834 m^3/kg of moist air

9. Density of moist air :

 $\texttt{rho}(\texttt{dbt},\texttt{RH},\texttt{P}) \coloneqq \frac{1}{v(\texttt{dbt},\texttt{RH},\texttt{P})} \qquad \dots \texttt{density of moist air } \dots \texttt{kg/m^3}$

- Ex: rho(20,0.5,101325) = 1.199 kg/m^3
- 10(a). Enthalpy of water vapor: (0 deg.C is the reference. Enthalpy at 0 deg.C = 2500.9 kJ/kg Average sp. heat (cp) of water vapor between -10 and 50 C is 1.82 kJ/kg.C)

$$h_g(T) := 2500.9 + 1.82 \cdot T$$
 kJ/kg
Ex: $h_g(25) = 2.5464 \times 10^3$ kJ/kg

- 10(b). Enthalpy of dry air: (0 deg.C is the reference. Average sp. heat (cp) of air between -10 and 50 C is 1.005 kJ/kg.C)
 - h_{drvair}(T) := 1.005·T kJ/kg
 - Ex: h_{drvair}(25) = 25.125 kJ/kg

11. Enthalpy of moist air :

 $h_{moist}(dbt,RH,P) := 1.005 \cdot dbt + W(dbt,RH,P) \cdot (2500.9 + 1.82 \cdot dbt) kJ/kg$

Ex: h_{moist}(20,0.5,101325) = 38.527 kJ/kg

12. RH from DBT and WBT :

 $phi(DBT, WBT) := \frac{[psatt(WBT) - (DBT - WBT) \cdot 63]}{psatt(DBT)}$

Ex: phi(20, 15.7) = 0.647 = 64.7%

Using Dr. Carrier's eqn for partial pressure of water vapor :

$$pw = (pw_s)_{wbt} - \frac{\left[P - (pw_s)_{wbt}\right] \cdot (dbt - wbt)}{1527.4 - 1.3 \cdot wbt}$$
 Pa

In the above formula, pressures are in Pa, temps in deg.C

i.e.
$$pw(dbt,wbt,P) := \left[psatt(wbt) - \frac{(P - psatt(wbt)) \cdot (dbt - wbt)}{1527.4 - 1.3 \cdot wbt} \right] \dots Pa$$

Ex:
$$pw(20, 15.7, 101325) = 1.5 \times 10^3$$
 ... Pa

And, $RH = \frac{pw}{pw_s}$

Ex: RH(20, 15.7, 101325) = 0.641 = 64.1%
Plot RH vs DBT for different "wet bulb depression (DBT-WBT)" values:

DBT := 15,17...36 C....define a range variable

DBT =	RH(DBT,DBT - 1,101325)	RH(DBT,DBT - 2,101325)	RH(DBT,DBT - 3,101325)
15	0.899	0.801	0.706
17	0.904	0.812	0.723
19	0.909	0.822	0.737
21	0.914	0.83	0.75
23	0.918	0.838	0.762
25	0.921	0.845	0.772
27	0.924	0.852	0.782
29	0.927	0.857	0.79
31	0.93	0.862	0.798
33	0.932	0.867	0.805
35	0.934	0.871	0.811

Download free eBooks at bookboon.com

Click on the ad to read more

15 0.615 0.526 0.441	
17 0.636 0.553 0.473	
19 0.656 0.577 0.501	
21 0.673 0.598 0.526	
23 0.688 0.617 0.549	
25 0.702 0.634 0.569	
27 0.714 0.649 0.587	
29 0.725 0.663 0.603	
31 0.735 0.675 0.617	
33 0.744 0.686 0.631	
35 0.753 0.697 0.643	

DBT =	RH(DBT,DBT - 7,101325)	RH(DBT,DBT - 8,101325)	RH(DBT,DBT - 9,101325)	RH(DBT,DBT - 10,101325)
15	0.358	0.278	0.2	0.124
17	0.395	0.32	0.247	0.176
19	0.428	0.357	0.288	0.222
21	0.457	0.39	0.325	0.262
23	0.483	0.419	0.357	0.298
25	0.506	0.445	0.386	0.33
27	0.526	0.468	0.412	0.358
29	0.545	0.489	0.435	0.384
31	0.562	0.508	0.456	0.407
33	0.577	0.525	0.475	0.428
35	0.591	0.541	0.493	0.446

Download free eBooks at bookboon.com

13.Humidity from DBT and WBT:

 $W1(dbt,wbt,P) := RH(dbt,wbt,P) \cdot \frac{0.622 \cdot psatt(dbt)}{P - psatt(dbt) \cdot RH(dbt,wbt,P)}$

Ex: W1(20,15,101325) = 8.558 × 10⁻³ kg H2O/kg. dry air

14. Humidity from DBT & RH:

 $\omega 1(DBT,RH,P) := RH \cdot \frac{0.622 \cdot psatt(DBT)}{P - psatt(DBT) \cdot RH} \qquad \qquad \mbox{kg H2O/kg dry air,} \quad P \mbox{ in Pa, temp (C)}$

Ex: $\omega 1(20, 0.64, 101325) = 9.326 \times 10^{-3}$ kg H2O/kg dry air

39

15. WBT from DBT & RH:

WBT := 10 C....trial value P := 101325 Pa

Given

phi = RH(DBT, WBT, P)

WBT(DBT, phi, P) := Find(WBT)Required Function

Ex: WBT(20,0.64,101325) = 15.683 C

16. pw from w & P:

$$p_w(w,P) := \frac{w \cdot P}{w + 0.622}$$
 Pa ... w in kg H2O/kg dry air, P is atm. pressure in Pa

Ex:
$$p_w(0.0152, 101325) = 2.417 \times 10^3$$
 Pa

17. pw from DBT, WBT & P:

 $p_w(dbt, wbt, P) := \frac{\omega 1(dbt, wbt, P) \cdot P}{\omega 1(dbt, wbt, P) + 0.622} \qquad \begin{array}{c} \mathsf{Pa} \ \dots \ dbt, \ wbt \ in \ \mathsf{C}, \ \mathsf{P} \ is \ atm. \\ pressure \ in \ \mathsf{Pa} \end{array}$

Ex:
$$p_w(25, 15, 101325) = 4.754 \times 10^4$$
 Pa

18. pw from DBT, RH & P:

 $P_w(DBT,RH,P) := \frac{\omega 1(DBT,RH,P) \cdot P}{\omega 1(DBT,RH,P) + 0.622} \qquad \begin{array}{c} \mathsf{Pa} \ \dots \ \mathsf{DBT} \ \mathsf{in} \ \mathsf{C}, \ \mathsf{P} \ \mathsf{is} \ \mathsf{atm}. \\ \mathsf{pressure} \ \mathsf{in} \ \mathsf{Pa} \end{array}$

Ex: $P_w(25, 0.75, 100000) = 2.377 \times 10^3$ Pa

Function	Comments	Example
PSATT(T)	sat. pr. of water (Pa) as a function of temp (C), data from Steam Tables	$PSATT(25) = 3.169 \times 10^3$
TSATP(P)	sat. temp. of water (C) as a function of pressure (Pa), data from Steam Tables	TSATP(1750) = 15.354
HFSATT(T)	enthalpy of sat. water (kJ/kg) as a function of temp (C), data from Steam Tables	HFSATT(30) = 125.79
HGSATT(T)	enthalpy of sat. vapor (kJ/kg) as a function of temp (C), data from Steam Tables	$HGSATT(30) = 2.556 \times 10^{3}$
HFGSATT(T)	enthalpy vaporization of water (kJ/kg) as a function of temp (C), data from Steam Tables	HFGSATT(15) = 2.466×10^3
psatt(T)	sat. pr. of water (Pa) as a function of temp (C), from vap. pressure eqn.	$psatt(20) = 2.339 \times 10^3$
tsatp(p)	sat. temp. of water (C) as a function of pressure (Pa), from vap. pressure eqn.	tsatp(7384) = 40.001
∮(pw,dbt)	Relative humidity from pw(Pa) and dbt (C)	$\phi(2380, 25) = 0.751$

Summary of Mathcad Functions to determine various Psychrometric properties:

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

Download free eBooks at bookboon.com

Pw(dbt,RH)	Pw (Pa) from dbt (C) and RH, P = 101325 Pa	$Pw(20, 0.5) = 1.169 \times 10^3$
w(P,pw) W(dbt,RH,P)	w, W Sp. humidity (kg. water vap/kg dry air)	$W(20, 0.5, 101325) = 7.262 \times 10^{-3}$
ws(P,dbt)	ws sp. humidity at saturation, P is atm. pressure (Pa)	ws(101325,20) = 0.0147
mu(dbt,RH,P)	degree of saturation	mu(20, 0.5, 101325) = 0.494
dpt(pw)	dew point temp (C), pw in (Pa)	dpt(1169.4) = 9.147
dewpt(dbt,RH)	dew point temp (C) as a function of dbt and RH	dewpt(20, 0.75) = 15.276
v(dbt,RH,P)	sp.vol. (m^3/kg of moist air), given in Psychrometric chart	v(20,0.5,101325) = 0.834
rho(dbt,RH,P)	density (kg/m^3 moist air), given in Psychrometric chart	rho(20, 0.5, 101325) = 1.199
hg(T)	Enthalpy (kJ/kg) of water vapor	$h_g(25) = 2.5464 \times 10^3$
h _{dryair} (T)	Enthalpy (kJ/kg) of dry air	h _{dryair} (25) = 25.125
h _{moist} (dbt,RH,P)	Enthalpy (kJ/kg) of moist air	h _{moist} (20, 0.5, 101325) = 38.527
phi(DBT, WBT)	RH when dbt and wbt are known	phi(20,15.7) = 0.647
pw(dbt,wbt,P)	Carrier's eqn for partial pressure of water (Pa), from dbt and wbt	$pw(20, 15.7, 101325) = 1.5 \times 10^3$
RH(dbt,wbt,P)	RH when dbt and wbt are known, P is atm. pr in Pa	RH(20,15.7,101325) = 0.641
W1(dbt,wbt,P)	Sp. humidity (kg H2O/kg dry air) when dbt and wbt are known, P is atm. pr in Pa	$W1(20, 15, 101325) = 8.558 \times 10^{-3}$
ω1(DBT,RH,P)	Sp. humidity (kg H2O/kg dry air) when dbt and RH are known, P is atm. pr in Pa	$\omega 1(20, 0.64, 101325) = 9.326 \times 10^{-3}$
WBT(DBT, phi, P)	WBT (C) when DBT (C) and RH are known, P is atm. pressure in Pa	WBT(25.4, 0.6, 101325) = 19.832
$p_{W}(w, P)$	Pw (Pa) from w (kgH2O/kg dry air) and, P (Pa)	$p_{\rm W}(0.0152, 101325) = 2.417 \times 10^3$
P_w(DBT,RH,P)	Pw (Pa) from DBT (C), RH and P(Pa)	$P_w(25, 0.75, 100000) = 2.377 \times 10^3$

Prob.7.2.2 The sling psychrometer in a laboratory test recorded following readings: dbt = 35 C; wbt = 25 C. Calculate the following: (i) sp. humidity (ii) relative humidity (iii) Vapor density in air (iv) dew point temp (v) enthalpy of mixture/kg of dry air. Take total atmospheric pressure as 1.0132 bar.[M.U.]

Mathcad Solution:

Data:

dbt := 35 C wbt := 25 C P := 101325 Pa

Calculations:

Recollect that we have: Humidity from DBT and WBT:

 $W1(dbt, wbt, P) := RH(dbt, wbt, P) \cdot \frac{0.622 \cdot psatt(dbt)}{P - psatt(dbt) \cdot RH(dbt, wbt, P)}$

- (i) Sp. humidity: W1(dbt,wbt,P) = 0.016 kg vap/ kg dry air Ans.
- (ii) Rel. humidity: RH(dbt,wbt,P) = 0.446 = 44.6 %....Ans.
- (iii) density of moist air: rho(dbt,RH(dbt,wbt,P),P) = 1.135 kg moist air /m^3 ...Ans.

For density of vapor in mixture:

Vap. pressure: pw := pw(dbt, wbt, P) $pw = 2.513 \times 10^3$ Pa Therefore: pa := P - pw $pa = 9.881 \times 10^4$ Pa partial pressure of dry air

And, density of dry air in mixture: $rho_a := \frac{pa}{287 \cdot (dbt + 273)}$

i.e. $rho_a = 1.118$ kg dry air/m^3 dry air

And, density of vapor air in mixture: $rho_w := rho_a \cdot W1(dbt, wbt, P)$

i.e. thow = 0.018 kg. vap/kg. dry air ... Ans.

- (iv) Dew point temp: dewpt(dbt,RH(dbt,wbt,P)) = 21.029 deg. C....Ans.
- (v) Enth. of mixture: $h_{moist}(dbt, RH(dbt, wbt, P), P) = 75.737$ kJ/kg..... Ans.

Prob. 7.2.3 Temp of air on a certain day is 30C and the RH is 70%. What is the sp. humidity and dew point temp? If the air is cooled at const. pressure to 10C, what mass of water vapor would condense? [M.U.]

Mathcad Solution:

Data:

dbt := 30 C phi := 0.70 P := 101325 Pa

Calculations:

wbt := 20 trial value

Then: root(RH(dbt,wbt,P) - phi,wbt) = 25.509applying the root function

Therefore: wbt := 25.509 deg. C.... wet bulb temp.

And:

W1(dbt,wbt,P) = 0.0188 kg vap/kg dry air..sp. humidity.... Ans.

dewpt(dbt,RH(dbt,wbt,P)) = 23.821 deg. C..Dew point...Ans.

 $W1(10,10,P) = 7.63073 \times 10^{-3}$ kg vap/kg dry air....sp. hum. at sat temp of 10C... since on sat. line dbt = wbt

Verify: at 10 C, sp. humidity is:

 $\frac{0.622 \cdot psatt(10)}{P - psatt(10)} = 7.631 \times 10^{-3}$ kg.vap/kg. dry air verified.

Therefore, water condensed:

W1(dbt,wbt,P) - W1(10,10,P) = 0.01116 kg vap/ kg dry air...Ans

Prob. 7.2.4 Atmospheric air at 101.325 kPa has 30 C DBT and 15 C DPT. Without using the Psychrometric chart, using property values from tables, calculate: (i) partial pressures of air and water vapor, (ii) sp. humidity, (iii) RH, (iv) vapor density, and (v) enthalpy of moist air. [VTU]

Mathcad Solution:

Data:

dbt := 30 C dry bulb temp P := 101325 Pa atm. pressure dpt := 15 C ... dew point temp

Calculations:

Recollect the following Mathcad Function we wrote earlier:

Dew point temp, deg.C: ... between 0 and 70 C:

 $dpt(pw) := \begin{bmatrix} -35.957 - 1.8726 \cdot ln(pw) + 1.1689 \cdot (ln(pw))^2 \end{bmatrix} \quad \dots deg. \ C, \quad pw \ in \ Pa$

Now, we shall use this Function to find partial pressure of water, pw as follows:

Using the Solve block to find partial pressure of water, pw::

Given dpt(pw) = 15 pw := Find(pw)

i.e. pw = 1.723 × 10³ Pa.... partial pressure of water vapor Ans.

Therefore, partial pressure of dry air:

pa := P - pw

i.e. pa = 9.96 × 10⁴ Pa.... partial pressure of dry air.... Ans.

To find RH:

Agin, recollect the following Mathcad Function we wrote earlier:

Dew point temp, deg.C: ... between 0 and 70 C: ... in terms of DBT and RH:

dewpt(dbt, RH) = dpt(pw(dbt, RH)) C.

Using the Solve block to find RH::

rh := 0.5 ...rel. humidity.... trial value dbt := 30 C

Given

dewpt(dbt, rh) = 15

Find(rh) = 0.406

i.e. RH := 0.406 = 40.6% Ans.

Sp. humidity:

We have: w1 := w(P, pw)

i.e. w1 = 0.011 kg. vapor/kg dry air Ans.

Applied Thermodynamics: Software Solutions: Part-IV (Psychrometrics, Reactive systems)

Psychrometrics

Density of vapor in mixture:

Density of dry air in mixture: $rho_a := \frac{pa}{287 \cdot (dbt + 273)}$ i.e. $rho_a = 1.145$ kg dry air/m^3 dry air And, density of vapor air in mixture: $rho_w := rho_a \cdot w1$ i.e. $rho_w = 0.012$ kg. vap/m^3 dry air ... Ans.

Enthalpy of moist air:

Recollect that enthalpy of moist air is the sum of enthalpies of dry air and associated water vapor.:

 $h := 1.005 \cdot dbt + w1 \cdot (2500.9 + 1.82 \cdot dbt)$

i.e. h = 57.652 kJ/kg Ans.

Prob. 7.2.5 A room $6m \times 4m \times 4m$ contains air at 25 C and 1 atm at a RH = 80%.Determine: (i) partial pressures of air and water vapor, (ii) sp. humidity, (iii) enthalpy of moist air per unit mass of dry air (iv) masses of dry air and water vapor in the room. [VTU]

Mathcad Solution:

Data:

dbt := 25 C dry bulb temp P := 101325 Pa atm. pressure RH := 0.8 ... relative humidity

Calculations:

Sat. vap. pressure of water:

 $pw_s := psatt(dbt)$ i.e. $pw_s = 3.169 \times 10^3$ Pa

Therefore, vapor pressure at 25 C:

 $pw := RH \cdot pw_s$

i.e. pw = 2.535 × 10³ Pa....partial pressure of water ... Ans.

Therefore, partial pressure of air at 25 C:

$$pa := P - pw$$

i.e. pa = 9.879 × 10⁴ Pa....partial pressure of air ... Ans.

Specific humidity:

w1 :=
$$\frac{0.622 \cdot pw}{P - pw}$$

i.e. w1 = 0.016 kg H2O/kg dry air ... Ans.

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/ OIL & GAS ENGINEERING

ELECTRONICS

AUTOMATION & PROCESS CONTROL

> MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS

ELECTRICAL POWER

TECHNOLOGIES

Click on the ad to read more

Phone: +61 8 9321 1702 Email: training@idc-online.com Website: www.idc-online.com

Download free eBooks at bookboon.com

Enthalpy per unit mass of dry air:

Recollect:

$$h_{moist}(dbt, RH, P) = 1.005 \cdot dbt + W(dbt, RH, P) \cdot (2500.9 + 1.82 \cdot dbt)$$
 kJ/kg

h_{moist}(dbt,RH,P) = 65.774 kJ/kg....Ans.

Masses of dry air and water vapor in the room:

Both dry air and vapor fill the entire room, i.e. volume occupied by air and vapor is the same = 6 x 4 x 4 = 96 m^3.

V := 96 m^3

Apply Ideal Gas Law to determine the masses of dry air and vapor:

R_a := 287 J/kg.K ... Gas const. for air T := dbt + 273.15 K

$$R_{w} := \frac{8314}{18}$$
 i.e. $R_{w} = 461.889$ J/kg.K ... Gas const. for water vapor

Therefore:

$$\begin{split} m_{a} &\coloneqq \frac{p a \cdot V}{R_{a} \cdot T} & \text{i.e.} & m_{a} = 110.832 \quad \text{kg....mass of dry air Ans.} \\ m_{w} &\coloneqq \frac{p w \cdot V}{R_{w} \cdot T} & \text{i.e.} & m_{w} = 1.767 \quad \text{kg....mass of water vapor Ans.} \end{split}$$

Prob. 7.2.6 In a room, a sling psychrometer reads a dry bulb temp of 25 C and wet bulb temp of 15 C. Determine: (i) sp. humidity (ii) relative humidity, and (iii) enthalpy of air.

Mathcad Solution:

Data:

DBT := 25 C WBT := 15 C P := 101325 Pa

Calculations:

Sp. humidity and Relative humidity can be determined with the Mathcad Functions written earlier:

For sp. humidity:

 $W1(dbt, wbt, P) = RH(dbt, wbt, P) \cdot \frac{0.622 \cdot psatt(dbt)}{P - psatt(dbt) \cdot RH(dbt, wbt, P)}$

For relative humidity:

 $phi(DBT, WBT) := \frac{[psatt(WBT) - (DBT - WBT) \cdot 63]}{psatt(DBT)}$

Therefore:

Sp. humidity:

w1 := W1(DBT, WBT, P)

i.e. $w1 = 6.48 \times 10^{-3}$ kg H2O/kg dry air Ans.

Relative humidity:

RH := phi(DBT, WBT)

i.e. RH = 0.339 = 33.9% Ans.

Enthalpy of air:

 $h := h_{moist}(DBT, RH, P)$

i.e. h = 42.116 kJ/kg enthalpy of moist air ... Ans.

Note: Refer to the section under **Adiabatic saturation**. For air at 1 atm, adiabatic saturation temp (T2) can be taken as Wet bulb temp, and we can apply the equations given for w2 and w1 in that section:

We have:

$$w2 = \frac{0.622 \cdot pws2}{P - pws2}$$
 $w1 = \frac{cp \cdot (T2 - T1) + w2 \cdot h_{fg2}}{hg1 - hf2}$

Therefore:

$$w2 := \frac{0.622 \cdot psatt(T2)}{P - psatt(T2)}$$

i.e. w2 = 0.011 kg H2O/kg dry air

51

And:

w1 :=
$$\frac{\text{cp} \cdot (\text{T2} - \text{T1}) + \text{w2} \cdot \text{HFGSATT(T2)}}{\text{HGSATT(T1)} - \text{HFSATT(T2)}}$$

i.e. $w1 = 6.524 \times 10^{-3}$ kg H2O/kg dry air

- Therefore: RH1 = $\frac{w1 \cdot P}{(0.622 + w1) \cdot P_{g1}}$
- i.e. RH1 := $\frac{w1 \cdot P}{(0.622 + w1) \cdot psatt(T1)}$
 - i.e. RH1 = 0.332 = 33.2 % verified.

Prob.7.2.7 For a hall to be air conditioned, following conditions are given:

Outdoor condition: 40 C DBT, 20 C WBT Required comfort condition: 20 C DBT, 60% RH Seating capacity of hall = 1500; Amount of outdoor air supplied = 0.3 m^3/person If the required condition is achieved first by adiabatic humidification and then by cooling, estimate:

(i) capacity of cooling coil in Tons of Refrigeration (ii) capacity of humidifier (iii) condition of air after adiabatic humidification. [VTU]

Mathcad Solution:

Here, starting from state 1, first humidification is done adiabatically to state 2, and then cooling is done to final state 3. Note that process 2=3 occurs at const. sp. humidity. See the schematic Psychrometric chart below:

Data:

DBT1 := 40 C WBT1 := 20 C DBT3 := 20 C RH3 := 0.6 V := 450 m^3/min P := 101325 Pa R_a := 287 J/kg.C

Calculations:

Recollect the Mathcad Function we wrote earlier for pw as function of dbt and wbt:

 $pw(dbt,wbt,P) := \left[\begin{array}{c} psatt(wbt) - \frac{(P-psatt(wbt)) \cdot (dbt-wbt)}{1527.4 - 1.3 \cdot wbt} \end{array} \right] \quad ...Pa$

Then: $p_{w1} := pw(DBT1, WBT1, P)$

i.e. $p_{w1} = 1.02 \times 10^3$ Pa...partial pressure of water at state 1

Therefore, partial pressure of air:

$$p_a := P - p_{w1}$$
 i.e. $p_a = 1.003 \times 10^3$ Pa....partial pressure of air

Therefore, mass flow rate of air:

$$m_a := \frac{p_a \cdot V}{R_a \cdot (DBT1 + 273)}$$
 i.e. $m_a = 502.467$ kg/min

Sp. humidity at 1:

w1 :=
$$\frac{0.622 \cdot p_{w1}}{P - p_{w1}}$$
 i.e. w1 = 6.326×10^{-3} kg H2O/kg dry air

Moist air enthalpy at 1:

Recollect the Mathcad Function we wrote earlier for pw as function of dbt and pw:

$$\phi(pw, dbt) := \frac{pw}{psatt(dbt)}$$

Click on the ad to read more

54

Therefore:

RH1 := $\phi(p_{w1}, DBT1)$ i.e. RH1 = 0.138 = 13.8% RH at 1 h1 := $h_{moist}(DBT1, RH1, P)$ i.e. h1 = 56.482 kJ/kg dry air

Condition of air immediately after adiabatic humidification, i.e. state 2:

Sp. humidity at 2 is equal to sp. humidity at 3, since in cooling from 2 to 3, sp. humidity remains constant.

 $\omega 1(DBT,RH,P) := RH \cdot \frac{0.622 \cdot psatt(DBT)}{P - psatt(DBT) \cdot RH}$...Function for sp. hum. written earlier

Therefore:

w3 := $\omega1(DBT3,RH3,P)$ i.e. w3 = 8.735×10^{-3} kg H2O/kg dry air

And,

w2 := w3 i.e.
$$w2 = 8.735 \times 10^{-3}$$
 kg H2O/kg dry air sp. humidity at 2, after humidification

To find DBT at state 2:

We have: h1 = 56.482 kJ/kg dry air

And, h2 := h1 ...since 1-2 is adiabatic humidification

i.e. h2 = 1.005·DBT2 + w2·(2500.9 + 1.82·DBT2)

Therefore: DBT2 := $\frac{(h2 - w2 \cdot 2500.9)}{1.005 + w2 \cdot 1.82}$

i.e. DBT2 = 33.927 C dry bulb temp at state 2, after humidifying

i.e. Temp of air at state 2, immediately after adiabatic humidification is: 33.927 C.

Wet bulb temp at 2: this is equal to WBT1 = 20 C, since constant enthalpy lines in a Psychrometric chart run parallel to constant wet bulb temp. lines.

i.e. WBT2 := WBT1

To find RH at state 2:

Recollect the Mathcad Function written earlier: RH := phi(DBT, WBT)

Therefore:

RH2 := phi(DBT2, WBT2)

i.e. RH2 = 0.276 = 27.6 % ... relative humidity at state 2, after humidification.

Thus, conditions at state 2 are:

DBT2 = 33.927 C, WBT2 = 20 C, RH2 = 27.6 % , w2 = w3 = 0.008735 kg H2O/kg dry air, h2 = h1 = 56.482 kJ/kg of dry air ... Ans.

Then: Amount of H2O added in humidifier:

 $m_{w} := w2 - w1$ i.e. $m_{w} = 2.409 \times 10^{-3}$ kg H2O/kg dry air

Actual amount of water added:

 $M_w := m_w \cdot m_a$ i.e. $M_w = 1.21$ kg H2O per min Ans.

Capacity of cooling coils:

 $Q = m_a \cdot (h2 - h3)$ kJ/min

Moist air enthalpy at 3:

 $h3 := h_{moist}(DBT3, RH3, P)$ i.e. h3 = 42.264 kJ/kg dry air

Therefore, total cooling required, Q:

 $Q := m_{a} \cdot (h2 - h3)$ i.e. $Q = 7.144 \times 10^{3}$ kJ/min

And, cooling capacity in tons:

 $Q_{ton} := \frac{Q}{211}$...since 1 ton = 211 kJ/min

i.e. Q_{ton} = 33.859 tons of refrigeration ... Ans.

Prob.7.2.8 We have one stream, 30 m³/min of air at 15 C DBT and 13 C WBT mixed with 12 m³/min of air at 25 C DBT and 18 C WBT. Calculate DBT, sp. humidity of mixture. Take atm pressure as 101.325 kPa. [VTU]

Fig.Prob.7.2.8 Adiabatic mixing of two streams

Mathcad Solution:

Data:

DBT1 := 15 C WBT1 := 13 C DBT2 := 25 C WBT2 := 18 C V1 := 30 m^3/min V2 := 12 m^3/min

P := 101325 Pa R_a := 287 J/kg.C

Calculations:

For stream 1:

Recollect the Mathcad Function we wrote earlier for pw as function of dbt and wbt:

 $pw(dbt,wbt,P) := \left[psatt(wbt) - \frac{(P - psatt(wbt)) \cdot (dbt - wbt)}{1527.4 - 1.3 \cdot wbt} \right] \dots Pa$

Then: $p_{w1} := pw(DBT1, WBT1, P)$

i.e. $p_{w1} = 1.366 \times 10^3$ Pa...partial pressure of water at state 1

Therefore, partial pressure of air:

$$p_{a1} := P - p_{w1}$$
 i.e. $p_{a1} = 9.996 \times 10^4$ Pa....partial pressure of air

And, mass flow rate of air:

$$m_{a1} := \frac{p_{a1} \cdot V1}{R_a \cdot (DBT1 + 273)}$$
 i.e. $m_{a1} = 36.28$ kg/min

Sp. humidity at 1:

$${\rm w1} := \frac{0.622 \cdot p_{w1}}{P - p_{w1}} \qquad \mbox{ i.e. } {\rm w1} = 8.498 \times 10^{-3} \qquad \mbox{kg H2O/kg dry air}$$

Moist air enthalpy at 1:

Recollect the Mathcad Function we wrote earlier for pw as function of dbt and pw:

$$\phi(pw, dbt) := \frac{pw}{psatt(dbt)}$$

Therefore:

RH1 :=
$$\phi(p_{w1}, DBT1)$$
 i.e. RH1 = 0.801 = 80.1 % RH at 1

 $h1 := h_{moist}(DBT1,RH1,P) \qquad i.e. \qquad h1 = 36.559 \qquad kJ/kg \; dry \; air$

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

58

Similarly, for stream 2:

Partial pressure of water for stream 2:

$$p_{w2} := pw(DBT2, WBT2, P)$$

i.e. $p_{w2} = 1.602 \times 10^3$ Pa...partial pressure of water at state 2

Therefore, partial pressure of air:

 $p_{a2} := P - p_{w2}$ i.e. $p_{a2} = 9.972 \times 10^4$ Pa....partial pressure of air

And, mass flow rate of air:

$$m_{a2} := \frac{p_{a2} \cdot V2}{R_a \cdot (DBT2 + 273)}$$
 i.e. $m_{a2} = 13.992$ kg/min

Sp. humidity at 2:

w2 :=
$$\frac{0.622 \cdot p_{w2}}{P - p_{w2}}$$
 i.e. w2 = 9.994 × 10⁻³ kg H2O/kg dry air

Moist air enthalpy at 2:

Recollect the Mathcad Function we wrote earlier for pw as function of dbt and pw:

$$\phi(pw, dbt) := \frac{pw}{psatt(dbt)}$$

Therefore:

RH2 :=
$$\phi(p_{w2}, DBT2)$$
 i.e. RH2 = 0.506 = 50.6 % RH at 2
h2 := $h_{moist}(DBT2, RH2, P)$ i.e. h2 = 50.574 kJ/kg dry air... at state 2

Now, for adiabatic mixing of two streams, we have:

Dry air mass balance: $m_{a1} + m_{a2} = m_{a3}$

Water mass balance: $m_{a1} \cdot w_1 + m_{a2} \cdot w_2 = m_{a3} \cdot w_3$

Energy balance: $m_{a1} \cdot h_1 + m_{a2} \cdot h_2 = m_{a3} \cdot h_3$

Applied Thermodynamics: Software Solutions: Part-IV (Psychrometrics, Reactive systems)

Then, we get:

$$\frac{\mathbf{m}_{a1}}{\mathbf{m}_{a2}} = \frac{\mathbf{w}_2 - \mathbf{w}_3}{\mathbf{w}_3 - \mathbf{w}_1} = \frac{\mathbf{h}_2 - \mathbf{h}_3}{\mathbf{h}_3 - \mathbf{h}_1}$$

Therefore:

 $m_{a1} \cdot w1 + m_{a2} \cdot w2$

i.e.
$$w_3 = 8.914 \times 10^{-3}$$
 kg/kg... sp. humidity of mixture....Ans.

And, enthalpy of mixture is given by::

w3

h3 :=
$$\frac{m_{a1} \cdot h1 + m_{a2} \cdot h2}{m_{a1} + m_{a2}}$$

i.e. h3 = 40.46 kJ/kg dry air enthalpy of mixture ... Ans.

To find T3, the DBT of the mixture stream:

We have: $p_w3 := p_w(w3, P)$...partial pressure of vapor at 3

i.e.
$$pw3 = 1.432 \times 10^3$$
 Pa

For almost 60 years Maastricht School of Management has been enhancing the management capacity of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open Enrollment Executive Programs offers you a unique interactive, stimulating and multicultural learning experience.

Be prepared for tomorrow's management challenges and apply today.

For more information, visit www.msm.nl or contact us at +31 43 38 70 808 or via admissions@msm.nl

the globally networked management school

Click on the ad to read more

Download free eBooks at bookboon.com

Psychrometrics

Now, enthalpy of mixture is also given by:

h3 = 1.005·T3 + w3·(2500.9 + 1.82·T3) kJ/kg dry air

Therefore:

$$T3 := \frac{h3 - 2600.9 \cdot w3}{1.005 + w3 \cdot 1.82}$$

i.e. T3 = 16.916 C... DBT of mixture Ans.

7.3 Problems solved with Psychrometric chart:

Prob.7.3.1 Solve the above problem (i.e. problem 7.2.7) with Psychrometric chart:

Following are the steps:

1. We use the simplified Psychrometric chart published by Ureili [Ref: 14], shown below:

- 2. Locate state 1, i.e. DBT = 40 C, WBT = 20 C. Also, locate State 3, with DBT = 20 C, and RH = 60%.
- 3. Proces 1-2 is adiabatic humidification. And 2-3 is cooling with constant sp. humidity. So, from State 1, proceed along const. enthalpy line to State 2 to intersect const. sp. humidity line from State 3, and the point of intersection is State 2. These processes are shown below:

4. From the chart, we read that:

RH1 = 14%, h1 = 57 kJ/kg dry air, v1 = 0.9 m3/kg, w1 = 6.5 g/kg dry air

Therefore, mass flow rate of air = $m_a = 450/0.9 = 500$ kg/min.

RH2 = 26%, h2 = h1, and w2 = w3 = 9 g/kg dry air

RH3 = 60%, h3 = 42 kJ/kg dry air

Note that these values from chart match very well with the calculated values obtained earlier. Further, using the chart is very convenient.

Then, capacity of cooling coil, capacity of humidifier etc are calculated as earlier, i.e.

Cooling capacity = $m_a * (h2 - h3) = 500 * (57 - 42)/211 = 35.545$ Tons of Refrigeration ... Ans.

Capacity of humidifier = ma * (w2 - w1) = 500 * (0.009 - 0.0065) = 1.25 kg H2O/min.... Ans.

Prob.7.3.2 The dry and wet bulb temps of air at 1 atm are measured with a sling psychrometer and determined to be 25 C and 15 C respectively. Find: (i) sp. humidity, (ii) relative humidity, (iii) enthalpy, and (iv) sp. volume of air [VTU]

Solution:

Following are the steps:

- 1. We use the simplified Psychrometric chart published by Ureili [Ref: 14], shown above.
- 2. Locate state 1, i.e. DBT = 25 C, WBT = 15 C:

3. Read from the chart:

Sp. humidity = w1 = 6.5 g/kg dry air .. Ans.

RH = 34% ... Ans.

Enthalpy = 41 kJ/kg dry air ... Ans.

Sp. volume = $0.852 \text{ m}^{3}/\text{kg}$... Ans.

Prob.7.3.3 An air conditioning system is designed under following conditions:

Outdoor conditions: 30 C DBT, 75% RH

Required Indoor conditions: 22 C DBT, 70% RH

Amount of free air circulated: 3.33 m^3/s

Coil dew point temp: 14 C

Click on the ad to read more

The required condition is achieved first by cooling and dehumidification and then by heating. Estimate: (i) capacity of cooling coil in Tons of refrigeration (ii) capacity of heating coil in kW (iii) amount of water vapor removed in kg/h. [VTU]

Solution:

This problem is solved very conveniently with Psychrometric chart:

Following are the steps:

1. We use the simplified Psychrometric chart published by Ureili [Ref: 14], shown below:

2. Locate state 1, i.e. DBT = 30 C, 75% RH. Also, locate State 2, with DPT = 14 C. And state 3 is the required indoor condition with DBT = 22 C, 70% RH

3. Connect proces 1-2 Draw the constant sp. humidity line through point 3 to cut the line 1-2 at point 4. So, 1-4 represents the cooling with dehumidification, and 4-3 is the heating process. These processes are shown below:

4. From the chart, we read that:

h1 = 80 kJ/kg dry air, v1 = 0.887 m3/kg, w1 = 20 g/kg dry air Therefore, mass flow rate of air = $m_a = 3.33/0.887 = 3.754$ kg/s h4 = 44 kJ/kg , and w4 = w3 = 12 g/kg dry air, h3 = 50 kJ/kg dry air

5. Therefore:

Capacity of cooling coils = ma * (h1 – h4) = 8109 kJ/min = 38.431 TOR ... Ans. Capacity of heating coils = ma * (h3 – h4) = 22.524 kW ... Ans. Amount of water vapor removed = ma * (w1 – w4) = 108.115 kg/h .. Ans.

Prob.7.3.4 A mixture of air and water vapor enters an adiabatic saturator at 35 C and leaves at 25 C at 1 atm pressure. Determine: (i) sp. humidity (ii) RH, and (iii) dew point of the entering air. [VTU]

Solution:

Remember that in an adiabatic saturation process, air at the exit is saturated, i.e at exit RH = 100%.

Following are the steps:

- 1. We use the simplified Psychrometric chart published by Ureili [Ref: 14], shown above.
- Locate exit state of adiabatic saturator first, i.e. DBT = 25 C, 100% RH, i.e. on the saturation line. Proceed on the const. enthalpy line (i.e. parallel to const. wet bulb temp line) to meet the vertical line at DBT = 35 C. This is State 1.

3. Read from the chart:

Sp. humidity = w1 = 16 g/kg dry air ... Ans.

RH = 42% Ans.

Dew point temp = DPT = 21.5 C ... Ans.

Prob.7.3.5 Sat.air leaving the cooling section of an air conditioning system at 14 C DBT at a rate of 50 m³/min is mixed adiabatically with the outside air at 32 C DBT and 60% RH at a rate of 20 m³/min. Assuming that mixing process is adiabatic at a pressure of 1 atm, determine the sp. humidity, RH, DBT and volume flow rate of mixture. [VTU]

Solution:

We shall solve this problem with Psychrometric chart.

Following are the steps:

- 1. We use the simplified Psychrometric chart published by Ureili [Ref: 14], shown above.
- 2. Locate the State 1, i.e. state of saturated air first, i.e. DBT = 14 C, 100% RH, i.e. on the saturation line. Then locate State 2, i.e. the state at DBT = 32 C, RH = 60%. Connect States 1 and 2. Final State 3, will be located on this line 1-2. To find State 3, proceed as follows:

OLIVER WYMAN

yman is a leading global manage

nt consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk usep mously knows by even specialized expension and the second strength operations, now management, organizational transformation, and leadership development. With diffices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. An equal opportunity employer

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

From the chart:

w1 = 10.5 g H2O/kg dry air, h1 = 41.5 kJ/kg, v1 = 0.83 m^3/kg

Therefore, $m_{a1} = 50/0.83 = 60.241 \text{ kg/min}$

w2 = 17.5 g/kg dry air, h2 = 76.5 kJ/kg, v2 = 0.887 m^3/kg

Therefore, $m_{a2} = 20/0.887 = 22.548 \text{ kg/min}$

And, $m_{a3} = m_{a1} + m_{a2} = 82.789$ kg/min Total mass flow rate of mixture

Now, for adiabatic mixing, we have:

$$\frac{m_{a1}}{m_{a2}} = \frac{w_2 - w_3}{w_3 - w_1} = \frac{h_2 - h_3}{h_3 - h_1}$$

Solving, w3 = 12.406 kg H2O/kg dry air, h3 = 51.032 kJ/kg

Note that w3 and h3 fix the State 3, on the line joining State 1 and State 2.

Then, from the Psychrometric chart, we read:

RH = 89% ... Ans.

DBT = 20 C Ans.

w3 = 12.406 kg H2O/kg dry air ... Ans.

v3 = 0.846 m^3/kg

Therefore, volume flow rate of mixture = $m_{a3} * v3 = 82.789 * 0.846 = 70.039 m^3/min ... Ans.$

Prob.7.3.6 Air enters at 32 C and RH of 70% in a summer air conditioning system where the air is cooled and then dehumidified. The air leaving the cooling coil is saturated at the coil temp. It is then heated to comfort condition of 24 C and 50% RH. Sketch the flow diagram of the system and represent the various processes in the Psychrometric chart. Determine: (i) temp of cooling coil, (ii) amount of moisture removed per kg of dry air in the cooling coil, (iii) heat removed per kg dry air in the cooling coil, (iii) heat added per kg dry air in the heating coils. [VTU]

Solution:

We shall solve this problem with Psychrometric chart.

Following are the steps:

- 1. We use the simplified Psychrometric chart published by Ureili [Ref: 14], shown above.
- 2. Locate the State 1, i.e. state of entering air, i.e. DBT = 32 C, 70% RH. It is cooled (with const. sp. humidity) till it reaches the sat. state 2, and then cooling proceeds along the sat. line to state 3, which is decided as follows:
- 3. To fix State 3, first locate State 4, i.e. the final state with DBT = 24 C and RH = 50%. Since heating is with const. sp. humidity, proceed horizontally to left, and cut the sat. line at point 3.
- 4. States 1, 2, 3 and 4 are shown in the Psychrometric chart below:

From the chart, we read:

w1 = 21.5 g H2O/kg dry air, h1 = 85 kJ/kg, v1 = 0.89 m^3/kg

w2 = w1, h2 = 80 kJ/kg

w3 = 9.5 g H2O/kg dry air, h3 = 37 kJ/kg, T3 = 13.5 C

w4 = w3 = 9.5 5 kg H2O/kg dry air, h4 = 47 kJ/kg

Therefore:

Temp. of cooling coil = $T3 = 13.5 C \dots Ans$.

Amount of moisture removed in cooling coil = (w1 - w3) = 12 g/kg dry air ... Ans.

Amount of heat removed in cooling coil per kg dry air = $(h1 - h3) = 48 \text{ kJ/kg dry air } \dots$ Ans.

Amount of heat added per kg dry air = (h4 - h3) = 10 kJ/kg dry air. Ans.

71

7.4 Problems solved with EES:

Note 1: EES has built-in Functions for Psychrometric properties. *This makes it very convenient to make Psychrometric calculations with EES.*

To access the psychrometric Functions, choose AirH2O as the substance in EES. To do this:

1. In EES, go to Options - Function Info:

2. Clicking on Function Info gives following window. Here you choose Fluid Properties and AirH2O radio buttons as shown:

	0.550.0
Math and string functions	s EES library routines
Fluid properties	C External routines
Solid/liquid properties	
🔿 Heat Transfer	
C Mechanical Design	
C User-defined	
? Function Info	l fluids 💿 AirH2O 🔿 Brines 🍸 Fluid Info I gases 🖓 NASA
CompressibilityFactor	AirH20
Conductivity [\/m-K]	
Cv [kJ/kg-K]	
Density [kg/m3]	
JewPoint [L] Inthaloy [k,1/kg]	
Turnalpy Inving]	
ntropy [kJ/kg-K]	
Entropy [kJ/kg-K] HumRat [kg/kg]	
Intropy [kJ/kg-K] TumRat [kg/kg] Independent Properties	
Intropy [kJ/kg-K] IumRat [kg/kg] Independent Properties Temperature [C]	Dewpoint [C]
ntropy [kJ/kg-K] lumRat [kg/kg] Independent Properties Temperature [C] x: omega[1]=HumRat(AirH2)	Dewpoint [C] T
Now, all Psychrometric Functions are available for use in calculations.

Note 2: Pssychrometric chart is easily drawn in EES. To do this:

Go to Plots Menu and choose 'Property Plots':

File Edit Search Options Calculate Tables	Plots Windows Help Ex	kamples
요 🕒 😫 🦛 🕸 🛣 🖬 🗐	New Plot Window ►	
Equations Window	Modify Plot Modify Axes	
Į.	Show Tool Bar	
	Delete Plot Window	
	Property Plot Curve Fit	

Click on the ad to read more

Clicking on Property Plot brings up the following window. Choose AirH2O as shown:

? Fluid Info Acetone Air Air ha	Pressure 101.3	e [kPa]		🗸 ОК
AirH2O Ammonia_mh Ar Argon Benzene C2H2	From 0.0 to 40.	ature [*C] .0 [*C] er format		🗙 Cancel
[X] Include lines	of	[X] Incl	ude lines o	f
₩b= 10	[*C]	V=	0.8	 [m3/kg]
₩b= 15	['C]	V=	0.825	[m3/kg]
₩b=20	['C]	V=	0.85	[m3/kg]
₩b=25	[*C]	▼ v =	0.875	 [m3/kg]
₩b=30	['C]	▼ v =	0.9	 [m3/kg]
17 mb-35	[10]	V v=	0.925	 [m3/kg]

We can include the lines of const. wet bulb and const. sp. volume, as we choose. Accept the default at the moment. Click OK. We get:

We can draw the Psychrometric processes on this chart, as shown later while solving problems.

"**Prob.7.4.1** Atm. air at 101.325 kPa has 30 C DBT and 15 C DPT. Calculate: (i) partial pressures of air and water vapor, (ii) sp. humidity, (iii) RH, (iv) vapor density, and (v) enthalpy of moist air [VTU]"

EES Solution:

"Data:"

P = 101.325 **"kPa"**

DBT = 30 **"C"**

DPT = 15 **"C"**

"Calculations:"

"To find partial pressure of H2O at DBT = 30 C, first find the sp. humidity, omega:"

"sp. humidity, omega:"

omega=HumRat(AirH2O,T=DBT,D=DPT,P=P) "kg H2O/kg dry air"

"partial pressure of water vapor in air, p_w"

omega = 0.622 * p_w / (P - p_w) "....finds the partial pressure of water vapor in air, kPa"

"partial pressure of air, p_a:"

p_a = P – p_w "...partial pressure of air, kPa"

"Relative humidity:"

rh=RelHum(AirH2O,T=DBT,D=DPT,P=P)"...finds rel. humidity"

"Vapor density, rho_w"

R_w = 8.314/18 "kJ/kg.K Gas constant for water vapor"

 $rho_w = p_w / (R_w * (DBT + 273)) "kg/m^3 vapor density"$

"Enthalpy of moist air"

h = Enthalpy(AirH2O,T=DBT,D=DPT,P=P)"kJ/kg"

Results:

Unit Settings: SI C kPa kJ mass deg

DBT = 30 [C]
ω = 0.01065 [kg/kg]
p _w = 1.705 [kPa]
R _w = 0.4619 [kJ/kq-K]

DPT = 15 [C]
P = 101.3 [kPa]
rh = 0.4017 [-]

h = 57.42 [kJ/kg]	
p _a =99.62 [kPa]	
ρ _w = 0.01219 [kg/m	ì

Thus:

Partial pressure of air = p_a = 99.62 kPa ... Ans.

Partial pressure of water vapor = p_w = 1.705 kPa Ans.

Sp. humidity = omega = 0.01065 kg H2O/kg dry air ... Ans.

RH = 0.4017 = 40.17% Ans.

Vapor density = $rho_w = 0.01219 \text{ kg/m}^3 \dots \text{Ans.}$

Enthalpy of moist air = h = 57.42 kJ/kg Ans.

Download free eBooks at bookboon.com

Psychrometrics

Psychrometrics

\$UnitSystem SI kg kPa C

"**Prob.7.4.2** A room measures $5m \ge 5m \ge 3m$. It contains atm air at 100 kPa, DBT = 30 C and RH = 30%. Find the masses of dry air and the associated water vapor.[VTU]"

EES Solution:

"Data:"

Vol = 75"m^3"

P = 100 "kPa"

DBT = 30**"C"**

RH = 0.3

R_a = 0.287 "kJ/kg.K ... gas constant for air"

R_w = 8.314/18"kJ/kg.K....gas constant for water vapor"

"Calculations:"

"We have to first, find out the partial pressures of water vapor and air"

"So, we find the sp. humidity from built-in function of EES:"

omega =HumRat(AirH2O,T=DBT,r=RH,P=P)"kgH2O/kg dry air"

"Then, partial pressure of water vapor:"

omega = 0.622 * p_w /(P - p_w) "...finds p_w, kPa"

p_a = P - p_w "...partial pressure of dry airKPa"

"Mass of water vapor:"

 $m_w = p_w * Vol / (R_w * (DBT + 273))$ "kg"

"Mass of dry air:"

```
m_a = p_a * Vol / (R_a * (DBT + 273))"kg"
```

Results:

Unit Settings: SI C kPa kJ mass deg

DBT = 30 [C]	m _a = 85.15 [kg]	m _w = 0.6826 [kg]
ω = 0.008025 [kg/kg]	P = 100 [kPa]	p _a = 98.73 [kPa]
p _w = 1.274 [kPa]	RH = 0.3 [-]	R _a = 0.287 [kJ/kg-K]
R _w = 0.4619 [kJ/kq-K]	Vol = 75 [m ³]	

Thus:

Mass of water vapor = $m_w = 0.6826$ kg Ans.

Mass of dry air = m_a = 85.15 kg ... Ans.

"**Prob.7.4.3** A summer air conditioning system for hot and humid weather (DBT = 32 C, RH = 30%) consists in passing the atmospheric air over a cooling coil where air is cooled and dehumidified. The air leaving the coil is saturated at the coil temp. It is then sensibly heated to the required comfort condition of 24 C and 50% RH by passing it over an electric heater and then delivered to the room. Sketch the processes on a psychrometric chart and determine: (i) temp of cooling coil, (ii) amount of moisture removed per kg of dry air in the cooling coil, (iii) heat removed per kg of dry air in cooling coil, (iii) heat removed per kg of dry air in cooling coil, (iv) heat added per kg dry air in heating coil. [VTU]"

EES Solution:

This problem is the same as Prob.7.3.6 which was solved with Psychrometric chart.

But, now we shall solve it with EES:

Let the ambient condition be State 1, condition at exit of cooling coils be State 2, and final condition be State 3.

Heating from State 2 to State 3 occurs at const. sp. humidity.i,e. w2 = w3.

"Data:"

P[1] = 101.325 "kPa"

P[2] = P[1]

Psychrometrics

P[3] = P[1]

T[1] = 32**"C"**

RH[1] = 0.7

RH[2] = 1 "...since saturated"

T[3] = 24**"C"**

RH[3] = 0.5

"Calculations:"

omega[1]=HumRat(AirH2O,T=T[1],r=RH[1],P=P[1])"sp. humidity ... kg H2O/kg dry air"

omega[3]=HumRat(AirH2O,T=T[3],r=RH[3],P=P[3])"sp. humidity ... kg H2O/kg dry air"

omega[2] = omega[3]"sp. humidity ... kg H2O/kg dry air"

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Dove

T[2] =DewPoint(AirH2O,r=RH[2],w=omega[2],P=P[2])"C since the air is saturated while leaving the coils"

h[1]=Enthalpy(AirH2O,T=T[1],w=omega[1],P=P[1]) "kJ/kg dry air"

h[2]=Enthalpy(AirH2O,T=T[2],w=omega[2],P=P[2]) "kJ/kg dry air"

h[3]=Enthalpy(AirH2O,T=T[3],w=omega[3],P=P[3]) "kJ/kg dry air"

moisture_removed = omega[1] - omega[2] "kg H2O/kg dry air"

 $q_{coolingcoil} = h[1] - h[2]$ "kJ/kg dry air"

 $q_{heatingcoil} = h[3] - h[2] "kJ/kg dry air"$

Results:

Unit Settings: SI C kPa kJ mass deg moisture_{removed} = 0.01184 [kg/kg] 9_{heatingcoil} = 11.32 [kJ/kg]

q_{coolingcoil} = 49.83 [kJ/kg]

Thus:

Moisture removed in cooling coils = 0.01184 kg/kg dry air Ans.

Heat removed in cooling coils = 49.83 kJ/kg dry air Ans.

Heat supplied in heating coils = 11.32 kJ/kg dry air ... Ans.

Draw the Psychrometric chart by selecting 'Plots - Property plots' for AirH2O.

Psychrometrics

On that chart, overlay the (omega vs T) graph, to get the process lines 1-2 and 2-3:

Note that this chart does not show constant enthalpy lines.

Prob.7.4.4 It is required to design an air conditioning plant for an office room with the following conditions: Outdoor conditions: 14 C DBT, 10 C WBT; required conditions: 20 C DBT, 60% RH. Amount of air circulation: 0.3 m^3/min/person. Seating capacity of office: 60. The required condition is achieved first by heating and then by adiabatic humidifying. Determine: (i) heating capacity of coil in kW and the surface temp required if the bypass factor of coil is 0.4, (ii) capacity of humidifier. [VTU]

Fig.Prob.7.4.4. Heating and humidifying

EES Solution:

"Data:"

P1 = 101.325"kPa"

T[1] = 14 "C"

- wb[1] = 10"C....wet bulb temp"
- T[3] = 20**"C"**

rh[3] = 0.6

- Vol = 18 "m^3/min air circulation rate"
- BF = 0.4 "Bypass Factor of heating coils"

"Calculations:"

```
omega[1]=HumRat(AirH2O,T=T[1],B=wb[1],P=P1)"kg H2O/kg dry air"
```

omega[2] = omega[1]"....since heating is at const. sp. humidity"

```
omega[3] = HumRat(AirH2O,T=T[3],r=rh[3],P=P1)"kg H2O/kg dry air"
```

wb[3]=WetBulb(AirH2O,T=T[3],r=rh[3],P=P1)"C....wet bulb temp at state 3"

wb[2] = wb[3]"...since heating from state 2 to state 3 is adiabatic"

```
rh[1]=RelHum(AirH2O,T=T[1],B=wb[1],P=P1)
```

"Therefore:"

h[1]=Enthalpy(AirH2O,T=T[1],B=wb[1],P=P1)"kJ/kg enthalpy at State 1"

h[3]=Enthalpy(AirH2O,T=T[3],r=rh[3],P=P1)"kJ/kg enthalpy at State 3"

h[2] = h[3]

T[2]=Temperature(AirH2O,h=h[2],w=omega[2],P=P1)

v[1]=Volume(AirH2O,T=T[1],r=rh[1],P=P1)"m^3/kg sp. vol. of air at state 1"

m_a = Vol/v[1]"kg/min of dry air"

"Heating capacity of coil:"

Q_heating = $(m_a/60) * (h[2] - h[1])$ "kW"

"Capacity of humidifier:"

m_w_humidifier = m_a * 60 * (omega[3] - omega[2]) "kg / min"

"Temp of Heating coil:"

"By definition:

Bypass Factor = (Temp of coil – exit temp of air from heater) / (Temp of coil – inlet temp of air to heater)"

 $BF = (T_heater - T[2]) / (T_heater - T[1]) "...finds T_heater"$

Download free eBooks at bookboon.com

Results:

Unit Settings: SI C kPa kJ mass deg

BF	= 0.4
P1	= 101.3 [kPa]
Vol	= 18 [m ³]

m_a = 21.92 [kg] Q_{heating} = 4.778 [kW]

m _{w,humidifier} = 3.613	3 [kg/h]
T _{heater} = 35.42 [C]	

Thus:

Heating capacity of heater coils = Q_heating = 4.778 kW Ans.

Temp of cooling coils, when Bypass Factor is 0.4 = T_heater = 35.42 C Ans.

Humidifier capacity = m_w,humidifier = 3.613 kg/h ... Ans.

Draw the Psychrometric chart by selecting 'Plots – Property plots' for AirH2O.

On that chart, overlay the (omega vs T) graph, to get the process lines 1-2 and 2-3:

Psychrometrics

"**Prob.7.4.5** Sat. air at 2 C is required to be supplied to a room where the temp must be held at 20 C and RH of 50%. The air is heated and then water at 10 C is sprayed in to give the required humidity. Determine the temp to which the air must be heated and the mass of spray water required per m³ of air at room conditions. Assume that the total pressure is 1.013 bar. [VTU]"

EES Solution:

Fig.Prob.7.4.5 Heating and humidification

Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

"Data:"

P1 = 101.325"kPa"

T[1] = 2**"C"**

rh[1] = 1 "...since saturated"

T[3] = 20**"C"**

rh[3] = 0.5

"Calculations:"

h[3]=Enthalpy(AirH2O,T=T[3],r=rh[3],P=P1)"kJ/kg dry air"

omega[1]=HumRat(AirH2O,T=T[1],r=rh[1],P=P1)"kg H2O/kg dry air"

h[1]=Enthalpy(AirH2O,T=T[1],r=rh[1],P=P1)"kJ/kg dry air"

v[3]=Volume(AirH2O,T=T[3],r=rh[3],P=P1)"m^3/kg dry air ... sp. vol. of air at room conditions of State 1"

omega[2] = omega[1]"....since heating is at const. sp. humidity"

h[2] + (omega[3] - omega[2]) * Enthalpy(Water, T=10, x=0) = h[3] "..energy balance for humidification"

T[2]=Temperature(AirH2O,h=h[2],w=omega[2],P=P1)"..finds DBT at State 2"

omega[3]=HumRat(AirH2O,T=T[3],r=rh[3],P=P1)"kg H2O/kg dry air"

rh[2]=RelHum(AirH2O,T=T[2],w=omega[2],P=P1)"...RH at State 2"

"Mass of spray water, m_w:"

 $m_w = (\text{omega}[3] - \text{omega}[2]) / v[3]$ "kg per m^3 of air at room conditions"

Results:

Unit Settings: SI C kPa kJ mass deg mw = 0.003455 [kg/m^{3.}ofroom·air]

P1 = 101.3 [kPa]

And:

Es Arrays	Table				
Main					
Sort	1	rh _i 3	T _i ▲ [C]	h _i [kJ/kg]	v _i [m³/kg]
[1]	0.004359	1	2	12.94	
[2]	0.004359	0.1961	27.14	38.44	
[3]	0.007262	0.5	20	38.56	0.8401

Thus:

Temp to which air is heated = $T[2] = 27.14 \text{ C} \dots \text{ Ans.}$

Mass of air condensed per m³ of room air = $m_w = 0.003455 \text{ kg/m}^3$ of room air Ans.

Note: Above calculation to determine T[2] would involve tedious trial and error calculations, if you do it by hand using property tables. But, with EES it is solved effortlessly.

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**

Processes of heating and humidifying are shown on the Psychrometric chart as follows:

"**Prob.7.4.6** A stream consisting of 145 m 3 /min of moist air at a temp of 5 C and humidity ratio of 0.002 kg H2O/kg dry air is mixed adiabatically with a second stream consisting of 420 m 3 /min of moist air at 24 C and 50% RH. The pressure is constant throughout at 1.01325 bar. Determine: (i) humidity ratio of mixture (ii) temp of mixture. [Ref: 3]"

Fig.Prob.7.4.6 Adiabatic mixing of two air streams

EES Solution:

"Data:"

P1 = 101.325 "kPa"

Vol[1] = 145 "m^3/min"

Vol[2] = 420 "m^3/min"

T[1] = 5 **"C"**

omega[1] = 0.002 "kg H2O/kg dry air for stream 1"

T[2] = 24 "C"

rh[2] = 0.5

"Calculations:"

h[1]=Enthalpy(AirH2O,T=T[1],w=omega[1],P=P1)"kJ/kg dry air ... for stream 1"

h[2]=Enthalpy(AirH2O,T=T[2],r=rh[2],P=P1)"kJ/kg dry air for stream 2"

v[1]=Volume(AirH2O,T=T[1],w=omega[1],P=P1)"...sp. vol. of moist air/kg dry air ... for stream 1"

m_a1 = Vol[1]/v[1] "...kg / min stream 1"

```
v[2]=Volume(AirH2O,T=T[2],r=rh[2],P=P1)<sup>"</sup>...sp. vol. of moist air/kg dry air ... for stream 2"
```

m_a2 = Vol[2]/v[2] "...kg / min stream 2"

omega[2]=HumRat(AirH2O,T=T[2],r=rh[2],P=P1)"kg H2O/kg dry air for stream 2"

"Mass balance for dry air:"

m_a1 + m_a2 = m_a3"..finds mass of dry air in mixture stream"

"Mass balance for water vapor:"

 $m_{a1} m_{a2} m_{a2} m_{a3} m_{a3}$

"Enegy balance:"

 $m_{a1} * h[1] + m_{a2} * h[2] = m_{a3} * h[3]$ "...finds h[3], the enthalpy of mixture stream"

h[3]=Enthalpy(AirH2O,T=T[3],w=omega[3],P=P1)"...finds the temp T[3] of mixture stream"

Solution:

Uni	t Settings: SI C kPa	kJ mass deg		
m _{a1}	= 183.4 [kg/min]	m _{a2} = 491.6 [kg/min]	m _{a3} = 675 [kg/min]	P1 = 101.3 [kPa]

And:

🔤 Arrays	Table				
Main					
Sort	1	rh _i 3	T _i ▲ [C]	h _i ■₅ [kJ/kg]	v _i [m³/kg]
[1]	0.002		5	10.05	0.7905
[2]	0.009299	0.5	24	47.83	0.8543
[3]	0.007316		18.89	37.56	

Thus:

Humidity ratio of mixture stream = omega[3] = 0.007316 kg H2O/kg dry air Ans.

Temp of mixture stream = T[3] = 18.89 C ... Ans.

Process of mixing is shown on the Psychrometric chart as follows:

X RBS Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

(b) Plot the exit temp T[3] vs volume flow rate of stream 2, ranging from 0 to 1400 m^3/min:

First, compute the Parametric Table:

115	¹ Vol ₂ [m³/min]	² ▼ T ₃ [C]
Run 1	0	5
Run 2	100	12.46
Run 3	200	15.72
Run 4	300	17.54
Run 5	400	18.7
Run 6	500	19.51
Run 7	600	20.11
Run 8	700	20.56
Run 9	800	20.92
Run 10	900	21.21
Run 11	1000	21.46
Run 12	1100	21.66
Run 13	1200	21.83
Run 14	1300	21.98
Run 15	1400	22.11

Now, plot the Results:

Psychrometrics

"**Prob.7.4.7** A wet cooling tower is to cool 40 kg/s of water from 40 to 30 C. Atm. air enters the tower at 1 atm with dry and wet bulb temps of 22 and 16 C respectively, and leaves at 32 C and 95% RH. Determine: (i) the volume flow rate of air in to the cooling tower, and (ii) mass flow rate of required make-up water. [Ref: 1]"

Make up water

Fig.Prob.7.4.7 Wet cooling tower

EES Solution:

"Data:"

P1 = 101.325 "kPa"

DBT1 = 22 "C"

WBT1 = 16 "C"

DBT2 = 32 **"C"**

RH2 = 0.95

mw_3 = 40"kg/s amount of water entering the tower"

T3 = 40 "C ... temp of hot water inlet to tower"

"Let mw_4 be the amount of water leaving"

T4 = 30 °C ... temp of cooled water leaving the tower"

"Calculations:"

v1=Volume(AirH2O,T=DBT1,B=WBT1,P=P1)"m^3/kg dry air"

"Let: mass of dry air entering = ma_1.

Then mass of dry air leaving remains the same, i.e. ma_2 = ma_1 = ma, say."

omega1=HumRat(AirH2O,T=DBT1,B=WBT1,P=P1)"kgH2O/kg dry air....sp. humidity of entering air"

omega2=HumRat(AirH2O,T=DBT2,r=RH2,P=P1)"kgH2O/kg dry air..... sp. humidity of exiting air"

"Water mass balance:"

 $mw_3 + ma * omega1 = mw_4 + ma * omega2$

"Energy balance:"

ma * h1 + mw_3 * h3 = ma * h2 + mw_4 * h4 "Energy going in to the tower = energy going out"

ORACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

94 Download free eBooks at bookboon.com

"Enthalpies:"

h1=Enthalpy(AirH2O,T=DBT1,B=WBT1,P=P1)

h2=Enthalpy(AirH2O,T=DBT2,r=RH2,P=P1)

h3 = Enthalpy(Water,T= T3,x=0)

h4 = Enthalpy(Water,T= T4,x=0)

"Make up water:"

 $mw_makeup = mw_3 - mw_4 "kg/s"$

"Volume flow rate of air in to the cooling tower:"

Vol1_air = ma * v1"m3/s"

Results:

Unit Settings: SI C kPa kJ mass deg

DBT1 = 22 [C]	DBT2 = 32 [C]	h1 = 44.7 [kJ/kg]
h2 = 106.6 [kJ/kg]	h3 = 167.5 [kJ/kg]	h4 = 125.7 [kJ/kg]
ma = 28.2 [kg/s]	mw ₃ = 40 [kg/s]	mw ₄ = 39.43 [kg/s]
mw _{makeup} = 0.5687 [kg/s]	omega1 = 0.008875 [kg/kg]	omega2 = 0.02905 [kg/kg]
P1 = 101.3 [kPa]	RH2 = 0.95	T3 = 40 [C]
T4 = 30 [C]	∨1 = 0.848 [m ³ /kg]	Vol1 _{air} = 23.91 [m ³ /s]
WBT1 = 16 [C]		

Thus:

Mass flow rate of make-up water = 0.5687 kg/s ... Ans.

Volume flow rate of air in to the tower = Vol1_air = $23.91 \text{ m}^3/\text{s} \dots \text{Ans}$.

7.5 Problems solved with TEST:

Note: It is extremely easy and convenient to solve Psychrometric problems in TEST.

Prob. 7.5.1 Atmospheric air at 101.325 kPa has 30 C DBT and 15 C DPT. Calculate: (i) Partial pressure of air and water vapor, (ii) sp. humidity, (iii) RH (iv) Vapor density, and (enthalpy of moist air. [VTU]

TEST Solution:

Following are the steps:

1. After logging in to TEST (<u>www.thermofluids.net</u>), go to the 'TESTCalcs tree', and choose the **System Analysis-Closed-Psychrometry** as shown below:

2. Hovering the mouse pointer over 'Psychrometry' brings up the explanatory pop up:

3. Clicking on Psychrometry, we go to the following screen, where pressure p1 and material: moist air are selected by default. Here, enter the parameters for the State, viz.T1 = 30 C for dry bulb temp, and T_dp1 = 15 C for dew point temp. Hit Enter (or, click on Calculate). All calculations are done immediately, and we get:

Move mouse over a variable to display its value with more		
• Mixed C SI C English < Case-0	► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►	Super-Calculate Load Super-Initialize
State Panel	Process Panel	I/O Panel
< ©State-1 V > Calculate	No-Plots 👻 Initialize MA mode	I: Dry Air+H2O MoistAir 🗸
🖌 p1 🖌 T1	xt	yt vt
101.325 kPa 💉 30.0 deg-(fraction	fraction 💙 0.87339 m^3/kg 💙
u1 h1	✓ Vel1 ✓	z1 e1
-29.59251 kJ/kg 🌱 57.41154 kJ/kg	✓ 0.0 m/s ✓ 0.0	m ↔ <mark>-29.59251 kJ/kg ↔</mark>
jt mt	Vol1	p_v1 p_a1
57.41154 kJ/kg 🖌 kg	✓ m^3 ✓ 1.707	198 kPa 🗸 99.61702 kPa 🗸
p_g1 RH1	omega1	T_dp1 T_wb1
4.246 kPa ❤ 40.22555 %	✓ 0.01066 kg-H2O/kg-d.a. ✓ 15.0	deg-C 💙 20.00213 deg-C 💙
m_t1 m_v1	m_g1	
kg 💙 kg	✓ kg ✓	

Thus:

Partial pressure of air = p_a1 = 99.61702 kPa ... Ans.

Partial pressure of water vapor = p_v1 = 1.70798 kPa ... Ans.

Sp. humidity = omega1 = 0.01066 kg H2O/kg dry air ... Ans.

Enthalpy of moist air = $h1 = 57.41154 \text{ kJ/kg} \dots$ Ans.

Vapor density: This is calculated from Ideal Gas Law as follows:

Partial pressure of vapor = 1.70798 kPa

Gas Constant for water vapor = R_w = 8.314/18 = 0.46189 kJ/kg.K

Therefore: rho_vap = $p_v1 / (R_w * (30 + 273)) = 0.0122 \text{ kg/m^3} \dots \text{Ans.}$

#

4. Clicking on SuperCalc gives TEST code etc:

#~~~~~OUTPUT OF SUPER-CALCULATE

#	TESTcalc Path: Systems>Closed>Process>Specific>HVAC; v-10.ce01;
#	Start of TEST-code
States	{
	State-1: MoistAir;
	Given: { p1= 101.325 kPa; T1= 30.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; T_dp1= 15.0 deg-C; }
	}
#	End of TEST-code

<image><image>

Click on the ad to read more

98

Psychrometrics

#F	Property spreads	heet starts:					
State	DBT(K)	WBT(K)	DPT(K) v(m3/kg-d.a.)	R.H.	h(kJ/kg) C)mega(kg-H2O/
						k	g-d.a.)
# 1	303.2	293.2	288.2	0.8734	0.4	57.4	0.0107

Prob. 7.5.2 A sling psychrometer reads 40 C DBT and 28 C WBT. Find the following: (i) sp. humidity, (ii) RH, (iii) Dew point temp,and (iv) Vapor density. [VTU]

TEST Solution:

Following are the steps:

Steps 1, 2 and 3 are the same as for previous problem.

Fill up the given parameters i.e. DBT = 40 C and WBT = 28 C in the following screen and hit Enter. We get:

Mixed C SI C English < Case-0	✓ > ✓ Help Messages On	Super-Iterate Super-Calculate	Load Super-Initialize
State Panel	Process Panel		I/O Panel
< ©State-1 v > Calculate	No-Plots V Initialize	MA model: Dry Air+H2O	MoistAir 🔽
🖌 p1 🖌 T1	×1	y1	V1
101.325 kPa 🕥 40.0 deg-	fraction	Y fraction	✓ 0.91451 m ³ /kg ✓
u1 h1	Vel1	🖌 zt	et
0.01217 kJ/kg 😪 89.88622 kJ/kg	✓ 0.0 m/s	✓ 0.0 m	✓ 0.01217 kJ/kg ✓
j1 m1	Vol1	p_v1	p_a1
89.88622 kJ/kg 🖌 kg	✓ m^3	✓ 3.04953 kPa	✓ 98.27547 kPa ✓
p_g1 RH1	omega1	T_dp1	T_wb1
7.38722 kPa 💉 41.2812 %	V 0.0193 kg-H2O/kg-d.	a. 💉 24.333 deg-C	✓ 28.0 deg-C ✓
m_t1 m_v1	m_g1		
kg 💌 kg	₩ kg	¥	

Thus:

Sp. humidity = omega1 = 0.01066 kg H2O/kg dry air ... Ans.

RH1 = 41.2812% Ans.

Dew Point Temp = T_dp1 = 24.333 C ... Ans.

Vapor density: This is calculated from Ideal Gas Law as follows:

Psychrometrics

Partial pressure of vapor = 3.04953 kPa

Gas Constant for water vapor = R_w = 8.314/18 = 0.46189 kJ/kg.K

Therefore: $rho_vap = p_v1 / (R_w * (40 + 273)) = 0.0211 \text{ kg/m}^3 \dots \text{ Ans.}$

Click on SuperCalculate and get TEST code etc in the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE

TESTcalc Path: Systems>Closed>Process>Specific>HVAC; v-10.ce01;

#-----Start of TEST-code -----

States {

State-1: MoistAir;

Given: { p1= 101.325 kPa; T1= 40.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; T_wb1= 28.0 deg-C; }

}

#-----End of TEST-code -----

#*****DETAILED OUTPUT: All the computed properties and variables are displayed on this block.**********

Evaluated States:

#	State-1: MoistAir > MA-Model;
#	Given: p1= 101.325 kPa; T1= 40.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; T_wb1= 28.0 deg-C;
#	Calculated: v1= 0.9145 m^3/kg; u1= 0.0122 kJ/kg; h1= 89.8862 kJ/kg;
#	e1= 0.0122 kJ/kg; j1= 89.8862 kJ/kg; p_v1= 3.0495 kPa;
#	p_a1= 98.2755 kPa; p_g1= 7.3872 kPa; RH1= 41.2812 %;
#	omega1= 0.0193 kg-H2O/kg-d.a.; T_dp1= 24.333 deg-C;

Psychrometrics

#	Property spread	sheet sta	rts:				
State	DBT(K)	WBT(K) DPT(K) v(m3/kg-d.a	ı.) R.H.	h(kJ/kg)	Omega(kg-H2O/kg- d.a.)
# 1	313.2	301.2	297.5	0.9145	0.41	89.9	0.0193

Prob.7.5.3 A room measures $5m \times 5m \times 3m$. It contains atmospheric air at 100 kPa, DBT = 30 C, RH = 30%. Find the mass of dry air and the mass of associated water vapor in the room. [VTU]

TEST Solution:

Following are the steps:

Steps 1, 2 and 3 are the same as for previous problem.

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on **+44 (0)20 7000 7573**.

* Figures taken from London Business School's Masters in Management 2010 employment report

Fill up the given parameters i.e. p = 100 kPa, DBT = 30 C and RH1 = 30%, and Vol1 = 75 m^3, in the following screen and hit Enter. We get:

Mixed C SI C Eng	glish < Case-0	▼ > F Help Mess	ages On Super-Ite	erate Super-Calculate	Load	uper-Initialize		
State Pan	el	Pro	icess Panel		I/O Panel			
< <mark>©State-1 v</mark> >	Calculate	No-Plots	Initialize MA	model: Dry Air+H2O	MoistAir	×		
✓ p1	✓ T1	×1		y1	V1			
100.0 kPa 👻	30.0 deg-(c 🖌 🗸	fraction 💉	fraction	√ 0.88127	m^3/kg 💉		
u1	h1	✓ Vel1		✓ z1	e1			
-36.33908 kJ/kg 🗡	50.66497 kJ/kg	✓ 0.0	m/s 🗸	0.0 m	✓ -36.33908	kJ/kg 💉		
j1	m1	Vol1		p_v1	p_a1			
50.66497 kJ/kg 🗸	85.10483 kg	✓ 75.0	m^3 🗸	1.2738 kPa *	♥ 98.7262	kPa 💙		
p_g1	✓ RH1	omega1		T_dp1	T_wb1			
4.246 kPa ❤	30.0 %	✓ 0.00803	kg-H2O/kg-d.a. 💉	10.53393 deg-C	₩ 17.78852	deg-C 💉		
m_t1	m_v1	m_g1						
85.78782 kg 🛩	0.68299 kg	✓ 2.27663	kg 💉					

Thus:

Mass of dry air in the room = m1 = 85.10483 kg Ans.

Mass of water vapor = $m_v 1 = 0.68299 \text{ kg} \dots \text{ Ans.}$

Also, total mass = m_t1 = 85.78782 kg ... Ans.

5. From the Plots widget, choose Psychro Plot and we get a schematic pf a psychrometric plot with the State point at 30 C DBT and Sp. humidity omega1 = 0.008, shown therein:

#*****DETAILED OUTPUT:

Evaluated States:

#	State-1: MoistAir > MA-Model;
#	Given: p1= 100.0 kPa; T1= 30.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; Vol1= 75.0 m^3; RH1= 30.0 %;
#	Calculated: v1= 0.8813 m^3/kg; u1= -36.3391 kJ/kg; h1= 50.665 kJ/kg;
#	e1= -36.3391 kJ/kg; j1= 50.665 kJ/kg; m1= 85.1048 kg;
#	p_v1= 1.2738 kPa; p_a1= 98.7262 kPa; p_g1= 4.246 kPa;
#	omega1= 0.008 kg-H2O/kg-d.a.; T_dp1= 10.5339 deg-C; T_wb1= 17.7885 deg-C;
#	m_t1= 85.7878 kg; m_v1= 0.683 kg; m_g1= 2.2766 kg;
#	Property spreadsheet starts:

State	DBT(F	K) WBT(K)	DPT(K	(m3/kg-d.a.)) R.H.	h(kJ/kg) Omega(kg-H2O/kg-d.a.)		
# 1	303.2	290.9	283.7	0.8813	0.3	50.7	0.008	

Download free eBooks at bookboon.com

Click on the ad to read more

Prob.7.5.4 As a result of adiabatic saturation of moist air in a steady flow device at a constant pressure of 96 N/m², the temp of moist air at initial condition from 32 C is reduced to 22 C at sat. condition. Calculate the RH of moist air at the initial condition.[VTU]

TEST Solution:

Following are the steps:

Steps 1, and 2 are the same as for problem 7.5.1.

3. Fill up the given parameters i.e. p = 0.096 kPa, DBT = 32 C and Wet bulb temp,T_wb1 = T_wb2 (yet to be determined) in the following screen and hit Enter. We get:

• Mixed C	SI CI	Engl	lish	< Cas	e-0 🗸	>	•	Help Mess	ages On	Super-Iter	ate	Super-Calcula	te	Lo	ad	Super-Initial	ize
	State	Pane	ł					Pro	cess Panel					I/O F	anel		
< ©State-1	¥ >		Cal	iculate	No-	Plots	3	~	Initialize	MA n	nodel: Dr	y Air+H2O		Мо	istAir	×	
🖌 p1			-	T1				x1			y1				V1		
0.096	kPa	~	32.0		deg-C	~			fraction	∽ [fraction	~			m^3/kg	~
u1			1	h1			-	Vel1			< z1				e1		
	kJ/kg	~		1	kJ/kg	~	0.0		m/s	× ().0	m	~			kJ/kg	~
j†			1	m1				Vol1			P_1	11			p_a1		
	kJ/kg	~			kg	~			<i>m</i> ^3	~ [kPa	~			kPa	~
p_g1			1	RH1				omega1			T_0	dp1		1	T_wb1	r .	
4.75807	kPa	*		9	%	~			kg-H2O/kg-d.a	e. 💌 🗸		deg-C	~	=T_\	vb2	deg-C	~
m_t1			1	m_v1				m_g1									
	kg	*			kg	~			kg	*							

4. Go to State 2: Enter p2 = p1, T2 = 22 C, RH2 = 100 % (since saturated) and hit Enter. We get:

Move mouse over a variable to display its value with more precision.								
Mixed O SI O Eng	glish < Case-0 v	> Field Messages On	Super-Iterate Super-Calculat	te Load Super-Initialize				
State Pan	nel	Process Panel		I/O Panel				
< <mark>©State-2 V</mark> >	Calculate No-	Plots 🗸 Initialize	MA model: Dry Air+H2O	MoistAir 🗸 🗸				
✓ p2	✓ T2	x2	y2	v2				
=p1 kPa 👻	22.0 deg-C	fraction	✓ fraction	✓ -33.23818 m ³ /kg ✓				
u2	h2	✓ Vel2	✓ z2	e2				
-1703.12 kJ/kg 💙	-1618.412 kJ/kg	▶ 0.0 m/s	✓ 0.0 m	✓ -1703.12 kJ/kg ✓				
j2	m2	Vol2	p_v2	p_a2				
-1618.412 kJ/kg 💙	kg	✓ m^3	✓ 2.64452 kPa	✓ -2.54852 kPa ✓				
p_g2	✓ RH2	omega2	T_dp2	T_wb2				
2.64452 kPa ♥	100.0 %	✓ -0.64543 kg-H2O/kg-d.	a. 🗙 21.99999 deg-C	✓ 21.99937 deg-C ✓				
m_t2	v2	m_g2						
kg 💙	kg	✓ kg	× .					

5. Click on SuperCalculate. All calculations are now up-dated and the value of T_wb2 is posted back to State 1, and RH1 is also calculated. Go back to State 1 and read the value of RH1:

Move mouse over a variable to display its value with more precision.										
• Mixed • SI • English < ©Cas	e-0 ▼ >	Super-Iterate Super-Calculat	Load Super-Initialize							
State Panel	Process Panel		I/O Panel							
< State-1 > Calculate	No-Plots 🗸 Initialize	MA model: Dry Air+H2O	MoistAir 🗸 🗸							
🖌 p1 🖌 T1	x1	y1	vt							
0.096 kPa 💙 32.0 d	ig-C 💙 fraction	✓ fraction	✓ -33.41192 m [*] 3/kg ✓							
ut ht	✓ Vel1	🖌 z1	e1							
-1705.9922 kJ/kg ❤ -1618.4142 kJ	kg 🕑 0.0 m/s	🗙 0.0 m	✓ -1705.9922 kJ/kg ✓							
j1 m1	Vol1	p_v1	p_81							
-1618.4142 kJ/kg ❤	ŋ ♥ m^3	✓ 2.71716 kPa	✓ -2.62116 kPa ✓							
p_g1 RH1	omega1	T_dp1	✓ T_wb1							
4.75807 kPa ♥ 57.10634 %	✓ -0.64478 kg-H2O/kg-d	.a. 💙 22.42672 deg-C	✓ =T_wb2 deg-C ✓							
m_t1m_v1	m_g1									
kg 🗸 k	7 👻 kg	~								

We get: RH1 = 57.11% ... Ans.

6. Go to I/O panel to get the TEST code etc:

#~~~~OUTPUT OF SUPER-

TESTcalc Path: Systems>Closed>Process>Specific>HVAC; v-10.ce02;

#-----Start of TEST-code -----

States {

State-1: MoistAir;

Given: { p1= 0.096 kPa; T1= 32.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; T_wb1= "T_wb2" deg-C; }

State-2: MoistAir;

Given: { p2= "p1" kPa; T2= 22.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; RH2= 100.0 %; }

}

#-----End of TEST-code -----

#----Property spreadsheet starts: The following property table can be copied onto a spreadsheet (such as Excel) for further analysis or plots. ------

State	DBT(K)	WBT(K)	DPT(K) v(m3/kg-d.a.)	R.H.	h(kJ/kg)	Omega(kg-H2O/kg-d.a.)
# 1	305.2	295.1	295.6	-33.4119	0.57	-1618.4	-0.6448
# 2	295.2	295.1	295.1	-33.2382	1.0	-1618.4	-0.6454

Note that for the above problem, pressure was not atmospheric, but 96 Pa.

Prob.7.5.5 Moist air enters a humidifier-heater unit at 26 C and 80% RH. It is to leave at 26 C and 50% RH. For a flow rate of 0.47 m^3/s, find the refrigeration in tons and the heating required in kW. [VTU]

TEST Solution:

First, the air is cooled at const. sp. humidity to reduce the RH to 50% (process 1-3), and then heated at const. sp. humidity to 26 C.(process 3-2)

Following are the steps:

1. From the TESTCalcs tree, choose Open System-Psychrometry:

2. Hovering the mouse pointer over Psychrometry gives following explanatory pop-up:

Click on Psychrometry, and we get the following window with moist air as default material.
 Fill up the data for state 1, i.e. T1 = 26 C, Voldot1 = 0.47 m³/s, RH1 = 80%, and hit Enter.
 We get:

Move mouse over a variable to di	splay its value with more	precision.				
Mixed O SI O Eng	glish < ©Case-0	▼ > F Help N	lessages On Sup	super-Calculate	Load	Super-Initialize
State Par	nel		Device Panel		I/O Panel	
< OState-1 V >	Calculate	No-Plots	Initialize	MA model: Dry Air+H2O	MoistAir	~
🖌 p1	🖌 T1	xt		y1	V1	
101.325 kPa 🛩	26.0 deg-C		fraction 💙	fraction	✓ 0.87051	m^3/kg 💙
u1	ht	✓ Vel1		21	e1	
-16.35266 kJ/kg ↔	69.50339 kJ/kg	▶ 0.0	m/s 💉 🚺	.0 m	✓ -16.35266	kJ/kg 💉
jf	mdot1	 Vold 	ot1	A1	p_v1	
69.50339 kJ/kg 💙	32.39468 kg/min	n 💙 0.47	m^3/s 🛛 🖌	7000.0 m^2	✓ 2.69807	kPa 💙
p_a1	p_g1	✓ RH1	1	omega1	T_dp1	
98.62693 kPa 🛩	3.37259 kPa	₩ 80.0	% 🖌 🛛	.01702 kg-H20/kg-d.a.	✓ 22.31454	deg-C 💙
T_wb1	mdot_t1	mdot	_v1	mdot_g1		
23.30707 deg-C ♥	32.9459 kg/min	n 🛛 🖌 0.55122	kg/min 🛛 🖌 🛛	.68902 kg/min	~	

4. Go to State 2, i.e. final state. Fill up T2 = T1, mdot2 = mdot1(since dry air mass rate does not change), and RH2 = 50%. Hit Enter. We get:

Move mouse over a variable to disp	play its value with more pr	recision.				
• Mixed C SI C Engl	ish < ©Case-0 >	▼ >	ages On Super-Iter	ate Super-Calculate	Load	Super-Initialize
State Pane	H	D	evice Panel		I/O Panel	
< ©State-2 🗸 >	Calculate N	lo-Plots 🔽	Initialize MA n	nodel: Dry Air+H2O	MoistAir	~
✓ p2	✓ T2	x2	y	2	v2	
101.325 kPa 💉	26.0 deg-C	✓	fraction 💉	fraction	✓ 0.86167	m^3/kg 💉
u2	h2	✓ Vel2	1	z2	e2	
-32.89295 kJ/kg 💉	52.9631 kJ/kg	0.0	m/s 💉 0.0	m	✓ -32.89295	kJ/kg 💉
j2	✓ mdot2	Voldot2	A	12	p_v2	
52.9631 kJ/kg 💙	=mdot1 kg/min	✓ 27.91364	m^3/min ₩ 46522.7	742 m^2	✓ 1.68629	kPa 🗸
p_a2	p_g2	🖌 RH2	c	omega2	T_dp2	18.1
99.63871 kPa 🛩	3.37259 kPa	❤ 50.0	% 💙 0.01053	kg-H2O/kg-d.a.	✓ 14.80291	deg-C 💙
T_wb2	mdot_t2	mdot_v2	n	ndot_g2		
18.64234 deg-C ❤	32.73569 kg/min	♥ 0.34101	kg/min 💉 0.68202	2 kg/min	*	

5. Go to State 3, i.e. state after cooling. Fill up omega3 = omega2 (since the sp. humidity, omega remains const. during heating), mdot3 = mdot1, RH3 = 100%, since condensation has occurred. Hit Enter, and we get:

Move mouse over a variable to dis	splay its value with more	precision.				
Mixed C SI C Eng	glish <mark><</mark> ©Case-0	✓ > ✓ Help Mess	ages On Super-Ite	erate Super-Calculate	Load	Super-Initialize
State Pan	nel	De	evice Panel		I/O Panel	
< ©State-3 💙 >	Calculate	No-Plots	Initialize MA	model: Dry Air+H2O	MoistAir	~
✓ p3	T3	x3		у3	v3	
101.325 kPa 😽	14.80291 deg-0	. 🖌	fraction 💙	fraction	0.82942	m^3/kg 💉
u3	h3	✓ Vel3	×	z3	e3	
-41.14771 kJ/kg 🗸	41.49477 kJ/kg	✓ 0.0	m/s 💉 0.0	m 💌	-41.14771	kJ/kg 💉
j3	🖌 mdot3	Voldot3		A3	p_v3	
41.49477 kJ/kg 🗸	=mdot1 kg/mir	26.86884	m^3/min ❤ 44781	.41 m^2 💉	1.68629	kPa 🗸
p_a3	p_g3	🖌 RH3	×	omega3	T_dp3	
99.63871 kPa 💉	1.68629 kPa	✓ 100.0	% 💉 =omeg	ga2 kg-H2O/kg-d.a. 🗸	14.80291	deg-C 💉
T_wb3	mdot_t3	mdot_v3		mdot_g3		
14.80291 deg-C 🗸	32.73569 kg/min	0.34101	kg/min 🛛 💙 0.3410)1 kg/min 😽		

Note that T3 = 14.8 C, i.e. air is cooled to 14.8 C in the refrigeration unit.... Ans.

Amount of water vapor removed = (mdot_v1 - mdot_v3) = 0.21021 kg/min. ... Ans.

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

6. Go to Device panel. For Device A (i.e. cooling unit), fill up State 1 and State 3 for i-1 state and e1-state, Wdot_ext = 0. Hit Enter. We get:

Note that refrigeration (negative since heat is going out of system) is chosen in tons and is equal to -15.122 kW = 4.3 tons, (since 1 ton of refrogeration = 211 kJ/min) ... Ans.

7. Go to Device B (i.e. heating unit). Fill up State 3 and State 2 for i-1 state and e1-state, Wdot_ext = 0. Hit Enter. We get:

Move mouse over a variable to display its v	value with more precision.			
• Mixed C SI C English	< ©Case-0 v >	✓ Help Messages On Sup	Super-Calculate	Load Super-Initialize
State Panel		Device Panel		I/O Panel
Device-B [3-2]	Calculate	Initialize	Generic Device	e Cooling Tower
i1-State: State-3 💌	i2-State: State-Null	e1-State: Stat	te-2 💌 e2-Sta	te: State-Null 🐱
Qdot		✓ Wdot_e	ext	
6.19188	kW	▶ 0.0	kW	*

We get: heat supplied in heater unit = Qdot = 6.192 kW Ans.

8. Choosing Psychro Plots from Plots widget, gives the State points on the psychrometric chart;

9. Click on SupeCalculate and get the TEST code etc from the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE

TESTcalc Path: Systems>Open>SteadyState>Specific>HVAC; v-10.ce02;

#-----Start of TEST-code -----

States {

State-1: MoistAir;

Given: { p1= 101.325 kPa; T1= 26.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; Voldot1= 0.47 m^3/s; RH1= 80.0 %; }

State-2: MoistAir;

Given: { p2= 101.325 kPa; T2= 26.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/min; RH2= 50.0 %; }

State-3: MoistAir;

Given: { p3= 101.325 kPa; Vel3= 0.0 m/s; z3= 0.0 m; mdot3= "mdot1" kg/min; RH3= 100.0 %; omega3= "omega2" kg-H2O/kg-d.a.; }

Psychrometrics

}

Analysis

Device-A: i-State = State-1; e-State = State-3; CoolingTower: false;

Given: { Wdot_ext= 0.0 kW; }

{

Device-B: i-State = State-3; e-State = State-2; CoolingTower: false;

Given: { Wdot_ext= 0.0 kW; }

}

#-----End of TEST-code

State	DBT(K)	WBT(k	K) DPT(K)	v(m3/kg-d.a.)	R.H.	h(kJ/kg)	Omega(kg-H2O/kg-d.a.)
# 1	299.2	296.5	295.5	0.8705	0.8	69.5	0.017
# 2	299.2	291.8	288.0	0.8617	0.5	53.0	0.0105
# 3	288.0	288.0	288.0	0.8294	1.0	41.5	0.0105

#Analysis

#	Device-A: i-State = State-1; e-State = State-3; CoolingTower: false;
#	Given: Wdot_ext= 0.0 kW;
#	Calculated: Qdot= -15.122171 kW;
#	Device-B: i-State = State-3; e-State = State-2; CoolingTower: false;
#	Given: Wdot_ext= 0.0 kW;
#	Calculated: Qdot= 6.1918793 kW ;

Prob.7.5.6 For a hall to be air conditioned, following conditions are given:

Outdoor condition: 40 C DBT, 20 C WBT

Required comfort condition: 20 C DBT, 60% RH

Seating capacity of hall = 1500; Amount of outdoor air supplied = $0.3 \text{ m}^3/\text{person}$

If the required condition is achieved first by adiabatic humidification and then by cooling, estimate:

- a) capacity of cooling coil in Tons of Refrigeration
- b) capacity of humidifier
- c) condition of air after adiabatic humidification. [VTU]

Note: This is the same as prob. 7.2.7 solved with Mathcad.

Fig.Prob.7.5.6 Adiabatic humidification and heating

TEST Solution:

Following are the steps:

1. From the TESTCalcs tree, choose Open System-Psychrometry:

2. Hovering the mouse pointer over Psychrometry gives following explanatory pop-up:

 Click on Psychrometry, and we get the following window with moist air as default material.
 Fill up the data for state 1, i.e. T1 = 40 C, T_wb1 = 20 C, Voldot1 = 450 m^3/min, and hit Enter. We get:

z1 = 0.0 m [Elevation above a datum]			
	e-0 ∨ > ✓ Help Messages On	Super-Iterate Super-Calculate	Load Super-Initialize
State Panel	Device Panel		I/O Panel
< ©State-1 > Calculate	No-Plots 💌 Initialize	MA model: Dry Air+H2O	MoistAir 💌
🖌 p1 🖌 T1	x1	y/1	vi
101.325 kPa 💙 40.0	seg-C V fraction	fraction	✓ 0.89652 m^3/kg ✓
ut ht	Vel1	✓ z1	e1
-32.47001 kJ/kg ❤ 57.40404 k	J/kg 🖌 0.0 m/s	✓ 0.0 m	✓ -32.47001 kJ/kg ✓
j1 mdot1	Voldot1	A1	p_v1
57.40404 kJ/kg 🌱 501.94193 I	g/min 🖌 450.0 m^3/min	✓ 750000.06 m ²	✓ 1.0771 kPa ✓
p_a1p_g1	RH1	omega1	T_dp1
100.2479 kPa 💉 7.38722	kPa 💉 14.58065 %	✓ 0.00668 kg-H2O/kg-d.a.	✓ 8.06582 deg-C ✓
T_wb1 mdot_t1	mdot_v1	mdot_g1	
20.0 deg-C → 505.29642 I	ig/min 💙 3.35449 kg/min	✓ 23.00645 kg/min	*

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/ OIL & GAS ENGINEERING

ELECTRONICS

AUTOMATION & PROCESS CONTROL

> MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS

ELECTRICAL POWER

Phone: +61 8 9321 1702 Email: training@idc-online.com Website: www.idc-online.com

Click on the ad to read more

116

4. Go to State 2, i.e. final state. Fill up T2 = 20 C, mdot2 = mdot1(since dry air mass rate does not change), and RH2 = 60%. Hit Enter. We get:

Move mouse over a variable to display its value with more	precision.	
• Mixed C SI C English Case-0	✓ > ✓ Help Messages On Supe	er-Iterate Super-Calculate Load Super-Initialize
State Panel	Device Panel	I/O Panel
< ©State-2 V > Calculate	No-Plots V Initialize	MA model: Dry Air+H2O MoistAir 🔽
✔ p2 ✔ T2	x2	y2 v2
101.325 kPa 💙 20.0 deg-0	raction	fraction V 0.842 m ^A 3/kg V
u2 h2	Vel2	z2 e2
-41.8612 kJ/kg 🌱 42.27285 kJ/kg	✓ 0.0 m/s ✓ 0.0	0 m 💙 -41.8612 kJ/kg 💙
j2 🖌 mdot2	Voldot2	A2 p_v2
42.27285 kJ/kg 💉 =mdot1 kg/mir	✓ 422.6354 m [*] 3/min ✓ 70)4392.4 m ⁴ 2 Y 1.4034 kPa Y
p_a2 p_g2	✓ RH2	omega2 T_dp2
99.9216 kPa 👻 2.339 kPa	↔ 60.0 % ↔ 0.0	00874 kg-H2O/kg-d.a. 💙 12.01431 deg-C 💙
T_wb2 mdot_t2	mdot_v2	mdot_g2
15.08166 deg-C ❤ 506.32687 kg/mir	✓ 4.38497 kg/min ✓ 7.3	30828 kg/min 🗸

Go to State 3, i.e. state after adiabatic humidification. Fill up omega3 = omega2 (since the sp. humidity, omega remains const. during cooling), mdot3 = mdot1, h3 = h1 (for adiabatic process 1-3). Hit Enter, and we get:

Move mouse over a variable to di	splay its value with more prec	cision.			
Mixed C SI C Eng	glish < ©Case-0 v	> 🔽 Help Messa	ges On Super-It	erate Super-Calculate	Load Super-Initialize
State Par	nel	Dev	vice Panel		I/O Panel
< <mark>©State-3 v</mark> >	Calculate No-	-Plots 💌	Initialize MA	model: Dry Air+H2O	MoistAir 🗸 🗸
✓ p3	T3	x3		y3	v3
101.325 kPa 🛩	34.82221 deg-C		fraction 🖌	fraction	✓ 0.88457 m [*] 3/kg ✓
u3	🖌 h3	Vel3	×	z3	e3
-30.98403 kJ/kg 🗸	=h1 kJ/kg	♥ 0.0	m/s 💉 0.0	m	✓ -30.98403 kJ/kg ✓
<i>j</i> 3	✓ mdot3	Voldot3		A3	p_v3
57.40404 kJ/kg 💙	=mdot1 kg/min	✓ 444.00464	m^3/min 💉 74000	07.8 m^2 *	✓ 1.4034 kPa ✓
p_a3	p_g3	RH3	×	omega3	T_dp3
99.9216 kPa 🛩	5.57985 kPa	✓ 25.15125	% 💉 😑	ga2 kg-H2O/kg-d.a.	✓ 12.01431 deg-C ✓
T_wb3	mdot_t3	mdot_v3		mdot_g3	
20.0 deg-C 🗸	506.32687 kg/min	✓ 4.38497	kg/min 💉 17.43	439 kg/min 🕚	¥

Note that RH3 = 25.15 %, T3 = 34.82 C, i.e. temp of air before it is cooled to 20 C in the refrigeration unit.... Ans.

6. Go to Device panel. For Device A (i.e. humidifying unit), fill up State 1 and State 3 for i-1 state and e1-state, Wdot_ext = 0, h = 0. Hit Enter. We get:

7. Go to Device B (i.e. cooling unit). Fill up State 3 and State 2 for i-1 state and e1-state, Wdot_ext = 0. Hit Enter. We get:

Move mouse over a variable to display its value with more precision.						
• Mixed C SI C English	< Case-0 > F Help Messa	super-Iterate	Super-Calculate	Load Super-Initialize		
State Panel	De	vice Panel	L D	O Panel		
Device-B [3-2]	Calculate Initialize		Generic Device	C Cooling Tower		
i1-State: State-3 💌	i2-State: State-Null 🔽	e1-State: State-2 💌	e2-State:	State-Null 💌		
Qdot		✓ Wdot_ext				
-126.58298	kW	• 0.0	kW	*		

i.e. Heat removed in cooling unit = Qdot = 126.58 kW (negative, since heat is removed).

OR: we can get in Tons also in TEST:

Qdot = -126582.98 W [Net heat transfer rate]							
Mixed C SI C English	< ©Case-0 v > V Help N	lessages On Super-Iterate	Super-Calculate Load	Super-Initialize			
State Panel		Device Panel	I/O Pan	el			
Device-B [3-2]	Calculate Initia	alize	Generic Device	C Cooling Tower			
i1-State: State-3 🗸	i2-State: State-Null 💌	e1-State: State-2 💌	e2-State: State-N	ull 💌			
Qdot		✓ Wdot_ext					
-35.99516	ton(refrig)	0.0	kW	*			

i.e. Heat removed in cooling unit = Qdot = 35.995 tons of refrign. (negative, since heat is removed).

- 8. Choosing Psychro Plots from Plots widget, gives the State points on the psychrometric chart;

9. Click on SupeCalculate and get the TEST code etc from the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE

TESTcalc Path: Systems>Open>SteadyState>Specific>HVAC; v-10.ce02;

#-----Start of TEST-code -----

States {

State-1: MoistAir;

Given: { p1= 101.325 kPa; T1= 40.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; Voldot1= 450.0 m^3/min; T_wb1= 20.0 deg-C; }

State-2: MoistAir;

Given: { p2= 101.325 kPa; T2= 20.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/min; RH2= 60.0 %; }

State-3: MoistAir;

{

Given: { p3= 101.325 kPa; h3= "h1" kJ/kg; Vel3= 0.0 m/s; z3= 0.0 m; mdot3= "mdot1" kg/min; omega3= "omega2" kg-H2O/kg-d.a.; }

}

Analysis

Device-A: i-State = State-1; e-State = State-3; CoolingTower: false;

Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; }

Device-B: i-State = State-3; e-State = State-2; CoolingTower: false;

Given: { Wdot_ext= 0.0 kW; }

}

#-----End of TEST-code -----

#----Property spreadsheet starts:

State	DBT(K)	WBT(K)	DPT(K)	v(m3/kg-d.a.)	R.H.	h(kJ/kg)	Omega(kg-H2O/kg-d.a.)	
# 1	313.2	293.2	281.2	0.8965	0.15	57.4	0.0067	
# 2	293.2	288.2	285.2	0.842	0.6	42.3	0.0087	
# 3	308.0	293.2	285.2	0.8846	0.25	57.4	0.0087	
# Analy	ysis							
#								
#	Device-	A: i-State = State	e-1; e-Sta	te = State-3; Co	olingTo	wer: false;		
#		Given: Qdot= 0	.0 kW ; V	Vdot_ext= 0.0 k	W;			
#		Calculated:						
#	Device-B: i-State = State-3; e-State = State-2; CoolingTower: false;							
#	Given: Wdot_ext= 0.0 kW;							
#		Calculated: Qd	ot= -126.	582985 kW;				

Prob.7.5.7 One kg of air (dry basis) at 35 C DBT and 60% RH is mixed with 2 kgof air (dry basis) at 20 C DBT and 13 C DPT. Calculate the sp. humidity and DBT of mixture.

TEST Solution:

Here, we use Closed System-Psychrometry daemon (as in Prob.7.5.1):

1. Enter data for State1: m1 = 1 kg, T1 = 35 C DBT, RH1 = 60%. P1 = 101.325 by default. Hit Enter. We get:

Move mouse over a variable to display its value with more precision.											
• Mixed C SI C English Case-0	► Help Messages On Super-Iterate	Super-Calculate Load Super-Initialize									
State Panel	Process Panel	I/O Panel									
< State-1 > Calculate	No-Plots 🗸 Initialize MA mo	del: Dry Air+H2O MoistAir 🗸 🗸									
✓ p1 ✓ T1	x1	ty t									
101.325 kPa 💉 35.0 deg-	c V fraction V	fraction V 0.90296 m*3/kg V									
u1 h1	✓ Vel1 ✓	zi ei									
1.81792 kJ/kg ❤ 90.25697 kJ/kg	✓ 0.0 m/s ✓ 0.0	m 💙 1.81792 kJ/kg 🌱									
jt 🖌 mt	Vol1	p_v1p_a1									
90.25697 kJ/kg 💙 1.0 kg	✓ 0.90296 m ³ ✓ 3.381	1 kPa 💙 97.9439 kPa 💙									
p_g1 ✓ RH1	omega1	T_dp1T_wb1									
5.63517 kPa 💉 60.0 %	✓ 0.02147 kg-H2O/kg-d.a. ✓ 26.04	1394 deg-C 💉 28.07594 deg-C 💉									
m_t1m_v1	m_g1										
1.02147 kg ❤ 0.02147 kg	✓ 0.03579 kg ✓										

2. For State 2: m2 = 2 kg, T2 = 20 C, T_dp2 = 13 C. Hit Enter. We get:

Move mouse over a variable to dis	splay its value with more	precision.				
Mixed C SI C Eng	jlish < Case-0	▼ > ▼ Help Mess	ages On Super-Itera	te Super-Calculate	Load	Super-Initialize
State Pane	el	Pro	cess Panel		I/O Panel	
< ©State-2 V >	Calculate	No-Plots 💌	Initialize MA	model: Dry Air+H2O	MoistAir	v
✓ p2	✓ T2	x2		y2	v2	
101.325 kPa 🗸	20.0 deg-	c 🖌	fraction 💌	fraction	♥ 0.84282	m^3/kg 💌
u2	h2	✓ Vel2		z2	e2	
-40.31245 kJ/kg 💙	43.8216 kJ/kg	✓ 0.0	m/s 💉 0.	.0 m	✓ -40.31245	kJ/kg 💌
j2	🖌 m2	Vol2		p_v2	p_a2	2
43.8216 kJ/kg ₩	2.0 kg	▶ 1.68563	m^3 🔰 1	49998 kPa	♥ 99.82502	kPa 🗸
p_g2	RH2	omega2		T_dp2	T_wi	b2
2.339 kPa 🗸	64.12889 %	✓ 0.00935	kg-H2O/kg-d.a. 💽 1	3.0 deg-C	✓ 15.63624	deg-C 💌
t2	v2	m_g2				
2.01869 kg 💙	0.01869 kg	✓ 0.02915	kg 🗸			

3. For State 3, enter known data: m3 = m1+m2, and hit Enter. We get:

Mixed C SI C Eng	glish < Case-0 v	> 🔽 Help Messages On	Super-Iterate Super-Ca	culate Load S	uper-Initialize						
State Pan	el	Process Panel		I/O Panel							
< <mark>©State-3 v</mark> >	Calculate	No-Plots 🔽 Initializ	e MA model: Dry Air+H2	D MoistAir	~						
✓ p3	73	x3	y3	V3							
101.325 kPa 🗸	deg-C	fraction	Y fra	tion 💙	m^3/kg 💉						
иЗ	h3	✓ Vel3	🖌 z3	e3							
kJ/kg 💙	kJ/kg	✓ 0.0 m/s	✓ 0.0 n	 Image: A state of the state of	kJ/kg 💙						
<i>j</i> 3	🖌 m3	Vol3	p_v3	p_a3							
kJ/kg 💙	=m1+m2 kg	✓ m^3	× ki	28 💙	kPa 💉						
p_g3	RH3	omega3	T_dp3	T_wb3							
kPa 🗸	%	kg-H2O/kg-d.	a. 💙 de	g-C 🗸	deg-C 💙						
m_t3	m_v3	m_g3									
kg 💙	kg	▶ kg	*								

Note that above data was not enough. However, results will be up-dated after we go to Process panel.

4. In the Process panel, foe bA and bB States, enter State 1 and State 2. For, fA state enter State 3. And, for fB state, leave it as Null State, since there is only one final state. Also, W_ext = 0, Q = 0. Hit Enter. And click on SuperCalculate.

5. Now, all calculations are updated. Go to State 3, and see the results:

Move mouse over a variable to display its value with mo	re precision.	
Mixed C SI C English	e-0 v > V Help Messages On Super-Itera	te Super-Calculate Load Super-Initialize
State Panel	Process Panel	I/O Panel
< State-3 V > Calculate	No-Plots 💌 Initialize MA	model: Dry Air+H2O MoistAir 🗸
✓ p3 T3	x3	y3 v3
101.325 kPa ❤ 25.09819 de	g-C 💌 fraction 💌	fraction 💙 0.86296 m^3/kg 👻
u3 h3	Vel3	′ z3 ✓ e3
-26.269 kJ/kg 🌱 59.32849 kJ/	kg 💉 0.0 m/s 💌 0.	0 m 💙 -26.268997 kJ/kg 💙
j3 🖌 🖌 m3	Vol3	p_v3p_a3
59.32849 kJ/kg ❤ =m1+m2 kg	✓ 2.58889 m ⁴ 3 ✓ 2.	135 kPa 💙 99.19 kPa 💙
p_g3 RH3	✓ omega3	T_dp3T_wb3
3.19783 kPa ❤ 66.76397 %	✓ 0.013388114 kg-H20/kg-d.a. ✓ 18	1.51687 deg-C 💙 20.54536 deg-C 🗸
m_t3 🖌 m_v3	m_g3	
3.04016 kg ❤ 0.04016434 kg	✓ 0.06016 kg ✓	

Thus, for State 3, i.e. for the mixture: T3 = 25.1 C, sp. humidity, omega3 = 0.013388 kg H2O/kg dry air, and RH3 = 66.77% Ans..

6. We get from the Plots widget:

7. I/O panel gives the TEST code etc:

#~~~~~~	~~~~~~OUTPUT OF SUPER-CALCULATE											
# TEST	Ccalc Path: Systems>Closed>Process>Specific>HVAC; v-10.ce02;											
#	#Start of TEST-code											
States	3 {											
	State-1: MoistAir;											
60.0 %; }	Given: { p1= 101.325 kPa; T1= 35.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 1.0 kg; RH1=											
	State-2: MoistAir;											
13.0 deg-C; }	Given: { p2= 101.325 kPa; T2= 20.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; m2= 2.0 kg; T_dp2=											
	State-3: MoistAir;											
	Given: { p3= 101.325 kPa; Vel3= 0.0 m/s; z3= 0.0 m; m3= "m1+m2" kg; }											
	}											
Analy	vsis {											
	Process-A: b-State = State-1, State-2; f-State = State-3;											
	Given: { Q= 0.0 kJ; W_ext= 0.0 kJ; }											
	}											
#	End of TEST-code											

Psychrometrics

#*****DETAILED OUTPUT:

Evaluated States:

#	State-1: MoistAir > MA-Model;
#	Given: p1= 101.325 kPa; T1= 35.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; m1= 1.0 kg; RH1= 60.0 %;
#	Calculated: v1= 0.903 m^3/kg; u1= 1.8179 kJ/kg; h1= 90.257 kJ/kg;
#	e1= 1.8179 kJ/kg; j1= 90.257 kJ/kg; Vol1= 0.903 m^3;
#	p_v1= 3.3811 kPa; p_a1= 97.9439 kPa; p_g1= 5.6352 kPa;
#	omega1= 0.0215 kg-H2O/kg-d.a.; T_dp1= 26.0439 deg-C; T_wb1= 28.0759 deg-C;
#	m_t1= 1.0215 kg; m_v1= 0.0215 kg; m_g1= 0.0358 kg;
#	State-2: MoistAir > MA-Model;
#	Given: p2= 101.325 kPa; T2= 20.0 deg-C; Vel2= 0.0 m/s;
#	z2= 0.0 m; m2= 2.0 kg; T_dp2= 13.0 deg-C;
#	Calculated: v2= 0.8428 m^3/kg; u2= -40.3124 kJ/kg; h2= 43.8216 kJ/kg;
#	e2= -40.3124 kJ/kg; j2= 43.8216 kJ/kg; Vol2= 1.6856 m^3;
#	p_v2= 1.5 kPa; p_a2= 99.825 kPa; p_g2= 2.339 kPa;
#	RH2= 64.1289 %; omega2= 0.0094 kg-H2O/kg-d.a.; T_wb2= 15.6362 deg-C;
#	m_t2= 2.0187 kg; m_v2= 0.0187 kg; m_g2= 0.0292 kg;

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

126

#	State-3: MoistAir > MA-Model;
#	Given: p3= 101.325 kPa; Vel3= 0.0 m/s; z3= 0.0 m;
#	m3= "m1+m2" kg;
#	Calculated: T3= 25.0982 deg-C; v3= 0.863 m^3/kg; u3= -26.269 kJ/kg;
#	h3= 59.3285 kJ/kg; e3= -26.269 kJ/kg; j3= 59.3285 kJ/kg;
#	Vol3= 2.5889 m^3; p_v3= 2.135 kPa; p_a3= 99.19 kPa;
#	p_g3= 3.1978 kPa; RH3= 66.764 %; omega3= 0.0134 kg-H2O/kg-d.a.;
#	T_dp3= 18.5169 deg-C; T_wb3= 20.5454 deg-C; m_t3= 3.0402 kg;
#	m_v3= 0.0402 kg; m_g3= 0.0602 kg;
"D	

#Property Spreadsheet:

State	DBT(K) WBT(K)	DPT(K)	v(m3/kg-d.a.)	R.H.	h(kJ/kg)	Omega(kg-H2O/kg-d.a.)
# 1	308.2	301.2	299.2	0.903	0.6	90.3	0.0215
# 2	293.2	288.8	286.2	0.8428	0.64	43.8	0.0093
# 3	298.2	293.7	291.7	0.863	0.67	59.3	0.0134

Analysis

#

- # Process-A: b-State = State-1, State-2; f-State = State-3;
 - Given: Q= 0.0 kJ; W_ext= 0.0 kJ;

Prob.7.5.8. Two air streams are mixed adiabatically. The first stream enters at 32 C, 40% RH at a rate of 20 m^3/min. The second stream enters at 12 C, 90% RH and at a rate of 25 m^3/min. Mixing process occurs at a pressure of 1 atm. Find the sp. humidity, RH, DBT and volume flow rate of the mixture. [Ref:1]

Fig.Prob.7.5.8 Adiabatic mixing of two air streams

TEST Solution:

Here, since there is flow, we use the Open-System-Psychrometry daemon (as in Prob.7.5.5)

1. For stream 1, fill in parameters for State 1: i.e. T1 = 32 C, RH1 = 40%, Voldot1 = 20 m^3/ min. Hit Enter. We get:

z1 = 0.0 m [Elevation above a datum]											
Mixed O SI O Eng	glish < Case-0	▼ > F Help Mess	ages On Super-Iterate	Super-Calculate	Load	Super-Initialize					
State Par	nel	De	evice Panel		I/O Panel						
				Dev Alex 1900							
< OState-1 V >	Calculate	No-Plots 💌	Initialize MA model:	Dry Air+H20	MoistAir	×					
🖌 p1	🖌 T1	X1	y1		V1						
101.325 kPa 🗸	32.0 deg-C	×	fraction 💙	fraction	0.88087	m^3/kg 💉					
U1	ht	✓ Vel1	🖌 z1		e1						
-24.93748 kJ/kg 💙	62.64057 kJ/kg	▶ 0.0	m/s 💉 0.0	m 🗸	-24.93748	kJ/kg 💉					
jt	mdot1	✓ Voldot1	A1		p_v1						
62.64057 kJ/kg 💙	22.70472 kg/min	✓ 20.0	m^3/min 💉 33333.336	m^2 🔹	1.90323	kPa 🗸					
p_a1	p_g1	✓ RH1	omega	1	T_dp	1					
99.42177 kPa 🗸	4.75807 kPa	✓ 40.0	% 🗸 0.01191	kg-H2O/kg-d.a. 🛛 👻	16.6932	deg-C 💙					
T_wb1	mdot_t1	mdot_v1	mdot_g	1							
21.48195 deg-C ♥	22.97507 kg/min	✓ 0.27034	kg/min 💉 0.67586	kg/min 💊	*						

 Similarly, for State 2, i.e. for stream 2: T1 = 12 C, RH2 = 90%, Voldot2 = 25 m^3/min. Hit Enter. We get:

T2 = 12.0 deg-C [Absolute temperature]											
• Mixed C SI C English < Case-0	✓ > ✓ Help Messages On Super-Iterate	Super-Calculate Load Super-Initialize									
State Panel	Device Panel	I/O Panel									
< ©State-2 V > Calculate	No-Plots V Initialize MA model	: Dry Air+H2O MoistAir 😪									
✓ p2 ✓ T2	x2 y2	v2									
101.325 kPa 💉 12.0 deg	c 🔹 🔽 fraction 👻	fraction V 0.81786 m^3/kg V									
u2 h2	✓ Ve/2 ✓ Z2	e2									
-49.98593 kJ/kg ❤ 31.85212 kJ/kg	✓ 0.0 m/s ✓ 0.0	m ✓ <mark>-49.98593 kJ/kg ✓</mark>									
j2 mdot2	✓ Voldot2 A2	p_v2									
31.85212 kJ/kg ❤ 30.56744 kg/m	n 💙 25.0 m^3/min 👻 41666.668	m^2 🗸 1.2618 kPa 🗸									
p_a2 p_g2	✓ RH2 omeg	a2 T_dp2									
100.0632 kPa 💉 1.402 kPa	✓ 90.0 % ✓ 0.00784	kg-H2O/kg-d.a. 💙 10.39669 deg-C 💙									
T_wb2 mdot_t2	mdot_v2 mdot_	g2									
11.07536 deg-C 💉 30.8072 kg/m	n 🕶 0.23975 kg/min 👻 0.26639	kg/min 🗸									

3. For mixture, i.e. State 3, enter known values. i.e. p3 is selected as 101.325 by default, mass of dry air, mdot3 = (mdot1 + mdot2), and hit Enter. We get the following:

nouse ov	house over a variable to display its value with more precision.																		
Mixed	C SI	C En	glis	h < <mark>Ca</mark>	ise-0 🗸	>	V	Help Mess	ages On		Super-Iterate		Super-Calculate			Load		uper-Initial	ize
	S	tate Pa	nel					D	evice Panel							I/O F	Panel		
< ©Stat	ie-3 🗸	>		Calculate	No	-Plot	s	~	Initialize		Ī	IA model: E	Dry Air+	+H20		Mo	oistAir	×	2
p3	112			Т3				х3				у3					v3		
325	kPa	*		al	deg-C	*			fraction	~				fraction	~			m^3/kg	*
иЗ				h3			1	Vel3			1	z3					e3		
	kJ/kg	~			kJ/kg	~	0.0		m/s	~	0.0			m	~			kJ/kg	~
<i>j</i> 3			1	mdot3				Voldot3				A3					p_v3		
	kJ/kg	*	=n	ndot1+mdot2	kg/min	*			m^3/min	*				m^2	~			kPa	~
p_a3				p_g3				RH3				omega3					T_dp3		
	kPa	~			kPa	~			%	*			kg-H	H2O/kg-d.a.	~			deg-C	~
T_wb3				mdot_t3				mdot_v3				mdot_g3	3						
	deg-C	• •			kg/min	~			kg/min	~				kg/min	~				

Note that data is not enough to calculate all parameters. They will be calculated and posted back when we fill in data in the Device Panel.

4. Go to Device panel. Fill in State 1 and State 2 for i1-state and i-2 state, and State 3 for e1-state, and keep e2-state as Null state, since there is only one exit stream. Further, Wdot_ext = 0 and Qdot = 0. Hit Enter. WE get:

5. Now, click on SuperCalculate. All calculations are up-dated, and properties for State 3 are posted back there. Go to State 3:

Move mouse over a variable to display its value with more precision.											
• Mixed C SI C English <	©Case-0 🗸 >	🔽 Help Mess	ages On 🔡	Super-Iterate	Super-Calculate	Load	Super-Initialize				
State Panel		D	evice Panel		1	I/O Panel					
< Calculate	No-Plo	ts 💌	Initialize	MA model: Dr	y Air+H2O	MoistAir	~				
🖌 p3 T3		x3		у3		V3	200				
101.325 kPa 💙 20.55852	deg-C 💙		fraction 💉		fraction 💌	0.84473	m^3/kg 💉				
u3 h3		✓ Vel3		🖌 z3		e3					
-39.32018 kJ/kg 💙 44.97423	kJ/kg 💙	0.0	m/s 💙	0.0	m 🗸	-39.32018	kJ/kg 💉				
🖌 j3 🖌 mdoi	3	Voldot3		A3		p_v.	3				
44.97423 kJ/kg 💙 =mdot1+md	ot2 kg/min 🔽	45.00046	m^3/min 💉	75000.77	m^2 🗸	1.53619	kPa 🗸				
p_a3 p_g3		RH3		✓ omega3		T_d	03				
99.78881 kPa 🛩 2.42432	kPa 🗸	63.36568	% 🗸	0.009575309	kg-H2O/kg-d.a. 🗸	13.36959	deg-C 💙				
T_wb3 mdot_t3		✓ mdot_v3		mdot_g3							
16.04465 deg-C 💉 53.78227	kg/min 💉	0.5100975	kg/min 💌	0.80501	kg/min 👻						

Thus:

Sp. humidity of mixture = omega3 = 0.009575 jgH2O/kg dry air ... Ans.

RH of mixture = RH3 = 63.36% ... Ans.

Dry bulb temp = T3 = 20.56 C ... Ans.

Vol. flow rate of mixture = Voldot3 = $45 \text{ m}^3/\text{min} \dots \text{Ans.}$

7. I/O panel gives TEST code etc:

#~~~~~OUTPUT OF SUPER-CALCULATE

TESTcalc Path: Systems>Open>SteadyState>Specific>HVAC; v-10.ce02;

#-----Start of TEST-code -----

States {

State-1: MoistAir;

Given: { p1= 101.325 kPa; T1= 32.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; Voldot1= 20.0 m^3/min; RH1= 40.0 %; }

State-2: MoistAir;

Given: { p2= 101.325 kPa; T2= 12.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; Voldot2= 25.0 m^3/min; RH2= 90.0 %; }

Applied Thermodynamics: Software Solutions: Part-IV (Psychrometrics, Reactive systems)

Psychrometrics

State-3: MoistAir;

#*****DETAILED OUTPUT:

132

Click on the ad to read more

Evaluated States:

#	State-1: MoistAir > MA-Model;
#	Given: p1= 101.325 kPa; T1= 32.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; Voldot1= 20.0 m^3/min; RH1= 40.0 %;
#	Calculated: v1= 0.8809 m^3/kg; u1= -24.9375 kJ/kg; h1= 62.6406 kJ/kg;
#	e1= -24.9375 kJ/kg; j1= 62.6406 kJ/kg; mdot1= 22.7047 kg/min;
#	A1= 33333.336 m^2; p_v1= 1.9032 kPa; p_a1= 99.4218 kPa;
#	p_g1= 4.7581 kPa; omega1= 0.0119 kg-H2O/kg-d.a.; T_dp1= 16.6932 deg-C;
#	T_wb1= 21.482 deg-C; mdot_t1= 22.9751 kg/min; mdot_v1= 0.2703 kg/min;
#	mdot_g1= 0.6759 kg/min;
#	State-2: MoistAir > MA-Model;
#	Given: p2= 101.325 kPa; T2= 12.0 deg-C; Vel2= 0.0 m/s;
#	z2= 0.0 m; Voldot2= 25.0 m^3/min; RH2= 90.0 %;
#	Calculated: v2= 0.8179 m^3/kg; u2= -49.9859 kJ/kg; h2= 31.8521 kJ/kg;
#	e2= -49.9859 kJ/kg; j2= 31.8521 kJ/kg; mdot2= 30.5674 kg/min;
#	A2= 41666.668 m^2; p_v2= 1.2618 kPa; p_a2= 100.0632 kPa;
#	p_g2= 1.402 kPa; omega2= 0.0078 kg-H2O/kg-d.a.; T_dp2= 10.3967 deg-C;
#	T_wb2= 11.0754 deg-C; mdot_t2= 30.8072 kg/min; mdot_v2= 0.2398 kg/min;
#	mdot_g2= 0.2664 kg/min;
#	State-3: MoistAir > MA-Model;
#	Given: p3= 101.325 kPa; Vel3= 0.0 m/s; z3= 0.0 m;
#	mdot3= "mdot1+mdot2" kg/min;
#	Calculated: T3= 20.5585 deg-C; v3= 0.8447 m^3/kg; u3= -39.3202 kJ/kg;
#	h3= 44.9742 kJ/kg; e3= -39.3202 kJ/kg; j3= 44.9742 kJ/kg;
#	Voldot3= 45.0005 m^3/min; A3= 75000.77 m^2; p_v3= 1.5362 kPa;
#	p_a3= 99.7888 kPa; p_g3= 2.4243 kPa; RH3= 63.3657 %;
#	omega3= 0.0096 kg-H2O/kg-d.a.; T_dp3= 13.3696 deg-C; T_wb3= 16.0446 deg-C;
#	mdot_t3= 53.7823 kg/min; mdot_v3= 0.5101 kg/min; mdot_g3= 0.805 kg/min;
#P	Property spreadsheet starts: #

State	DBT(K)) WBT(ŀ	K) DPT(K)	v(m3/kg-d.a.)	R.H.	h(kJ/kg)	Omega(kg-H2O/kg-d.a.)
# 1	305.2	294.6	289.8	0.8809	0.4	62.6	0.0119
# 2	285.2	284.2	283.5	0.8179	0.9	31.9	0.0078
# 3	293.7	289.2	286.5	0.8447	0.63	45.0	0.0096

Analysis

#

Device-A: i-State = State-1, State-2; e-State = State-3; CoolingTower: false;

Given: Qdot= 0.0 kW; Wdot_ext= 0.0 kW;

Prob.7.5.9 A wet cooling tower is to cool 25 kg/s of water from 40 C to 30 C at a location where the atm. pressure is 96 kPa. Atm. air enters the tower at 20 C and 70% RH and leaves saturated at 35 C. Neglecting the power input to the fan, determine: (a) volume flow rate of air in to the tower, and (b) mass flow rate of required make up water. [Ref: 1]

TEST Solution:

Here, we use the Open-System-Psychrometry daemon (as in Prob.7.5.5)

1. Choose H2O as the working substance, fill in the data for State 1, i.e. water entering the tower: Enter p1 = 96 kPa, T1 = 40 C, mdot1 = 25 kg/s. Hit Enter. We get:

Nove mouse over a variable to display its value with more precision.									
Mixed C SI C Eng	glish < ©Case-0	✓ > ✓ Help Mes	sages On	Super-Iterate	Super-Calculate	Load St	per-Initialize		
State Par	nel	l l	Device Panel			I/O Panel			
< OState-1 V >	Calculate	No-Plots 💌	Initialize	Subcooled Liqu	uid	H20	v		
✓ p1	✓ T1	x1		y1		v1			
96.0 kPa 💙	40.0 deg-C	✓	fraction 💉		fraction	✓ 0.00101	m^3/kg 💉		
U1	h1	✓ Vel1		🖌 z1		e1			
167.56152 kJ/kg 🗸	167.65825 kJ/kg	✓ 0.0	m/s 🗸	0.0	m	✓ 167.56152	kJ/kg 💉		
jt	🖌 mdot1	Voldot1		A1		p_v1			
167.65825 kJ/kg 🗸	25.0 kg/s	✓ 1.51135	m^3/min 💉	2518.9243	m^2	~	kPa 💙		
p_a1	p_g1	RH1		omega1		T_dp1			
kPa 🗸	kPa	¥	%	K	g-H2O/kg-d.a.	¥	deg-C 💙		
T_wb1	mdot_t1	mdot_v1		mdot_g1					
deg-C 💙	kg/min	×	kg/min 💙		kg/min	~			

2. For State 2, i.e. water leaving the tower: Enter $p_2 = p_1$, $T_2 = 30$ C, hit Enter. We get:

x2 =	x2 = fraction [Quality]														
¢	Image: Mixed C SI C English < Case-0														
		Stat	te Pan	el				Device Pa	nel				I/O Panel		
	< @State-	2 × >		Calcula	ite	No-Plots	×	Initiali	7e	Subcoole	d Liquid		H20		
1			1	<u> </u>		THO I TOLO									
=01	ρ2	kPa	*	30.0	deg-C	v 1	×2	fraction	×	y2	fraction	~	0.001	m^3/kg	~
				60.0			< 1 V/	10		· · · · ·	1			Los anda	
125	.78574	kJ/kg	~	125.88212	kJ/kg	~	0.0	m/s	*	0.0	m	~	125.78574	kJ/kg	~
	i2			mdo	t2		Vo	dot2		A2			D V2	<u></u>	
125	.88212	kJ/kg	*		kg/s	~		m^3/mir	, 🗸		<i>m</i> ^2	~		kPa	~
	p_a2			p_g	2	ĺ	RH	2		omeg	a2		T_dp	2	
		kPa	~		kPa	×		%	~		kg-H2O/kg-d.a.	~		deg-C	~
	T_wb2			mdot_t2			ma	lot_v2		mdot_	g2				
		deg-C	*		kg/mi	7 🖌		kg/min	*		kg/min	*			

3. For State 3, i.e. air entering the tower: Now, change the substance to moist air, enter p3 = 96 kpa, T3 = 20 C, RH3 = 90%, hit Enter. We get:

IN OLIVER WYMAN

Oliver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk management, organizational transformation, and leadership development. With offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at **oliverwyman.com/careers**

135

4. For State 4, i.e. air leaving the tower: enter p4 = p3, T4 = 35 C, RH4 = 100% (since saturated), and mdot4 = mdot3 (since amount of dry air does not change), hit Enter. We get:

love mouse over a variable to display its value with more precision.									
Case-0	▼ > F Help Messages On Super-Iter	rate Super-Calculate Load Super-Initialize							
State Panel	Device Panel	I/O Panel							
< <mark>©State-4 ∨ > Calculate</mark>	No-Plots 💌 Initialize MA r	nodel: Dry Air+H2O MoistAir 🗸							
🖌 p4 🖌 T4	x4 3	v4 v4							
=p3 kPa ❤ 35.0 deg-C	fraction	fraction 💙 0.97869 m^3/kg 💙							
u4 h4	✓ Vel4 ✓	z4 e4							
46.23894 kJ/kg ❤ 134.678 kJ/kg	✓ 0.0 m/s ✓ 0.0	m 🗸 46.23894 kJ/kg 🗸							
j4 ✔ mdot4	Voldot4	14 p_v4							
134.678 kJ/kg ❤ =mdot3 kg/s	▼ m^3/min ▼	m^2 ❤ 5.63517 kPa ❤							
p_a4 p_g4	✓ RH4 0	mega4 T_dp4							
90.36483 kPa 💙 5.63517 kPa	✓ 100.0 % ✓ 0.0387	9 kg-H2O/kg-d.a. 💙 34.99996 deg-C 💙							
T_wb4 mdot_t4	mdot_v4 r	ndot_g4							
34.99999 deg-C ✓ kg/min	kg/min 🗸	kg/min 🗸							

Amount of mdot4 will be automatically posted later, after we complete the Device panel and SuperCalculate.

5. Now, go to Device panel. **Important: change the radio button to Cooling Tower.** Looking at the schematic of cooling tower given there, fill in i1-State, i2-state e1-state and e2-state carefully. See below. Also, Wdot_ext = 0 and Qdot = 0. Click Enter. We get:

6. Click on SuperCalculate. Now, all calculations are up-dated and relevant parameters are posted to respective State panels. Go to State 2, and see the following:

love mouse over a variable to display its value with more precision.									
• Mixed C SI C English	< ©Case-0 💙 >	🔽 Help Messages On	Super-Iterate	Super-Calculate	Load	per-Initialize			
State Panel		Device Pan	el		I/O Panel				
< OState-2 V > Cal	Iculate No-Plots	✓ Initialize	Subcooled Lie	quid	H20	~			
✓ p2 ✓	T2	x2	y2		v2				
=p1 kPa 💙 30.0	deg-C 💌	fraction		fraction	✓ 0.001	m^3/kg 💉			
u2 /	h2	Ve/2	🖌 z2		e2				
125.78574 kJ/kg 💙 125.88	212 kJ/kg 🛛 🗸	0.0 m/s	✓ 0.0	m	✓ 125.78574	kJ/kg 🗸 🗸			
j2 🖌	mdot2	Voldot2	A2		p_v2				
125.88212 kJ/kg 🝸 1479.0	1306 kg/min 💉 🚺	.48495 m^3/min	✓ 2474.9114	m^2	• <u> </u>	kPa 💙			
p_a2 /	p_g2	RH2	omega2		T_dp2				
kPa 🗸	kPa 💙	%	×	kg-H2O/kg-d.a.	~	deg-C 💙			
T_wb2 mdo	ot_t2	mdot_v2	mdot_g2						
deg-C 🗸	kg/min 💙	kg/min	×	kg/min	*				

Note that the quantity of water leaving the tower = mdot2 = 1479 kg/min.

7. State 3 shows:

Nove mouse over a variable to display its value with more precision.									
ି Mixed ମ ସା ମି English < <mark>୭୦</mark> :	ase-0 💙 >	🔽 Help Messages On	Super-Iterate	Super-Calculate	Load	Super-Initialize			
State Panel		Device Panel			I/O Panel				
< ©State-3 V > Calculate	No-Plots	✓ Initialize	MA model: D	ry Air+H2O	MoistAir	~			
🖌 р3 🖌 Т3		x3	y3		V3				
96.0 kPa 🕑 20.0	deg-C 💌 🔽	fraction	~	fraction 🗸	0.8916	m^3/kg 💉			
u3 h3		Vel3	🖌 z3		e3				
-36.64183 kJ/kg 🛛 47.49222	kJ/kg 🔽 🚺).0 m/s *	✓ 0.0	m 🗸	-36.64183	kJ/kg 🛛 👻			
j3 🖌 mdot3		Voldot3	A3		p_v3	3			
47.49222 kJ/kg 💙 749.01965	kg/min 💉 🧧	667.828 m^3/min	1113046.8	m^2 🗸	1.6373	kPa 🗸			
p_a3 p_g3		RH3	omega3		T_dp	03			
94.3627 kPa 💉 2.339	kPa 💉 🔽	70.0 %	✓ 0.01079	kg-H2O/kg-d.a. 💙	14.35763	deg-C 💙			
T_wb3 mdot_t3		mdot_v3	mdot_g3						
16.3286 deg-C ❤ 757.10333	kg/min 🔽 8	3.083729 kg/min	11.54818	kg/min 🗸					

Note that Volume of air entering the tower = Voldot $3 = 667.8 \text{ m}^3/\text{min} = 11.13 \text{ m}^3/\text{s} \dots$ Ans.

8. And, State 4 shows:

© 2010 EYGM Lin

I.All

Move mouse over a variable to display its value with more precision.								
Mixed C SI C English Case-0	► > F Help Messages On Super-Ite	arate Super-Calculate Load Super-Initialize						
State Panel	Device Panel	I/O Panel						
< ©State-4 V > Calculate	No-Plots 🗸 Initialize MA	model: Dry Air+H2O MoistAir 🗸						
✓ p4 ✓ T4	x4	v4 v4						
=p3 kPa ✓ 35.0 deg-C	raction	fraction V 0.97869 m^3/kg V						
u4 h4	✓ Vel4 ✓	z4 e4						
46.23894 kJ/kg ❤ 134.678 kJ/kg	✓ 0.0 m/s ✓ 0.0	m ↔ 46.23894 kJ/kg ↔						
j4 🖌 mdot4	Voldot4	44p_v4						
134.678 kJ/kg 💙 =mdot3 kg/s	✓ 733.0571 m ^A 3/min ✓ 122176	2.0 m⁴2 ❤ 5.63517 kPa ❤						
p_a4 p_g4	✓ RH4	pmega4T_dp4						
90.36483 kPa 🛩 5.63517 kPa	✓ 100.0 % ✓ 0.0387	9 kg-H2O/kg-d.a. 💙 34.99996 deg-C 💙						
T_wb4 mdot_t4	✓ mdot_v4	mdot_g4						
34.99999 deg-C 🗸 778.07263 kg/min	✓ 29.05301 kg/min ✓ 29.053	01 kg/min 🗸						

Therefore, make up water required = (mdot4 – mdot3) = 20.97 kg/min = 0.35 kg/s ... Ans.

Day one and you're ready

Day one. It's the moment you've been waiting for. When you prove your worth, meet new challenges, and go looking for the next one. It's when your dreams take shape. And your expectations can be exceeded. From the day you join us, we're committed to helping you achieve your potential. So, whether your career lies in assurance, tax, transaction, advisory or core business services, shouldn't your day one be at Ernst & Young?

What's next for your future? ey.com/careers

ERNST & YOUNG Quality In Everything We Do

9. I/O panel gives TEST code etc:

#~~~~~OUTPUT OF SUPER-CALCULATE

TESTcalc Path: Systems>Open>SteadyState>Specific>HVAC; v-10.ce02;

#-----Start of TEST-code -----

States {

State-1: H2O;

Given: { p1= 96.0 kPa; T1= 40.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; mdot1= 25.0 kg/s; }

State-2: H2O;

Given: { p2= "p1" kPa; T2= 30.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; }

State-3: MoistAir;

Given: { p3= 96.0 kPa; T3= 20.0 deg-C; Vel3= 0.0 m/s; z3= 0.0 m; RH3= 70.0 %; }

State-4: MoistAir;

Given: { p4= "p3" kPa; T4= 35.0 deg-C; Vel4= 0.0 m/s; z4= 0.0 m; mdot4= "mdot3" kg/s; RH4= 100.0 %; }

}

Analysis {

```
Device-A: i-State = State-3, State-1; e-State = State-4, State-2; CoolingTower: true;
```

Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; }

}

#-----End of TEST-code -----

#*****DETAILED OUTPUT:

Evaluated States:

#	State-1: H2O > MA-Model;
#	Given: p1= 96.0 kPa; T1= 40.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; mdot1= 25.0 kg/s;
#	Calculated: v1= 0.001 m^3/kg; u1= 167.5615 kJ/kg; h1= 167.6582 kJ/kg;
#	e1= 167.5615 kJ/kg; j1= 167.6582 kJ/kg; Voldot1= 1.5114 m^3/min;
#	A1= 2518.9243 m^2;
#	State-2: H2O > MA-Model;
#	Given: p2= "p1" kPa; T2= 30.0 deg-C; Vel2= 0.0 m/s;
#	z2= 0.0 m;
#	Calculated: v2= 0.001 m^3/kg; u2= 125.7857 kJ/kg; h2= 125.8821 kJ/kg;
#	e2= 125.7857 kJ/kg; j2= 125.8821 kJ/kg; mdot2= 1479.0306 kg/min;
#	Voldot2= 1.485 m^3/min; A2= 2474.9114 m^2;
#	State-3: MoistAir > MA-Model;
#	Given: p3= 96.0 kPa; T3= 20.0 deg-C; Vel3= 0.0 m/s;
#	z3= 0.0 m; RH3= 70.0 %;
#	Calculated: v3= 0.8916 m^3/kg; u3= -36.6418 kJ/kg; h3= 47.4922 kJ/kg;
#	e3= -36.6418 kJ/kg; j3= 47.4922 kJ/kg; mdot3= 749.0196 kg/min;

Click on the ad to read more

#	Voldot3= 667.828 m^3/min; A3= 1113046.8 m^2; p_v3= 1.6373 kPa;
#	p_a3= 94.3627 kPa; p_g3= 2.339 kPa; omega3= 0.0108 kg-H2O/kg-d.a.;
#	T_dp3= 14.3576 deg-C; T_wb3= 16.3286 deg-C; mdot_t3= 757.1034 kg/min;
#	mdot_v3= 8.0837 kg/min; mdot_g3= 11.5482 kg/min;
#	State-4: MoistAir > MA-Model;
#	Given: p4= "p3" kPa; T4= 35.0 deg-C; Vel4= 0.0 m/s;
#	z4= 0.0 m; mdot4= "mdot3" kg/s; RH4= 100.0 %;
#	Calculated: v4= 0.9787 m^3/kg; u4= 46.2389 kJ/kg; h4= 134.678 kJ/kg;
#	e4= 46.2389 kJ/kg; j4= 134.678 kJ/kg; Voldot4= 733.0571 m^3/min;
#	A4= 1221762.0 m^2; p_v4= 5.6352 kPa; p_a4= 90.3648 kPa;
#	p_g4= 5.6352 kPa; omega4= 0.0388 kg-H2O/kg-d.a.; T_dp4= 35.0 deg-C;
#	T_wb4= 35.0 deg-C; mdot_t4= 778.0726 kg/min; mdot_v4= 29.053 kg/min;
#	mdot_g4= 29.053 kg/min;
#	
#F	Property spreadsheet starts: #

State	DBT(K)	WBT(K)	DPT(K)v(m3/kg	g-d.a.)	R.H.	h(kJ/kg)	Omega(kg-H2O/kg-d.a.)
# 1	313.2			0.001			167.7
# 2	303.2			0.001			125.9
# 3	293.2	289.5	287.5	0.8916	0.7	47.5	0.0108
#4	308.2	308.1	308.1	0.9787	1.0	134.7	0.0388

Analysis

Device-A: i-State = State-3, State-1; e-State = State-4, State-2; CoolingTower: true;

Given: Qdot= 0.0 kW; Wdot_ext= 0.0 kW;

7.6 References:

- 1. Yunus A. Cengel & Michael A. Boles, Thermodynamics, An Engineering Approach, 7th Ed. McGraw Hill, 2011.
- 2. Sonntag, Borgnakke & Van Wylen, Fundamentals of Thermodynamics, 6th Ed. John Wiley & Sons, 2005.
- 3. Michel J. Moran & Howard N. Shapiro, Fundamentals of Engineering Thermodynamics, 4th Ed. John Wiley & Sons, 2000.
- 4. *P.K. Nag*, Engineering Thermodynamics, 2nd Ed. Tata McGraw Hill Publishing Co., 1995.
- 5. R.K. Rajput, A Text Book of Engineering Thermodynamics, Laxmi Publications, New Delhi, 1998.
- 6. Domkunndwar et al, A course in Thermal Engineering, Dhanpat Rai & Co., New Delhi, 2000.

- 7. <u>http://www.conservationphysics.org/atmcalc/atmoclc2.pdf</u> "Equations describing the physical properties of moist air"
- 8. <u>http://www.sugartech.com/psychro/index.php</u> Sugar Engineers' Library "Psychrometric Calculator"
- 9. <u>http://www.numlog.ca/psychrometrics/psychrocalc.html</u> PsychroCalc "**Stand alone** calculator"
- 10. <u>http://www.ce.utexas.edu/prof/Novoselac/classes/ARE383/Handouts/F01_06SI.pdf...Chapter</u> <u>6</u>, **Psychrometrics – 2001 ASHRAE Fundamentals Handbook (SI)**
- 11. <u>ftp://www.ufv.br/Dea/Disciplinas/Evandro/Eng671/Aulas/Aula03-2-Numerical%20</u> <u>calculation%20of%20psychrometric%20properties%20in%20SI%20units.pdf</u> "**Numerical Calculation of Psychrometric Properties**" by Luther R Wilhelm
- 12. www.thermofluids.net TEST Software
- 13. http://www.engineeringtoolbox.com/humidity-measurement-d_561.html
- 14. <u>http://www.ohio.edu/mechanical/thermo/Applied/Chapt.7_11/Chapter10b.html</u>

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

8 Reactive Systems

Learning objectives:

- 1. In this chapter, basically, the topic of 'Combustion' is dealt with.
- 2. Combustion requires a fuel, an oxidizer, and the mixture should be brought up to the ignition temp.
- 3. Fuel may be in solid, liquid or gaseous state, and is essentially a hydrocarbon.
- 4. Oxygen is the oxidizer and is generally supplied as air.
- 5. Air contains 21% by volume of oxygen and 79% by volume is nitrogen. Composition by mass is 23% for O2 and 77% for N2.
- 6. Combustion equations are mole equations i.e. by volume.
- 7. When air is supplied for combustion, therefore, each mole of O2 that participates in combustion is accompanied by (79/21) = 3.76 moles of N2.
- 8. Combustion equations are balanced by atoms of each constituent in LHS and RHS.
- 9. Stoichiometric Air-Fuel (AF) ratio, actual AF ratio, percent excess air, equivalence ratio etc are explained.
- 10. Enthalpy of formation of compounds, enthalpy of combustion or enthalpy of reaction are explained.
- 11. Tables of enthalpies of formation and other tables for enthalpies of different species required for combustion calculations are presented.
- 12. Formulas and functions to determine molar sp. heats at constant pressure for different species are also presented.
- 13. First Law for Closed systems and Open systems with reference to combustion are mentioned.
- 14. Heat transfer during combustion and Adiabatic flame temp are explained.
- 15. Also, many useful functions are written in Mathcad and EES and several problems are solved using Mathcad, EES and TEST to illustrate the problem solving techniques in this chapter.

8.1 Definitions, Statements and Formulas used [1–11]:

8.1.1 Requirements of combustion:

Combustion is a chemical reaction during which a fuel is oxidized and energy is released. Thus, for combustion, we need: (i) a fuel, (ii) oxygen, generally supplied as air, and (iii) fuel must be brought above ignition temp.

Ignition temps: Petrol ... 260 C, Carbon ... 400 C, Hydrogen ... 580 C, Carbon Monoxide ... 610 C, Methane ... 630 C.

Fuel... may be solid (ex: coal, wood), liquid (ex: petroleum products, or gas (ex: natural gas)

80% of world's fuel is fossil fuels, i.e. hydrocarbons whose main composition is Hydrogen (H2), Carbon (C), Nitrogen (N2), Sulphur (S), ash, moisture etc.

Composition of coal varies depending on geographical location.

Analysis of coal: There are two types: Proximate analysis and Ultimate analysis.

Proximate analysis is mainly for moisture content, volatile matter, fixed carbon and ah. Mstly required for commercial purposes.

Ultimate analysis is to find percentage of ultimate constituents such as C, H2, O2, N2, S, ash etc. This is mainly required for combustion calculations and research.

Typical Ultimate analysis(%) of coal:

Coal	с	Н	0	N+S	Ash
Anthracite	90.27	3.0	2.32	1.44	2.97
Bituminous	74	5.98	13.01	2.26	4.75
Lignite	56.52	5.72	31.89	1.62	4.25

8.1.2 Composition of Air: Generally taken as:

21% oxygen and 79% nitrogen by volume, and

23% oxygen and 77% nitrogen by mass

Thus, each volume of oxygen entering a combustion chamber will be accompanied by 79/21 = 3.76 volume of nitrogen.

8.1.3 Combustion equation:

Consider following typical equation:

$$C + O_2 = CO_2$$

This means:

1 mole of Carbon + 1 mole of Oxygen gives 1 mole of Carbon dioxide.
LHS is known as 'Reactants' and RHS as 'Products'.

Chemical equations are *mole equations*, i.e. coefficient of each constituent gives its no. of moles.

Since by Avogadro's Law, 1 mole of any Ideal gas occupies the same volume at the same P and T, chemical equations are also *volume equations*, i.e. coeffs give volumes.

Balancing the chemical equation:

Remember: no. of atoms of each H, O, N, C, S etc in the LHS should be equal to the numbers in RHS.

Balancing by mass: use the relative atomic mass of each element:

12 kg [C] + 32 kg [O2] = 44 kg [CO2]

145 Download free eBooks at bookboon.com

Relative atomic masses:

Substance	Symbol	Rel. atomic mass	Rel. molecular mass
Carbon	С	12	-
Hydrogen	H2	1	2
Oxygen	02	16	32
Nitrogen	N2	14	28
Sulphur	S	32	-
Carbon monoxide	СО	-	28
Carbon dioxide	CO2	-	44
Water	H2O	-	18

Note: 1 mole = mass of substance / Mol. weight

8.1.4 Air/Fuel ratio (AF): Usually expressed on mass basis.

$$AF = \frac{m_{air}}{m_{fuel}}$$
 = ratio of mass of air to mass of fuel in a combustion process

Fuel-Air ratio = 1/AF

Complete and incomplete combustion:

Combustion process is *complete* when all carbon burns to CO2, all hydrogen burns to H2O, and all sulphur burns to SO2.

Combustion process is in*complete* when products contain any un-burnt fuel or components such as C, H, CO, OH.

If a fuel $C_n H_m$ burns completely in a combustion chamber, we show it as follows:

Hydrogen in fuel normally burns to completion forming H2O since oxygen is more strongly attracted to hydrogen.

Carbon ends up as CO in incomplete combustion.

8.1.5 'Stoichiometric' or 'Theoretical' Air:.

It is the minimum amount of air required for complete combustion of fuel.

It is also expressed as 'chemically correct' or '100% theoretical air'.

For example, for complete combustion of Methane (CH4):

CH4 + 2.[O2 + 3.76 N2] = CO2 + 2.H2O + 7.52 N2

In the above, LHS is the Reactants, RHS is the Products.

First term in LHS is fuel, second term is air (i.e. O2 + accompanying N2).

Note that there is no C, H2, CO, OH, or free O2 in products.

Excess air: Generally, excess air is supplied to ensure complete combustion (or, to reduce temp of products as in gas turbines). This is expressed in terma of stoichiometric air, as follows:

"50% excess air" \rightarrow means 150% theoretical air.

"90% Theoretical air" \rightarrow means 10% deficient air.

Equivalence ratio (φ):

It is defined as:

8.1.6 Exhaust gas analysis – Orsat Apparatus:

When combustion is complete, composition of products is easily predicted by writing the combustion eqn. But, in practice, combustion processes are seldom complete, and composition of products is found out by direct measurement. Orsat apparatus is generally used for this purpose.

Principle of Orsat apparatus is as follows:

A known volume of products is collected at known P and T. Then, this sample is brought in contact with KOH, which absorbs CO2. Then, the remaining gas is brought back to same P and T and the new volume is measured. Assuming ideal gas behavior, ratio of reduction in volume to original volume gives the mole fraction of CO2 in products.

For example, if original P, T, and volume were 100 kPa, 25 C and 1 lit, and after absorption of CO2 the corresponding values were 100 kPa, 25 C and 0.9 lit, then:

Mole fraction of CO2 = $y_{co2} = 0.1/1 = 0.1$.

Next, by similar procedure, absorb O2 with pyragollic acid, bring the sample back to original P and T, and find out its mole fraction in products. Then, absorb CO with cuprous chloride and repeat the procedure to find out the mole fraction of CO.

Note that analysis by Orsat apparatus is on 'dry basis', i.e. water vapor is not found out.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

Reactive Systems

8.1.7 Enthalpy of formation:

Consider the steady flow combustion of carbon and oxygen to form CO2. Let the C and O2 enter the combustion chamber at 1 atm. pressure, 25 C, and let the products also leave at 1 atm. and 25 C. In this case, there will be heat transfer **out** of the combustion chamber, as shown below:

Measured value of heat transfer is -393522 kJ/kg mol of CO2 formed.

Applying the I Law to the reaction:

 $H_r + Q = H_p$ where H_r = enthalpy of reactants, H_p = enthalpy of products

i.e.
$$\sum_{\mathbf{r}} \mathbf{n}_{\mathbf{i}} \cdot \mathbf{h}_{\mathbf{i}} + \mathbf{Q} = \sum_{\mathbf{p}} \mathbf{n}_{\mathbf{e}} \cdot \mathbf{h}_{\mathbf{e}}$$

Now, enthalpy of elements in the standard reference state of 25 C, 1 atm is assigned the value of zero. So, in the above reaction $H_r = 0$. So, the energy eqn gives:

 $Q = H_p = -393522 \text{ kJ/kg}$ mol. Negative sign indicates an *exothermic reaction*, i.e. heat is released.

This is known as enthalpy of formation (h_{fi}) of CO2 at 25 C, 1 atm.

Remember that enthalpy of formation for all stable elements such as C, H2, O2, N2 is zero. Enthalpy of formation for several compounds at 1 atm, 25 C, is given in the following Table: (Ref: [9], TEST Software)

Table G-1,	Reaction	s: Enthal	py of Fo	rmation	Table
	SI Units		English Un	its	
Molar Specific E	nthalpy of F	ormation, G	ibbs Functi	ion of Form	nation, and
	Absolute	Entropy at	25°C, 1 atr	n	
Substanco	Formula	\overline{M}	\overline{h}_{f}°	\overline{g}_{f}^{o}	<u>s</u> °
Substance	(Phase)	kg/kmol	kJ/kmol	kJ/kmol	kJ/kmol∙K
Carbon	C(s)	12.01	0	0	5.74
Hydrogen	H2(g)	2.02	0	0	130.68
Nitrogen	N2(g)	28.01	0	0	191.61
Oxygen	O2(g)	32.00	0	0	205.04
Carbon Monoxide	CO(g)	28.01	-110,530	-137,150	197.65
Carbon Dioxide	CO2(g)	44.00	-393,520	-394,360	213.80
Water Vapor	H20(g)	18.02	-241,820	-228,590	188.83
Water	H20(I)	18.02	-285,820	-237,180	69.92
Hydrogen Peroxide	H2O2(g)	34.02	-136,310	-105,600	232.63
Ammonia	NH3(g)	17.03	-46,190	-16,590	192.33
Methane	CH4(g)	16.04	-74,850	-50,790	186.16
Acetylene	C2H2(g)	26.04	226,730	209,170	200.85
Ethylene	C2H4(g)	28.05	52,280	68,120	219.83
Ethane	C2H6(g)	30.07	-84,680	-32,890	229.49
Propylene	C3H6(g)	42.05	20,410	62,720	266.94
Propane	C3H8(g)	44.10	-103,850	-23,490	269.91
n-Butane	C4H10(g)	58.12	-126,150	-15,710	310.12
n-Octane(I)	C8H18(I)	114.23	-249,950	6,610	360.79
n-Octane(g)	C8H18(g)	114.23	-208,450	16,530	466.73
n-Dodecane	C12H26(g)	170.22	-291,010	50,150	622.83
Benzene	C6H6(g)	78.11	82,930	129,660	269.20
Methyl Alcohol	CH3OH(g)	32.04	-200,670	-162,000	239.70
Methyl Alcohol	CH3OH(I)	32.04	-238,660	-166,360	126.80
Ethyl Alcohol	C2H5OH(g)	46.07	-235,310	-168,570	282.59
Ethyl Alcohol	C2H5OH(I)	46.07	-277,690	-174,890	160.70
Oxygen (atomic)	O(g)	16.00	249,190	231,770	161.06
Hydrogen (atomic)	H(g)	1.01	218,000	203,290	114.72
Nitrogen (atomic)	N(g)	14.01	472,650	455,510	153.30
Hydroxyl (radical)	OH(g)	17.01	39,460	34,290	183.70

8.1.8 Evaluating Enthalpy:

We have seen that enthalpy of formation was defined when a compound is formed at the 'reference state' of 1atm, 25 C. In most cases, however, reactants and products are not at reference state, and then the specific enthalpy of a compound is determined by adding the specific enthalpy change Δh between the standard state and the state in question to the enthalpy of formation. i.e.

$$\mathbf{h}_{\mathrm{T},p} = \mathbf{h}_{\mathrm{f0}} + \left(\mathbf{h}(\mathrm{T},p) - \mathbf{h}(\mathrm{T}_{\mathrm{ref}},p_{\mathrm{ref}})\right) = \mathbf{h}_{\mathrm{f0}} + \Delta \mathbf{h}$$

Urieli has calculated the values of Δ h for CO2, CO, H2O, N2, and O2, based on data from TEST software, and those Tables are given below [Ref. 10]. They will be useful to calculate the enthalpies at conditions other than the standard or reference state.

Temp. [K]	Enthalpy [kJ/kmol]	Temp. [K]	Enthalpy [kJ/kmol]	Temp. [K]	Enthalpy [kJ/kmol]	Temp. [K]	Enthalpy [kJ/kmol]
298	0						
300	67	650	15310	1000	33432	1700	73492
310	443	660	15796	1020	34495	1720	74679
320	822	670	16284	1040	35589	1740	75867
330	1206	680	16774	1060	36687	1760	77056
340	1595	690	17267	1080	37789	1780	78248
350	1987	700	17761	1100	38894	1800	79442
360	2384	710	18258	1120	40005	1820	80636
370	2784	720	18757	1140	41120	1840	81832
380	3188	730	19258	1160	42238	1860	83030
390	3596	740	19760	1180	43060	1880	84229
400	4008	750	20265	1200	44484	1900	85429
410	4423	760	19771	1220	45613	1920	86631
420	4842	770	21280	1240	46744	1940	87833
430	4964	780	21790	1260	47880	1960	89037
440	5690	790	21801	1280	49017	1980	90242
450	6119	800	22815	1300	50158	2000	91440
460	6552	810	23330	1320	51302	2050	94471

Ideal Gas Enthalpy of Carbon Dioxide (CO2) Enthalpy of Formation: -393,522 (kJ/kmol)

Molecular Weight: 44.01 (kg/kmol)

Applied Thermodynamics: Software Solutions: Part-IV (Psychrometrics, Reactive systems)

470	6987	820	23848	1340	52449	2100	97500
480	7427	830	24366	1360	53599	2150	100534
490	7868	840	24887	1380	54752	2200	103575
500	8314	850	25409	1400	55907	2250	106620
510	8762	860	25932	1420	57063	2300	109671
520	9212	870	26457	1440	58222	2350	112727
530	9665	880	26983	1460	59384	2400	115788
540	10121	890	27512	1480	57547	2450	118855
550	10581	900	28041	1500	61714	2500	121926
560	11043	910	28571	1520	62882	2550	125004
570	11506	920	29103	1540	64053	2600	128085
580	11973	930	29636	1560	65226	2650	131169
590	12443	940	30171	1580	67403	2700	134256
600	12916	950	30706	1600	67580	2750	137349
610	13390	960	31243	1620	68759	2800	140444
620	13867	970	31781	1640	69939	2850	143544
630	14345	980	32321	1660	71122	2900	146645
640	14826	990	32862	1680	72306	3000	152862

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**

Click on the ad to read more

152 Download free eBooks at bookboon.com

Ideal Gas Enthalpy of Carbon Monoxide (CO)

Enthalpy of Formation: -110,527 (kJ/kmol)

Molecular Weight: 28.01 (kg/kmol)

Temp. [K]	Enthalpy [kJ/kmol]	Temp. [K]	Enthalpy [kJ/kmol]	Temp. [K]	Enthalpy [kJ/kmol]	Temp. [K]	Enthalpy [kJ/kmol]
298	0						
300	54	650	10472	1000	21686	1700	45940
310	345	660	10780	1020	22351	1720	46654
320	637	670	11089	1040	23019	1740	47370
330	928	680	11399	1060	23688	1760	48087
340	1220	690	11709	1080	24360	1780	48804
350	1512	700	12021	1100	25033	1800	49522
360	1804	710	12333	1120	25708	1820	50241
370	2096	720	12646	1140	26385	1840	50960
380	2389	730	12959	1160	27064	1860	51682
390	2682	740	13274	1180	27737	1880	52403
400	2975	750	13589	1200	28426	1900	53125
410	3269	760	13904	1220	29111	1920	53847
420	3563	770	14221	1240	29797	1940	54569
430	3857	780	14539	1260	30485	1960	55292
440	4152	790	14857	1280	31175	1980	56015
450	4447	800	15175	1300	31865	2000	56739
460	4743	810	15495	1320	32557	2050	58555
470	5020	020	15014	12.40	22250	2100	60275
4/0	5039	820	15814	1340	33250	2100	60375
480	5330	830	16134	1300	24640	2150	62195
490	5055	840	10455	1580	34640	2200	64019
500	5931	850	16777	1400	35358	2250	65847
510	6229	860	17099	1420	36038	2300	6/6/6
520	6928	8/0	17422	1440	30/39	2350	71246
530	7128	880	1//40	1400	37441	2400	73183
540	7128	000	180/1	1400	20040	2450	75000
550	/428	900	18397	1500	38848	2500	/5023
560	7730	910	18723	1520	39553	2550	76868
570	8032	920	19050	1540	40259	2600	78714
580	8334	930	19377	1560	40966	2650	80561
590	8638	940	19706	1580	41675	2700	82408
600	8942	950	20034	1600	42384	2750	84261
610	9246	960	20364	1620	43094	2800	86115
620	9552	970	20693	1640	43803	2850	87970
630	9858	980	21024	1660	44515	2900	89826
640	10164	990	21355	1680	45226	3000	93541

Ideal Gas Enthalpy of Water Vapor (H2O) Enthalpy of Formation: -241,826 (kJ/kmol) Molecular Weight: 18.015 (kg/kmol)

Temp, [K]	Enthalpy		Temp.	Enthalpy		Temp.	Enthalpy		Temp.	Enthalpy
	[kJ/kmol]		[K]	[kJ/kmol]		[K]	[kJ/kmol]		[K]	[kJ/kmol]
298	0									
300	62		650	12326		1000	25978		1700	57685
310	398		660	12696		1020	26805		1720	58663
320	735		670	13066		1040	27638		1740	59646
330	1072		680	13438		1060	28476		1760	60631
340	1410		690	13810		1080	29319		1780	61619
350	1748		700	14184		1100	30167		1800	62609
360	2088		710	14560		1120	31019		1820	63603
370	2427		720	14936		1140	31876		1840	64602
380	2768		730	15314		1160	32738		1860	65602
390	3110		740	15693		1180	33605		1880	66607
400	3452		750	16073		1200	34476		1900	67613
410	3795		760	16454		1220	35352		1920	68623
420	4139		770	16837		1240	36233		1940	69636
430	4484		780	17221		1260	37118		1960	70651
440	4830		790	17606		1280	38008		1980	71669
450	5176		800	17992		1300	38903		2000	72689
460	5524		810	18380		1320	39803		2050	75252
			ii			ii			i	
								-		1
470	5873		820	18768	ļ	1340	40708	ļ	2100	77849
480	6222		830	19158		1360	41617		2150	80426
490	6573		840	19550		1380	42530		2200	83036
500	6924		850	19942	[1400	43447	[2250	85658
510	7277		860	20336	[1420	44369	[2300	88295
520	7630		870	20731	[1440	45294	[2350	90942
			1		Г	1)	Г	1	
		,								
530	7985		880	21128		1460	46224		2400	93604
540	8341		890	21525		1480	47158		2450	96279
550	8697	[900	21924		1500	48095		2500	98964
560	9055	[910	22324		1520	49038		2550	101661
570	9414	[920	22725		1540	49984		2600	104379
580	9774	[930	23128		1560	50934		2650	107087
590	10135	[940	23532		1580	51888		2700	109813
600	10498	[950	23937		1600	52844		2750	112549
610	10861	ĺ	960	24343	j	1620	53805		2800	115294
620	11226	ĺ	970	24749	İ	1640	54771		2850	118048
630	11591	ĺ	980	25157	İ	1660	55739		2900	120813
640	11958	[990	25568	İ	1680	56710		3000	126360

Ideal Gas Enthalpy of Nitrogen (N2) Enthalpy of Formation: 0 (kJ/kmol)

Molecular Weight: 28.013 (kg/kmol)

Temp. [K]	Enthalpy		Temp.	Enthalpy	Temp.	Enthalpy []a I/amati	Temp.	Enthalpy
208	[KJ/KIIO]		[K]	[KJ/KIIIOI]	[K]	[KJ/KIIIOI]	[L]	[KJ/KIIO]
298	0		r					
300	54		650	10406	1000	missing	1700	45430
310	345		660	10711	1020	22115	1720	46138
320	637		670	11016	1040	22773	1740	46847
330	928		680	11322	1060	23432	1760	missing
340	1219		690	11628	1080	24093	1780	48269
350	1511		700	11935	1100	24757	1800	48982
360	1802		710	12243	1120	25423	1820	49694
370	2094		720	12551	1140	26091	1840	50406
380	2386		730	12860	1160	26761	1860	51121
390	2678		740	13170	1180	27435	1880	51835
400	2971		750	13480	1200	28108	1900	52551
410	3263		760	13791	1220	28783	1920	53267
420	3556		770	14103	1240	29460	1940	53985
430	3849		780	14416	1260	30138	1960	54712
440	4142		790	14729	1280	30819	1980	55421
450	4436		800	15045	1300	31501	2000	56141
460	4730		810	15358	1320	32184	2050	57943
			;;				<u> </u>	
470	5024	Γ	820	15673	1340	32870	2100	59748
480	5319	Ī	830	15989	1360	33558	2150	61557
490	5616	Ī	840	16305	1380	34246	2200	63371
500	5912	Γ	850	16623	1400	34936	2250	65187
510	6207	Ĺ	860	16941	1420	35626	2300	67007
520	6503	ľ	870	17259	1440	36319	2350	68827
530	6800	Ī	880	17579	1460	37013	2400	70651
540	7097	Ī	890	17899	1480	37708	2450	72480
550	7395	Ē	900	18221	1500	38404	2500	74312
560	7694	Ī	910	18541	1520	39102	2550	76145
570	7993	Ī	920	18863	1540	39801	2600	77981
580	8293	Ĺ	930	19185	1560	40499	2650	79819
590	8593	Ī	940	19509	1580	41200	2700	81659
600	missing	ſ	950	19832	1600	41902	2750	83502
610	missing	Ē	960	20157	1620	42606	2800	85345
620	missing	Γ	970	20482	1640	43311	2850	87190
630	9799	Ē	980	20807	1660	44017	2900	89036
640	10103	Ī	990	21134	1680	44724	3000	92738

Ideal Gas Enthalpy of Oxygen (O2) Enthalpy of Formation: 0 (kJ/kmol)

Molecular Weight: 32 (kg/kmol)

Temp. [K]	Enthalpy	Temp.	Enthalpy	Temp.	Enthalpy	Temp.	Enthalpy
	[kJ/kmol]	[K]	[kJ/kmol]	[K]	[kJ/kmol]	[K]	[kJ/kmol]
298	0						
300	54	650	10862	1000	missing	1700	47970
310	348	660	11188	1020	missing	1720	48712
320	643	670	11515	1040	24107	1740	49454
330	938	680	11842	1060	24808	1760	missing
340	1234	690	12172	1080	25512	1780	missing
350	1531	700	12502	1100	26217	1800	51689
360	1829	710	12832	1120	26924	1820	52436
370	2127	720	13163	1140	27632	1840	53184
380	2427	730	13495	1160	28341	1860	53934
390	2727	740	13828	1180	29052	1880	54683
400	3029	750	14162	1200	29765	1900	55434
ii		·		·			
410	3330	760	14496	1220	30480	1920	56186
420	3632	770	14831	1240	31195	1940	56938
430	3936	780	15168	1260	31912	1960	57692
440	4241	790	15504	1280	32630	1980	58445
450	4546	800	15841	1300	33351	2000	59199
460	4843	810	16179	1320	34071	2050	61090
470	5160	820	16517	1340	34793	2100	62986
480	5469	830	16855	1360	35516	2150	64891
490	5778	840	17195	1380	36241	2200	66802
500	6088	850	17536	1400	36966	2250	68715
510	6400	860	17877	1420	37692	2300	70634
520	6713	870	18217	1440	38420	2350	72561
530	7026	880	18560	1460	39149	2400	74492
540	7340	890	18902	1480	39879	2450	76430
550	7656	900	19246	1500	40610	2500	78375
560	7972	910	19590	1520	41342	2550	80322
570	8289	920	19934	1540	42074	2600	82274
580	8608	930	20278	1560	42808	2650	84234
590	8927	940	20624	1580	43542	2700	86199
600	9247	950	20970	1600	44279	2750	88170
610	9568	960	21317	1620	45014	2800	90144
620	9890	970	21663	1640	45752	2850	92126
630	10213	980	22010	1660	46490	2900	94111
640	10537	990	22359	1680	47230	3000	98098

Alternatively:

Following Ideal gas tables can also be used, where the reference point is zero Kelvin: [Ref: 3]

```
TABLE A-22 Ideal Gas Properties of Air
```

	$T(\mathbf{K})$, h and $u(\mathbf{k}J/\mathbf{kg})$, s ^o (kJ/kg · K)													
			1.1	when $\Delta s = 0^1$						when Δ	s = 0			
T	h	м	s°	Pr	v,	T	h	ш	s°	p _r	v,			
200	199.97	142.56	1.29559	0.3363	1707.	450	451.80	322.62	2.11161	5.775	223.6			
210	209.97	149.69	1.34444	0.3987	1512.	460	462.02	329.97	2.13407	6.245	211.4			
220	219.97	156.82	1.39105	0.4690	1346.	470	472.24	337.32	2.15604	6.742	200.1			
230	230.02	164.00	1.43557	0.5477	1205.	480	482.49	344.70	2.17760	7.268	189.5			
240	240.02	171.13	1.47824	0.6355	1084.	490	492.74	352.08	2.19876	7.824	179.7			
250	250.05	178.28	1.51917	0.7329	979.	500	503.02	359.49	2.21952	8.411	170.6			
260	260.09	185.45	1.55848	0.8405	887.8	510	513.32	366.92	2.23993	9.031	162.1			
270	270.11	192.60	1.59634	0.9590	808.0	520	523.63	374.36	2.25997	9.684	154.1			
280	280.13	199.75	1.63279	1.0889	738.0	530	533.98	381.84	2.27967	10.37	146.7			
285	285.14	203.33	1.65055	1.1584	706.1	540	544.35	389.34	2.29906	11.10	139.7			
290	290.16	206.91	1.66802	1.2311	676.1	550	554.74	396.86	2.31809	11.86	133.1			
295	295.17	210.49	1.68515	1.3068	647.9	560	565.17	404.42	2.33685	12.66	127.0			
300	300.19	214.07	1.70203	1.3860	621.2	570	575.59	411.97	2.35531	13.50	121.2			
305	305.22	217.67	1.71865	1.4686	596.0	580	586.04	419.55	2.37348	14.38	115.7			
310	310.24	221.25	1.73498	1.5546	572.3	590	596.52	427.15	2.39140	15.31	110.6			
315	315.27	224.85	1.75106	1.6442	549.8	600	607.02	434.78	2.40902	16.28	105.8			
320	320.29	228.42	1.76690	1.7375	528.6	610	617.53	442.42	2.42644	17.30	101.2			
325	325.31	232.02	1.78249	1.8345	508.4	620	628.07	450.09	2.44356	18.36	96.92			
330	330.34	235.61	1.79783	1.9352	489.4	630	638.63	457.78	2.46048	19.84	92.84			
340	340.42	242.82	1.82790	2.149	454.1	640	649.22	465.50	2.47716	20.64	88.99			
350	350.49	250.02	1.85708	2.379	422.2	650	659.84	473.25	2.49364	21.86	85.34			
360	360.58	257.24	1.88543	2.626	393.4	660	670.47	481.01	2.50985	23.13	81.89			
370	370.67	264.46	1.91313	2.892	367.2	670	681.14	488.81	2.52589	24.46	78.61			
380	380.77	271.69	1.94001	3.176	343.4	680	691.82	496.62	2.54175	25.85	75.50			
390	390.88	278.93	1.96633	3.481	321.5	690	702.52	504.45	2.55731	27.29	72.56			
400	400.98	286.16	1.99194	3.806	301.6	700	713.27	512.33	2.57277	28.80	69.76			
410	411.12	293.43	2.01699	4.153	283.3	710	724.04	520.23	2.58810	30.38	67.07			
420	421.26	300.69	2.04142	4.522	266.6	720	734.82	528.14	2.60319	32.02	64.53			
430	431.43	307.99	2.06533	4.915	251.1	730	745.62	536.07	2.61803	33.72	62.13			
440	441.61	315.30	2.08870	5.332	236.8	740	756.44	544.02	2.63280	35.50	59.82			

TABLE A-22 (Continued)

				1(14)	, it and infrast	-D/1 - (-	and it's				
				when a	$\Delta s = 0^1$					when a	$\Delta s = 0$
Т	h	и	s	Pr	U,	T	h	и	<i>s</i> °	p,	v,
750	767.29	551.99	2.64737	37.35	57.63	1300	1395.97	1022.82	3.27345	330.9	11.275
760	778.18	560.01	2.66176	39.27	55.54	1320	1419.76	1040.88	3.29160	352.5	10.747
770	789.11	568.07	2.67595	41.31	53.39	1340	1443.60	1058.94	3.30959	375.3	10.247
780	800.03	576.12	2.69013	43.35	51.64	1360	1467.49	1077.10	3.32724	399.1	9.780
790	810.99	584.21	2.70400	45.55	49.86	1380	1491.44	1095.26	3.34474	424.2	9.337
800	821.95	592.30	2.71787	47.75	48.08	1400	1515.42	1113.52	3.36200	450.5	8.919
820	843.98	608.59	2.74504	52.59	44.84	1420	1539.44	1131.77	3.37901	478.0	8.526
840	866.08	624.95	2.77170	57.60	41.85	1440	1563.51	1150.13	3.39586	506.9	8.153
860	888.27	641.40	2.79783	63.09	39.12	1460	1587.63	1168.49	3.41247	537.1	7.801
880	910.56	657.95	2.82344	68.98	36.61	1480	1611.79	1186.95	3.42892	568.8	7.468
900	932.93	674.58	2.84856	75.29	34.31	1500	1635.97	1205.41	3.44516	601.9	7.152
920	955.38	691.28	2.87324	82.05	32.18	1520	1660.23	1223.87	3.46120	636.5	6.854
940	977.92	708.08	2.89748	89.28	30.22	1540	1684.51	1242.43	3.47712	672.8	6.569
960	1000.55	725.02	2.92128	97.00	28.40	1560	1708.82	1260.99	3.49276	710.5	6.301
980	1023.25	741.98	2.94468	105.2	26.73	1580	1733.17	1279.65	3.50829	750.0	6.046
1000	1046.04	758.94	2.96770	114.0	25.17	1600	1757.57	1298.30	3.52364	791.2	5.804
1020	1068.89	776.10	2.99034	123.4	23.72	1620	1782.00	1316.96	3.53879	834.1	5.574
1040	1091.85	793.36	3.01260	133.3	22.39	1640	1806.46	1335.72	3.55381	878.9	5.355
1060	1114.86	810.62	3.03449	143.9	21.14	1660	1830.96	1354.48	3.56867	925.6	5.147
1080	1137.89	827.88	3.05608	155.2	19.98	1680	1855.50	1373.24	3.58335	974.2	4.949
1100	1161.07	845.33	3.07732	167.1	18.896	1700	1880.1	1392.7	3.5979	1025	4.761
1120	1184.28	862.79	3.09825	179.7	17.886	1750	1941.6	1439.8	3.6336	1161	4.328
1140	1207.57	880.35	3.11883	193.1	16.946	1800	2003.3	1487.2	3.6684	1310	3.944
1160	1230.92	897.91	3.13916	207.2	16.064	1850	2065.3	1534.9	3.7023	1475	3.601
1180	1254.34	915.57	3.15916	222.2	15.241	1900	2127.4	1582.6	3.7354	1655	3.295
1200	1277.79	933.33	3.17888	238.0	14.470	1950	2189.7	1630.6	3.7677	1852	3.022
1220	1301.31	951.09	3.19834	254.7	13.747	2000	2252.1	1678.7	3.7994	2068	2.776
1240	1324.93	968.95	3.21751	272.3	13.069	2050	2314.6	1726.8	3.8303	2303	2.555
1260	1348.55	986.90	3.23638	290.8	12.435	2100	2377.4	1775.3	3.8605	2559	2.356
1280	1372.24	1004.76	3.25510	310.4	11.835	2150	2440.3	1823.8	3.8901	2837	2.175
						2200	2503.2	1872.4	3.9191	3138	2.012
						2250	2566.4	1921.3	3.9474	3464	1.864

TABLE A-23 Ideal Gas Properties of Selected Gases

	$T(\mathbf{K}), h \text{ and } \overline{u}(kJ/kmol), \overline{s}^{*}(kJ/kmol - \mathbf{K})$															
	Carbo $(\bar{h}_{f}^{o} = -$	on Dioxide, -393,520 k	, CO ₂ J/kmol)	Carbon $(\bar{h}_{f}^{\circ} = -$	n Monoxia 110,530 I	ie, CO J/kmol)	$\overline{h}_{f}^{\circ} = -$	ter Vapor, I -241,820 k	I ₂ O J/kmol)		Oxygen, O = 0 kJ/kr	nol)	(h ^o _f	litrogen, N = 0 kJ/ki	N ₂ mol)	
Τ	\overline{h}	ū	<u>5</u> °	\overline{h}	ū	<u>5</u> 0	\overline{h}	ū	<u>s</u> °	h	ū	50	h	ū	30	Т
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
220	6,601	4,772	202.966	6,391	4,562	188.683	7,295	5,466	178.576	6,404	4,575	196.171	6,391	4,562	182.638	220
230	6,938	5,026	204.464	6,683	4,771	189.980	7,628	5,715	180.054	6,694	4,782	197.461	6,683	4,770	183.938	230
240	7,280	5,285	205.920	6,975	4,979	191.221	7,961	5,965	181.471	6,984	4,989	198.696	6,975	4,979	185.180	240
250	7,627	5,548	207.337	7,266	5,188	192.411	8,294	6,215	182.831	7,275	5,197	199.885	7,266	5,188	186.370	250
260	7,979	5,817	208.717	7,558	5,396	193.554	8,627	6,466	184.139	7,566	5,405	201.027	7,558	5,396	187.514	260
270	8,335	6,091	210.062	7,849	5,604	194.654	8,961	6,716	185.399	7,858	5,613	202.128	7,849	5,604	188.614	270
280	8,697	6,369	211.376	8,140	5,812	195.173	9,296	6,968	186.616	8,150	5,822	203.191	8,141	5,813	189.673	280
290	9,063	6,651	212.660	8,432	6,020	196.735	9,631	7,219	187.791	8,443	6,032	204.218	8,432	6,021	190.695	290
298	9,364	6,885	213.685	8,669	6,190	197.543	9,904	7,425	188.720	8,682	6,203	205.033	8,669	6,190	191.502	298
300	9,431	6,939	213.915	8,723	6,229	197.723	9,966	7,472	188.928	8,736	6,242	205.213	8,723	6,229	191.682	300
310	9,807	7,230	215.146	9,014	6,437	198.678	10,302	7,725	190.030	9,030	6,453	206.177	9,014	6,437	192.638	310
320	10,186	7,526	216.351	9,306	6,645	199.603	10,639	7,978	191.098	9,325	6,664	207.112	9,306	6,645	193.562	320
330	10,570	7,826	217.534	9,597	6,854	200.500	10,976	8,232	192.136	9,620	6,877	208.020	9,597	6,853	194.459	330
340	10,959	8,131	218.694	9,889	7,062	201.371	11,314	8,487	193.144	9,916	7,090	208.904	9,888	7,061	195.328	340
350	11,351	8,439	219.831	10,181	7,271	202.217	11,652	8,742	194.125	10,213	7,303	209.765	10,180	7,270	196.173	350
360	11,748	8,752	220.948	10,473	7,480	203.040	11,992	8,998	195.081	10,511	7,518	210.604	10,471	7,478	196.995	360
370	12,148	9,068	222.044	10,765	7,689	203.842	12,331	9,255	196.012	10,809	7,733	211.423	10,763	7,687	197.794	370
380	12,552	9,392	223.122	11,058	7,899	204.622	12,672	9,513	196.920	11,109	7,949	212.222	11,055	7,895	198.572	380
390	12,960	9,718	224.182	11,351	8,108	205.383	13,014	9,771	197.807	11,409	8,166	213.002	11,347	8,104	199.331	390
400	13,372	10,046	225.225	11,644	8,319	206.125	13,356	10,030	198.673	11,711	8,384	213.765	11,640	8,314	200.071	400
410	13,787	10,378	226.250	11,938	8,529	206.850	13,699	10,290	199.521	12,012	8,603	214.510	11,932	8,523	200,794	410
420	14,206	10,714	227.258	12,232	8,740	207.549	14,043	10,551	200.350	12,314	8,822	215.241	12,225	8,733	201.499	420
430	14,628	11,053	228.252	12,526	8,951	208.252	14,388	10,813	201.160	12,618	9,043	215.955	12,518	8,943	202.189	430
440	15,054	11,393	229.230	12,821	9,163	208.929	14,734	11,075	201.955	12,923	9,264	216.656	12,811	9,153	202.863	440
450	15,483	11,742	230.194	13,116	9,375	209.593	15,080	11,339	202.734	13,228	9,487	217.342	13,105	9,363	203.523	450
460	15,916	12,091	231.144	13,412	9,587	210.243	15,428	11,603	203.497	13,535	9,710	218.016	13,399	9,574	204.170	460
470	16,351	12,444	232.080	13,708	9,800	210.880	15,777	11,869	204.247	13,842	9,935	218.676	13,693	9,786	204.803	470
480	16,791	12,800	233.004	14,005	10,014	211.504	16,126	12,135	204.982	14,151	10,160	219.326	13,988	9,997	205.424	480

TADLE A 22 (Continued)

490	17,232	13,158	233.916	14,302	10,228	212.117	16,477	12,403	205.705	14,460	10,386	219.963	14,285	10,210	206.033	490
500	17,678	13,521	234.814	14,600	10,443	212.719	16,828	12,671	206.413	14,770	10,614	220.589	14,581	10,423	206.630	500
510	18,126	13,885	235.700	14,898	10,658	213.310	17,181	12,940	207.112	15,082	10,842	221.206	14,876	10,635	207.216	510
520	18,576	14,253	236.575	15,197	10,874	213.890	17,534	13,211	207.799	15,395	11,071	221.812	15,172	10,848	207.792	520
530	19,029	14,622	237.439	15,497	11,090	214.460	17,889	13,482	208.475	15,708	11,301	222.409	15,469	11,062	208.358	530
540	19,485	14,996	238.292	15,797	11,307	215.020	18,245	13,755	209.139	16,022	11,533	222.997	15,766	11,277	208.914	540
550	19,945	15,372	239.135	16,097	11,524	215.572	18,601	14,028	209.795	16,338	11,765	223.576	16,064	11,492	209.461	550
560	20,407	15,751	239.962	16,399	11,743	216.115	18,959	14,303	210.440	16,654	11,998	224.146	16,363	11,707	209.999	560
570	20,870	16,131	240.789	16,701	11,961	216.649	19,318	14,579	211.075	16,971	12,232	224.708	16,662	11,923	210.528	570
580	21,337	16,515	241.602	17,003	12,181	217.175	19.678	14,856	211.702	17,290	12,467	225.262	16,962	12,139	211.049	580
590	21,807	16,902	242.405	17,307	12,401	217.693	20,039	15,134	212.320	17,609	12,703	225.808	17,262	12,356	211.562	590

_						TIK). \overline{h} and \overline{u}	(J/kmol), 3	(kJ/kmol ·	K)						
	Carbo $(\bar{h}_{f}^{\circ} = -$	on Dioxide - 393,520 k	, CO ₂ J/kmol)	Carbo $(\bar{h}_{f}^{\circ} = -$	Carbon Monoxide, CO $\bar{h}_{1}^{o} = -110,530 \text{ kJ/kmol}$			Water Vapor, H ₂ O ($\bar{h}_1^o = -241,820 \text{ kJ/kmol}$)			Oxygen, O ₂ $(\bar{h}_{1}^{\circ} = 0 \text{ kJ/kmol})$			Nitrogen, N ₂ $(\overline{h}_{1}^{o} = 0 \text{ kJ/kmol})$		
Т	ħ	ū	50	h	ū	50	\overline{h}	ū	<u></u> 5°	\overline{h}	ū	50	ħ	ū	<u>5</u> °	Т
600	22,280	17,291	243.199	17,611	12,622	218.204	20,402	15,413	212.920	17,929	12,940	226.346	17,563	12,574	212.066	600
610	22,754	17,683	243.983	17,915	12,843	218.708	20,765	15,693	213.529	18,250	13,178	226.877	17,864	12,792	212.564	610
620	23,231	18,076	244.758	18,221	13,066	219.205	21,130	15,975	214.122	18,572	13,417	227.400	18,166	13,011	213.055	620
630	23,709	18,471	245.524	18,527	13,289	219.695	21,495	16,257	214.707	18,895	13,657	227.918	18,468	13,230	213.541	630
640	24,190	18,869	246.282	18,833	13,512	220.179	21,862	16,541	215.285	19,219	13,898	228.429	18,772	13,450	214.018	640
650	24,674	19,270	247.032	19,141	13,736	220.656	22,230	16,826	215.856	19,544	14,140	228.932	19,075	13,671	214.489	650
660	25,160	19,672	247,773	19,449	13,962	221.127	22,600	17,112	216.419	19,870	14,383	229.430	19,380	13,892	214.954	660
670	25,648	20,078	248.507	19,758	14,187	221.592	22,970	17,399	216.976	20,197	14,626	229.920	19,685	14,114	215.413	670
680	26,138	20,484	249.233	20,068	14,414	222.052	23,342	17,688	217.527	20,524	14,871	230.405	19,991	14,337	215.866	680
690	26,631	20,894	249.952	20,378	14,641	222.505	23,714	17,978	218.071	20,854	15,116	230.885	20,297	14,560	216.314	690
700	27,125	21,305	250.663	20,690	14,870	222.953	24,088	18,268	218.610	21,184	15,364	231.358	20,604	14,784	216.756	700
710	27,622	21,719	251.368	21,002	15,099	223.396	24,464	18,561	219.142	21,514	15,611	231.827	20,912	15,008	217.192	710
720	28,121	22,134	252.065	21,315	15,328	223.833	24,840	18,854	219.668	21,845	15,859	232.291	21,220	15,234	217.624	720
730	28,622	22,552	252.755	21,628	15,558	224.265	25,218	19,148	220.189	22,177	16,107	232.748	21,529	15,460	218.059	730
740	29,124	22,972	253.439	21,943	15,789	224.692	25,597	19,444	220.707	22,510	16,357	233.201	21,839	15,686	218.472	740
750	29,629	23,393	254.117	22,258	16,022	225.115	25,977	19,741	221.215	22,844	16,607	233.649	22,149	15,913	218.889	750
760	30,135	23,817	254.787	22,573	16,255	225.533	26,358	20,039	221.720	23,178	16,859	234.091	22,460	16,141	219.301	760
770	30,644	24,242	255.452	22,890	16,488	225.947	26,741	20,339	222.221	23,513	17,111	234.528	22,772	16,370	219.709	770
780	31,154	24,669	256.110	23,208	16,723	226.357	27,125	20,639	222.717	23,850	17,364	234.960	23,085	16,599	220.113	780
790	31,665	25,097	256.762	23,526	16,957	226.762	27,510	20,941	223.207	24,186	17,618	235.387	23,398	16,830	220.512	790
800	32,179	25,527	257.408	23,844	17,193	227.162	27,896	21,245	223.693	24,523	17,872	235.810	23,714	17,061	220.907	800
810	32,694	25,959	258.048	24,164	17,429	227.559	28,284	21,549	224.174	24,861	18,126	236.230	24,027	17,292	221.298	810
820	33,212	26,394	258.682	24,483	17,665	227.952	28,672	21,855	224.651	25,199	18,382	236.644	24,342	17,524	221.684	820
830	33,730	26,829	259.311	24,803	17,902	228.339	29,062	22,162	225.123	25,537	18,637	237.055	24,658	17,757	222.067	830
840	34,251	27,267	259.934	25,124	18,140	228.724	29,454	22,470	225.592	25,877	18,893	237.462	24,974	17,990	222.447	840

X≰ **RBS** Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

850	34,773	27,706	260.551	25,446	18,379	229,106	29,846	22,779	226.057	26,218	19,150	237.864	25,292	18,224	222.822	850
860	35,296	28,125	261.164	25,768	18,617	229,482	30,240	23,090	226.517	26,559	19,408	238.264	25,610	18,459	223.194	860
870	35,821	28,588	261.770	26.091	18,858	229.856	30,635	23,402	226.973	26,899	19,666	238.660	25,928	18,695	223.562	870
880	36,347	29,031	262.371	26,415	19,099	230.227	31,032	23,715	227.426	27,242	19,925	239.051	26,248	18,931	223.927	880
890	36,876	29,476	262.968	26,740	19,341	230.593	31,429	24,029	227.875	27,584	20,185	239.439	26,568	19,168	224.288	890
900	37,405	29,922	263.559	27,066	19,583	230.957	31,828	24,345	228.321	27,928	20,445	239.823	26,890	19,407	224.647	900
910	37,935	30,369	264.146	27,392	19,826	231.317	32,228	24,662	228.763	28,272	20,706	240.203	27,210	19,644	225.002	910
920	38,467	30,818	264.728	27,719	20,070	231.674	32,629	24,980	229.202	28,616	20,967	240.580	27,532	19,883	225.353	920
930	39,000	31,268	265.304	28,046	20,314	232.028	33,032	25,300	229.637	28,960	21,228	240.953	27,854	20,122	225.701	930
940	39,535	31,719	265.877	28,375	20,559	232.379	33,436	25,621	230.070	29,306	21,491	241.323	28,178	20,362	226.047	940
950	40,070	32,171	266.444	28,703	20,805	232.727	33,841	25,943	230.499	29,652	21,754	241.689	28,501	20,603	226.389	950
960	40,607	32,625	267.007	29,033	21,051	233.072	34,247	26,265	230.924	29,999	22,017	242.052	28,826	20,844	226.728	960
970	41,145	33,081	267.566	29,362	21,298	233.413	34,653	26,588	231.347	30,345	22,280	242.411	29,151	21,086	227.064	970
980	41,685	33,537	268.119	29,693	21,545	233.752	35,061	26,913	231.767	30,692	22,544	242.768	29,476	21,328	227.398	980
990	42,226	33,995	268,670	30.024	21.793	234,088	35,472	27,240	232,184	31.041	22,809	243.120	29,803	21.571	227.728	990

						T(K	(), \overline{h} and \overline{u}	kJ/kmol), 3	(kJ/kmol ·	K)						
	$Car (\bar{h}_{f}^{o} =$	bon Dioxid - 393,520	e, CO ₂ kJ/kmol)	Carbo $(\bar{h}_{f}^{o} = -$	n Monoxi - 110,530	de, CO kJ/kmol)	$\overline{h}_{f}^{\circ} = -$	ter Vapor, I - 241,820 k	I ₂ O J/kmol)	(h;	Oxygen, O = 0 kJ/kn	2 nol)		litrogen, N = 0 kJ/kn	2 nol)	
Т	h	ū	50	h	ū	50	h	ū	50	h	ū	50	ħ	ū	50	Т
1000	42,769	34,455	269.215	30,355	22,041	234.421	35,882	27,568	232.597	31,389	23,075	243.471	30,129	21,815	228.057	100
1020	43,859	35,378	270.293	31,020	22,540	235.079	36,709	28,228	233.415	32,088	23,607	244.164	30,784	22,304	228.706	102
1040	44,953	36,306	271.354	31,688	23,041	235.728	37,542	28,895	234.223	32,789	24,142	244.844	31,442	22,795	229.344	104
1060	46,051	37,238	272.400	32,357	23,544	236.364	38,380	29,567	235.020	33,490	24,677	245.513	32,101	23,288	229.973	106
1080	47,153	38,174	273.430	33,029	24,049	236.992	39,223	30,243	235.806	34,194	25,214	246.171	32,762	23,782	230.591	108
1100	48,258	39,112	274.445	33,702	24,557	237.609	40,071	30,925	236.584	34,899	25,753	246.818	33,426	24,280	231.199	110
1120	49,369	40,057	275.444	34,377	25,065	238.217	40,923	31,611	237.352	35,606	26,294	247.454	34,092	24,780	231.799	112
1140	50,484	41,006	276.430	35,054	25,575	238.817	41,780	32,301	238.110	36,314	26,836	248.081	34,760	25,282	232.391	114
1160	51,602	41,957	277.403	35,733	26,088	239.407	42,642	32,997	238.859	37,023	27,379	248.698	35,430	25,786	232.973	116
1180	52,724	42,913	278.362	36,406	26,602	239.989	43,509	33,698	239.600	37,734	27,923	249.307	36,104	26,291	233.549	118
1200	53,848	43,871	279.307	37,095	27,118	240.663	44,380	34,403	240.333	38,447	28,469	249.906	36,777	26,799	234.115	120
1220	54,977	44,834	280.238	37,780	27,637	241.128	45,256	35,112	241.057	39,162	29,018	250.497	37,452	27,308	234.673	122
1240	56,108	45,799	281.158	38,466	28,426	241.686	46,137	35,827	241.773	39,877	29,568	251.079	38,129	27,819	235.223	124
1260	57,244	46,768	282.066	39,154	28,678	242.236	47,022	36,546	242.482	40,594	30,118	251.653	38,807	28,331	235.766	126
1280	58,381	47,739	282.962	39,884	29,201	242.780	47,912	37,270	243.183	41,312	30,670	252.219	39,488	28,845	236.302	128
1300	59,522	48,713	283.847	40,534	29,725	243.316	48,807	38,000	243.877	42,033	31,224	252.776	40,170	29,361	236.831	130
1320	60,666	49,691	284.722	41,266	30,251	243.844	49,707	38,732	244.564	42,753	31,778	253.325	40,853	29,878	237.353	132
1340	61,813	50,672	285.586	41,919	30,778	244.366	50,612	39,470	245.243	43,475	32,334	253.868	41,539	30,398	237.867	134
1360	62,963	51,656	286.439	42,613	31,306	244.880	51,521	40,213	245.915	44,198	32,891	254.404	42,227	30,919	238.376	130
380	04,110	52,045	287.283	43,309	31,830	245.388	52,434	40,960	240.582	44,923	33,449	254.932	42,915	31,441	238.878	138
1400	65,271	53,631	288.106	44,007	32,367	245.889	53,351	41,711	247.241	45,648	34,008	255.454	43,605	31,964	239.375	140
1420	66,427	54,621	288.934	44,707	32,900	246.385	54,273	42,466	247.895	46,374	34,567	255.968	44,295	32,489	239.865	142
1440	67,586	55,614	289.743	45,408	33,434	246.876	55,198	43,226	248.543	47,102	35,129	256.475	44,988	33,014	240.350	144
1460	68,/48	57,609	290.542	40,110	33,9/1	247.300	57,062	43,989	249.185	47,851	35,692	250.978	45,682	33,343	240.827	140
	0,,11	57,000	271.355	40,015	54,000	247.007	57,002	44,750	249.020	40,501	50,250	231.414	10,577	54,071	241.501	140
0	71,078	58,606	292.114	47,517	35,046	248.312	57,999	45,528	250.450	49,292	36,821	257.965	47,073	34,601	241.768	
	72,246	59,609	292.888	48,222	35,584	248.778	58,942	46,304	251.074	50,024	37,387	258.450	4/,//1	35,133	242.228	
	73,417	61,620	292.654	48,928	30,124	249.240	59,888	47,084	251.095	51,400	37,952	258.928	48,470	35,005	242.683	
	76,767	62 620	294.411	49,033	30,003	249.095	61 702	47,808	252.305	52,224	30,520	259.402	49,108	36,197	243.137	
	10,101	02,030	295.101	50,544	51,201	230.147	01,792	48,033	252.912	52,224	39,088	239.870	49,809	30,732	243.383	
0	76,944	63,741	295.901	51,053	37,750	250.592	62,748	49,445	253.513	52,961	39,658	260.333	50,571	37,268	244.028	
0	78,123	64,653	296.632	51,763	38,293	251.033	63,709	52,240	254.111	53,696	40,227	260.791	51,275	37,806	244.464	
0	79,303	65,668	297.356	52,472	38,837	251.470	64,675	51,039	254.703	54,434	40,799	261.242	51,980	38,344	244.896	
0	80,486	66,592	298.072	53,184	39,382	251.901	65,643	51,841	255.290	55,172	41,370	261.690	52,686	38,884	245.324	
0	81,670	67,702	298.781	53,895	39,927	252.329	66,614	52,646	255.873	55,912	41,944	262.132	53,393	39,424	245.747	1
0	82,856	68,721	299.482	54,609	40,474	252.751	67,589	53,455	256.450	56,652	42,517	262.571	54,099	39,965	246.166	
0	84,043	69,742	300.177	55,323	41,023	253.169	68,567	54,267	257.022	57,394	43,093	263.005	54,807	40,507	246.580	
0	85,231	70,764	300.863	56,039	41.572	253,582	69,550	55.083	257.589	58,136	43.669	263,435	55,516	41.049	246,990	

TABLE A-23 (Continued)

						T(K	(), \overline{h} and \overline{u}	kJ/kmol), s	°(kJ/kmol	K)						
	$Carb (\bar{h}_{f}^{\circ} = -$	on Dioxide - 393,520 1	, CO ₂ J/kmol)	Carbo $(\bar{h}_{f}^{o} = -$	n Monoxi -110,530	de, CO kJ/kmol)	$\begin{array}{l} \text{O} & \text{Water Vapor, } \text{H}_2\text{O} \\ \text{nol}) & (\overline{h}_1^o = -241,820 \text{ kJ/kmol}) \end{array}$			(ħ°	Oxygen, O = 0 kJ/kr	nol)	(ħ°	litrogen, 1 = 0 kJ/k	N ₂ mol)	
Т	ħ	ū	30	ħ	ū	<u>5</u> 0	ħ	ū	50	ħ	ū	30	h	ū	<u>s</u> °	T
1760	86,420	71,787	301.543	56,756	42,123	253.991	70,535	55,902	258.151	58,800	44,247	263.861	56,227	41,594	247.396	1760
1780	87,612	72,812	302.271	57,473	42,673	254.398	71,523	56,723	258.708	59,624	44,825	264.283	56,938	42,139	247.798	1780
1800	88,806	73,840	302.884	58,191	43,225	254.797	72,513	57,547	259.262	60,371	45,405	264.701	57,651	42,685	248.195	1800
1820	90,000	74,868	303.544	58,910	43,778	255.194	73,507	58,375	259.811	61,118	45,986	265.113	58,363	43,231	248.589	1820
1840	91,196	75,897	304.198	59,629	44,331	255.587	74,506	59,207	260.357	61,866	46,568	265.521	59,075	43,777	248.979	1840
1860	92,394	76,929	304.845	60,351	44,886	255.976	75,506	60,042	260.898	62,616	47,151	265.925	59,790	44,324	249.365	1860
1880	93,593	77,962	305.487	61,072	45,441	256.361	76,511	60,880	261.436	63,365	47,734	266.326	60,504	44,873	249.748	1880
1900	94,793	78,996	306.122	61,794	45,997	256.743	77,517	61,720	261.969	64,116	48,319	266.722	61,220	45,423	250.128	1900
1920	95,995	80,031	306.751	62,516	46,552	257.122	78,527	62,564	262.497	64,868	48,904	267.115	61,936	45,973	250.502	1920
1940	97,197	81,067	307.374	63,238	47,108	257.497	79,540	63,411	263.022	65,620	49,490	267.505	62,654	46,524	250.874	1940
1960	98,401	82,105	307.992	63,961	47,665	257.868	80,555	64,259	263.542	66,374	50,078	267.891	63,381	47,075	251.242	1960
1980	99,606	83,144	308.604	64,684	48,221	258.236	81,573	65,111	264.059	67,127	50,665	268.275	64,090	47,627	251.607	1980
2000	100,804	84,185	309.210	65,408	48,780	258.600	82,593	65,965	264.571	67,881	51,253	268.655	64,810	48,181	251.969	2000
2050	103,835	86,791	310.701	67,224	50,179	259.494	85,156	68,111	265.838	69,772	52,727	269.588	66,612	49,567	252.858	2050
2100	106,864	89,404	312.160	69,044	51,584	260.370	87,735	70,275	267.081	71,668	54,208	270.504	68,417	50,957	253.726	2100
2150	109,898	92,023	313.589	70,864	52,988	261.226	90,330	72,454	268.301	73,573	55,697	271.399	70,226	52,351	254.578	2150
2200	112,939	94,648	314.988	72,688	54,396	262.065	92,940	74,649	269.500	75,484	57,192	272.278	72,040	53,749	255.412	2200
2250	115,984	97,277	316.356	74,516	55,809	262.887	95,562	76,855	270.679	77,397	58,690	273.136	73,856	55,149	256.227	2250
2300	119,035	99,912	317.695	76,345	57,222	263.692	98,199	79,076	271.839	79,316	60,193	273.981	75,676	56,553	257.027	2300
2350	122,091	102,552	319.011	78,178	58,640	264.480	100,846	81,308	272.978	81,243	61,704	274.809	77,496	57,958	257.810	2350
2400	125,152	105,197	320.302	80,015	60,060	265.253	103,508	83,553	274.098	83,174	63,219	275.625	79,320	59,366	258.580	2400
2450	128,219	107,849	321.566	81,852	61,482	266.012	106,183	85,811	275.201	85,112	64,742	276.424	81,149	60,779	259.332	2450
2500	131,290	110,504	322.808	83,692	62,906	266.755	108,868	88,082	276.286	87,057	66,271	277.207	82,981	62,195	260.073	2500
2550	134,368	113,166	324.026	85,537	64,335	267.485	111,565	90,364	277.354	89,004	67,802	277.979	84,814	63,613	260.799	2550
2600	137,449	115,832	325.222	87,383	65,766	268.202	114,273	92,656	278.407	90,956	69,339	278.738	86,650	65,033	261.512	2600
							•									
2650	140,533	118,500	326.396	89,230	67,197	268.905	116,991	94,958	279,441	92,916	70,883	279.485	88,488	66,455	262.213	2650
2700	143,620	121,172	327.549	91,077	68,628	269.596	119,717	97,269	280.462	94,881	72,433	280.219	90,328	67,880	262.902	2700
2750	146,713	123,849	328.684	92,930	70,066	270.285	122,453	99,588	281.464	96,852	73,987	280.942	92,171	69,306	263.577	2750
2800	149,808	126,528	329.800	94,784	71,504	270.943	125,198	101,917	282.453	98,826	75,546	281.654	94,014	70,734	264.241	2800
2850	152,908	129,212	330.896	96,639	72,945	271.602	127,952	104,256	283.429	100,808	77,112	282.357	95,859	72,163	264.895	2850
2900	156,009	131,898	331.975	98,495	74,383	272.249	130,717	106,605	284.390	102,793	78,682	283.048	97,705	73,593	265.538	2900
2950	159,117	134,589	333.037	100,352	75,825	272.884	133,486	108,959	285.338	104,785	80,258	283.728	99,556	75,028	266.170	2950
3000	162,226	137,283	334.084	102,210	77,267	273.508	136,264	111,321	286.273	106,780	81,837	284.399	101,407	76,464	266.793	3000
3050	165,341	139,982	335.114	104,073	78,715	274.123	139,051	113,692	287.194	108,778	83,419	285.060	103,260	77,902	267.404	3050
3100	168,456	142,681	336.126	105,939	80,164	274.730	141,846	116,072	288.102	110,784	85,009	285.713	105,115	79,341	268.007	3100
3150	171,576	145,385	337.124	107,802	81,612	275.326	144,648	118,458	288.999	112,795	86,601	286.355	106,972	80,782	268.601	3150
3200	174,695	148,089	338.109	109,667	83,061	275.914	147,457	120,851	289.884	114,809	88,203	286.989	108,830	82,224	269.186	3200
3250	177,822	150,801	339.069	111,534	84,513	276.494	150,272	123,250	290.756	116,827	89,804	287.614	110,690	83,668	269.763	3250

Another way is not to use the Tables, but calculate Δh as (cp . ΔT), cp being calculated from the formulas given in Thermodynamics Text books for CO2, CO, O2, N2 etc.

We have the following relations for cp (kJ/kmol) of some commonly required substances in chemical reactions, with temp T in Kelvin. [Ref. 11]:

$$cp_{CO2}(T) := (45.369 + 3.688 \cdot 10^{-3} \cdot T - 9.619 \cdot 10^{5} \cdot T^{-2}) kJ/kmol$$

$$cp_{CO}(T) := (28.068 + 4.631 \cdot 10^{-3} \cdot T - 0.258 \cdot 10^{5} \cdot T^{-2})$$
 kJ/kmol

 $cp_{H2O}(T) \coloneqq 28.85 + 12.055 \cdot 10^{-3} \cdot T + 1.066 \cdot 10^{5} \cdot T^{-2} \qquad kJ/kmol$

$$\begin{split} cp_{O2}(T) &:= \left(30.255 + 4.207 \cdot 10^{-3} \cdot T - 1.887 \cdot 10^{5} \cdot T^{-2} \right) & \text{kJ/kmol} \\ cp_{N2}(T) &:= 27.27 + 4.930 \cdot 10^{-3} \cdot T + 0.333 \cdot 10^{5} \cdot T^{-2} & \text{kJ/kmol} \\ cp_{H2}(T) &:= 27.012 + 3.509 \cdot 10^{-3} \cdot T + 0.69 \cdot 10^{5} \cdot T^{-2} & \text{kJ/kmol} \\ cp_{NH3}(T) &:= \left(29.747 + 25.108 \cdot 10^{-3} \cdot T - 1.546 \cdot 10^{5} \cdot T^{-2} \right) & \text{kJ/kmol} \\ cp_{CH4}(T) &:= \left(17.449 + 60.449 \cdot 10^{-3} \cdot T + 1.117 \cdot 10^{-6} \cdot T^{2} - 7.204 \cdot 10^{-9} \cdot T^{3} \right) & \text{kJ/kmol} \\ cp_{SO2}(T) &:= \left(47.381 + 6.66 \cdot 10^{-3} \cdot T - 8.439 \cdot 10^{5} \cdot T^{-2} \right) & \text{kJ/kmol} \\ Then: & \Delta h = \int_{T1}^{T2} cp(T) \, dT \end{split}$$

Also, following Table from [Ref: 3] gives some equations for cp:

		$\frac{\overline{c}_p}{\overline{R}} = \alpha + \beta T +$	$\gamma T^2 + \delta T^3 + \varepsilon T^4$		
200	T is	in K, equations va	lid from 300 to 10	00 K	
Gas	α	$\beta \times 10^{\circ}$	$\gamma \times 10^{\circ}$	$\delta \times 10^{\circ}$	$\varepsilon \times 10^{-2}$
CO	3.710	-1.619	3.692	-2.032	0.240
CO ₂	2.401	8.735	-6.607	2.002	0
H ₂	3.057	2.677	-5.810	5.521	-1.812
H ₂ O	4.070	-1.108	4.152	-2.964	0.807
O2	3.626	-1.878	7.055	-6.764	2.156
N ₂	3.675	-1.208	2.324	-0.632	-0.226
Air	3.653	-1.337	3.294	-1.913	0.2763
SO ₂	3.267	5.324	0.684	-5.281	2.559
CH ₄	3.826	-3.979	24.558	-22.733	6.963
C2H2	1.410	19.057	-24.501	16.391	-4.135
C_2H_4	1.426	11.383	7.989	-16.254	6.749
Monatomic					

"For monatomic gases, such as He, Ne, and Ar, \overline{c}_p is constant over a wide temperature range and is very nearly equal to $5/2 \overline{R}$.

Source: Adapted from K. Wark, *Thermodynamics*, 4th ed., McGraw-Hill, New York, 1983, as based on NASA SP-273, U.S. Government Printing Office, Washington, DC, 1971.

8.1.9 Enthalpy of combustion:

Enthalpy of combustion is defined as the difference between enthalpy of the products and the enthalpy of reactants when complete combustion occurs at a given temp and pressure. It is also known as 'heating value' and is expressed in kJ/kg or kJ/kg mol.

Note that *two heating values* are defined:

Higher Heating Value (HHV) or Higher Calorific Value (HCV) and Lower Heating Value (LHV) or Lower Calorific Value (LCV):

HCV is the heat transferred when H2O in the products is in *liquid state*.

LCV is the heat transferred in the reaction when H2O in the products is *in vapor state*. And:

 $LCV = HCV = m_{_{H2O}} \times h_{_{fg}}$

HCV is given by [Ref:6]:

$$HCV = \frac{1}{100} \left[35000 \cdot C + 143000 \cdot \left(H - \frac{O}{8} \right) + 9160 \cdot S \right] \qquad kJ/kg$$

where C, H, O and S are percentages of carbon, hydrogen, oxygen and sulphur.

$$LCV = HCV - \frac{9}{100} \cdot H \cdot 2460 \qquad kJ/kg$$

Values of enthalpy of combustion for some common hydrocarbon fuels at 25 C, 1 atm are give
below. [Ref: 9, TEST software]:

[Table G-2, Re	actions:	Heating	Values of C	òmmon F	uels	
	 Image: A start of the start of	SI Units		English Units			
	Propertie	es of Some	Common	Fuels and Hydro	carbons		
		Molar Mass	Density ¹	Enthalpy of Vaporization ²	Specific Heat ¹	Higher Heating Value ³	Lower Heating Value ⁴
Fuel (Phase)	Formula	kg/kmol	kg/L	kJ/kg	kJ/kg·K	kJ/kg	kJ/kg
		\overline{M}	ρ	Δh_{v}	c_p	HHV	LHV
Carbon(s)	С	12.01	2.000	-	0.708	32,800	32,800
Hydrogen(g)	H2	2.02	-	-	14.40	141,800	120,000
Carbon Monoxide(g) CO	28.01	-	-	1.05	10,100	10,100
Methane(g)	CH4	16.04	-	509	2.20	55,530	50,050
Methanol(I)	CH4O	32.04	0.790	1168	2.53	22,660	19,920
Acetylene(g)	C2H2	26.04	-	-	1.69	49,970	48,280
Ethane(g)	C2H6	30.07	-	172	1.75	51,900	47,520
Ethanol(I)	C2H6O	46.07	0.790	919	2.44	29,670	26,810
Propane(I)	СЗН8	44.10	0.500	420	2.77	50,330	46,340
Butane(I)	C4H10	58.12	0.579	362	2.42	49,150	45,370
1-Pentene(I)	C5H10	70.13	0.641	363	2.20	47,760	44,630
Isopentane(I)	C5H12	72.15	0.626	-	2.32	48,570	44,910
Benzene(I)	C6H6	78.11	0.877	433	1.72	41,800	40,100
Hexene(I)	C6H12	84.16	0.673	392	1.84	47,500	44,400
Hexane(I)	C6H14	86.18	0.660	366	2.27	48,310	44,740
Toluene(I)	C7H8	92.14	0.867	412	1.71	42,400	40,500
Heptane(I)	C7H16	100.20	0.684	365	2.24	48,100	44,600
Octane(I)	C8H18	114.23	0.703	363	2.23	47,890	44,430
Decane(I)	C10H22	142.29	0.730	361	2.21	47,640	44,240
Gasoline(I)	CnH1.87n	100 - 110	0.72 - 0.78	350	2.4	47,300	44,000
Light Diesel(I)	CnH1.8n	170	0.78 - 0.84	270	2.2	46,100	43,200
Heavy Diesel(I)	CnH1.7n	200	0.82 - 0.88	230	1.9	45,500	42,800
Natural Gas(g)	CnH3.8nN0.1n	18	-	-	2.0	50,000	45,000

1: 1 atm and 20°C.

2: At 25°C for liquid fuels, and at saturation temperature at 1 atm for gaseous fuels.

3: H₂O in liquid phase in products.

4: H₂O in vapor phase in products.

8.1.10 Adiabatic Flame temperature:

If the combustion occurs adiabatically, without work and heat transfers, then the I Law reduces to:

$$H_r = H_p$$

i.e.
$$\sum_{\mathbf{r}} \mathbf{n}_{\mathbf{i}} \cdot \mathbf{h}_{\mathbf{i}} = \sum_{\mathbf{p}} \mathbf{n}_{\mathbf{e}} \cdot \mathbf{h}_{\mathbf{e}}$$

i.e.
$$\sum_{\mathbf{r}} \mathbf{n}_{\mathbf{i}} \left(\mathbf{h}_{\mathbf{f}\mathbf{0}} + \Delta \mathbf{h} \right)_{\mathbf{i}} = \sum_{\mathbf{p}} \mathbf{n}_{\mathbf{e}} \left(\mathbf{h}_{\mathbf{f}\mathbf{0}} + \Delta \mathbf{h} \right)_{\mathbf{e}}$$

Here, the temp of products is known as '*Adiabatic Flame temp*', which is the max. temp achieved for given reactants. This is important in Gas turbines. Temp is controlled by adjusting the excess air supplied. Flame temp is a maximum for stoichiometric mixtures.

Since the temp of products is not known to start with, adiabatic flame temp has to be *calculated by trial and error* using the combustion tables given above.

In this connection, Urieli [Ref. 10] has given following suggestion:

"A quick approximation to the adiabatic flame temperature can be obtained by assuming that the products consist entirely of air. This approach was introduced to us by <u>Potter</u> and Somerton in their <u>Schaum's</u> <u>Outline of Thermodynamics for Engineers</u>, in which they assumed all the products to be N₂. We find it more convenient to use air assuming a representative value of the <u>Specific Heat Capacity of Air</u>: $C_{p,1000K} = 1.142 [kJ/kg.K]$."

ORACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

165

8.2 Problems solved with Mathcad:

Prob.8.2.1 Write combustion equations for C, H2, S and CH4 (i.e. Methane) for complete combustion and find out the amount of air required for complete combustion.

Mathcad Solution:

For Carbon:

 $C + O_2 = CO_2$ combustion eqn.

By volume: one mole of C + 1 mole of O2 = 1 mole of CO2, since combustion eqns are mole eqns.

By mass: 12 kg C + 32 kg O2 = 44 kg CO2

Therefore: 1 kg of C requires (32/12) = (8/3) kg of O2 for complete combustion

But, 1 kg of O2 is contained in 1/0.23 kg of air since air contains 23% oxygen by mass

Therefore: 1 kg of C requires (8/3)/0.23 = 11.5 kg of Air, for complete combustion

For Hydrogen:

 $2H_2 + O_2 = 2 \cdot H2O$ combustion eqn.

By volume: 2 mol of H2 + 1 mol of O2 = 2 mol of H2O, since combustion eqns are mole eqns.

By mass: 4 kg H2 + 32 kg O2 = 36 kg H2O

Therefore: 1 kg of H2 requires 8 kg of O2 for complete combustion

But, 1 kg of O2 is contained in 1/0.23 kg of air since air contains 23% oxygen by mass

Therefore: 1 kg of H2 requires (8/0.23) = 34.783 kg of Air, for complete combustion

Reactive Systems

For Sulphur:

 $S + O_2 = SO_2$ combustion eqn.

By volume: 1 mol of S + 1 mol of O2 = 1 mol of SO2, since combustion eqns are mole eqns.

By mass: 32 kg S + 32 kg O2 = 64 kg SO2

Therefore: 1 kg of S requires 1 kg of O2 for complete combustion

But, 1 kg of O2 is contained in 1/0.23 kg of air since air contains 23% oxygen by mass

Therefore: 1 kg of S requires (1/0.23) = 4.348 kg of Air, for complete combustion

For Mehane (CH4):

 $CH_4 + 2O_2 = CO_2 + 2 \cdot H2O$ combustion eqn.

By volume: 1 mol of CH4 + 2 mol of O2 = 1 mol of CO2 + 2 mol of H2O, since combustion eqns are mole eqns.

By mass: 16 kg CH4 + 64 kg O2 = 44 kg CO2 + 36 kg H2O

Therefore: 1 kg of CH4 requires 4 kg of O2 for complete combustion

But, 1 kg of O2 is contained in 1/0.23 kg of air since air contains 23% oxygen by mass

Therefore: 1 kg of CH4 requires (4/0.23) = 17.39 kg of Air, for complete combustion

Analysis by volume:

By volume: 1 mol of CH4 + 2 mol of O2 = 1 mol of CO2 + 2 mol of H2O, since combustion eqns are mole eqns.

i.e. 1 volume of CH4 + 2 volumes of O2 = 1 vol of CO2 + 2 vol of H2O

i.e. 1 m³ of CH4 + 2 m³ of O2 = 1 m³ of CO2 + 2 m³ of H2O

Now, since air contains 21% by volume of O2, we get:

1 m^3 of CH4 requires (2/0.21) = 9.524 m^3 of Air for complete combustion.

Prob.8.2.2 A sample of fuel has following percentage composition by weight: C = 84%, O2 = 3.5%, H2 = 10%, Ash = 1%, N2 = 1.5%. Determine: (i) stoichiometric AF ratio by mass (ii) if 20% excess air is supplied, find the percentage composition of dry flue gases by volume. [VTU]

Mathcad Solution:

Data: Considering 1 kg of fuel:

C := 0.84 H2 := 0.1 N2 := 0.015 O2 := 0.035 Ash := 0.01

Theoretical O2 required.... see problem 8.2.1:

For C:	$\mathbf{C} \cdot \frac{8}{3} = 2.24$	kg O2 per kg fuel
For H2:	$H2 \cdot 8 = 0.8$	kg O2 per kg fuel

Therefore: total O2 required: 2.24 + 0.8 = 3.04 kg O2 per kg fuel

Less: amount of O2 supplied by fuel= 0.035 kg

And, amount of theoretical O2 required to be supplied: 3.04 - 0.035 = 3.005 kg O2 per kg fuel

And, amount of theoretical O2 required to be supplied: 3.04 - 0.035 = 3.005 kg O2 per kg fuel

i.e. Amount of air to be supplied: $\frac{3.005}{0.23} = 13.065$ kg Air per kg fuel....Ans.

i.e. Stoichiometric AF ratio = 13.065 kg Air/kg fuel Ans.

Dry prodcts of combustion:

CO2: $C \cdot \frac{11}{3} = 3.08$ kg CO2 per kg fuel

N2: coming from air supplied + from fuel itself: 13.065-0.77 + 0.015 = 10.075 kg

Therefore, total dry products: CO2 + N2 = 3.08 + 10.075 = 13.155 kg

Then, mass analysis of dry products:

CO2:
$$\frac{3.08}{13.155} \cdot 100 = 23.413$$
 %

N2:
$$\frac{10.075}{13.155} \cdot 100 = 76.587 \%$$

If 20% excess air is supplied, then, products of combustion are:

CO2 = 3.08 kg

N2: comes from air supplied + from fuel: $13.065 \cdot 1.2 \cdot 0.77 + 0.015 = 12.087$ kg O2: comes only from excess air supplied: $13.065 \cdot 0.2 \cdot 0.23 = 0.601$ kg Therefore, total dry products formed per kg of fuel:

$$CO2 + N2 + O2 = 3.08 + 12.087 + 0.601 = 15.768$$
 kg

Then, mass analysis of dry products is:

N2:
$$\frac{12.087}{15.768} \cdot 100 = 76.655$$
 %

CO2:
$$\frac{3.08}{15.768} \cdot 100 = 19.533$$
 %

O2: $\frac{0.601}{15.768} \cdot 100 = 3.812$ %

Mass analysis is converted to volume analysis as follows:

- N2: proportional volume: $\frac{76.655}{28} = 2.738$
- CO2: proportional volume: $\frac{19.533}{44} = 0.444$

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on **+44 (0)20 7000 7573**.

* Figures taken from London Business School's Masters in Management 2010 employment report

Glick off

Applied Thermodynamics: Software Solutions: Part-IV (Psychrometrics, Reactive systems)

O2: proportional volume:
$$\frac{3.812}{32} = 0.119$$

Total proportional vol: 2.738 + 0.444 + 0.119 = 3.301

Therefore, percentage of dry products by volume:

N2:	$\frac{2.738}{3.301} \cdot 100 = 82.945$	%
CO2:	$\frac{0.444}{3.301} \cdot 100 = 13.45$	%
O2 :	$\frac{0.119}{3.301} \cdot 100 = 3.605$	%

Alternative method:

Consider 100 kg of fuel.

Convert the components to kmol and write down the combustion eqn.

Data:

Considering 100 kg of fuel. It contains:

C = 84 H2 = 10 N2 = 1.5 O2 = 3.5 Ash = 1 kg

Converting to kmols:

$$N_{C} := \frac{84}{12}$$
 i.e. $N_{C} = 7$ kmol

$$N_{H2} := \frac{10}{2}$$
 i.e. $N_{H2} = 5$ kmol

- ${\rm N}_{N2} := \frac{1.5}{28} \quad \mbox{i.e.} \qquad {\rm N}_{N2} = 0.054 \qquad \mbox{kmol}$
- $N_{O2} := \frac{3.5}{32}$ i.e. $N_{O2} = 0.109$ kmol

Reactive Systems

Disregard ash, which does not react.

7 C + 5 H2 + 0.054 N2 + 0.109 O2 + a (O2 + 3.76 N2) = x CO2 + y H2O + z N2

Equating coeffs of C: 7 = x

Equating coeffs of H: 10 = 2.y i.e. y = 5

Equating coeffs of O: 0.109 * 2 + 2.a = 2. x + y = 19 i.e. a = 9.391

Equating coeffs of N2: 0.054 + a * 3.76 = z i.e. z = 35.364

Therefore, the combustion eqn is:

7 C + 5 H2 + 0.054 N2 + 0.109 O2 + 9.391 (O2 + 3.76 N2) = 7 CO2 + 5 H2O + 35.364 N2

Therefore, AF ratio:

$$AF = \frac{9.391 \cdot 4.76 \cdot 29}{100} = 12.963 \quad \text{....stoichiometric AF ratio}$$

This matches well with the earlier AF value of 13.065

Then, mass analysis of dry products:

CO2:
$$\frac{7 \cdot 44}{7 \cdot 44 + 35.364 \cdot 28} \cdot 100 = 23.725$$
 %
N2: $\frac{35.364 \cdot 28}{7 \cdot 44 + 35.364 \cdot 28} \cdot 100 = 76.275$ %

These values also match well with the earlier values.

If 20% excess air is used: It will reflect in excess O2 and N2 in the products:

Products will contain:

7 CO2 + 5 H2O + (35.364 + 9.391 * 0.2 * 3.76) N2 + (9.391 * 0.2) O2

Percentage of CO2, N2 and O2 by volume in products (remembering that the combustion eqn is a 'mole eqn' or 'volume eqn.'):

CO2:
$$\frac{7}{7 + (35.364 + 9.391 \cdot 0.2 \cdot 3.76) + 9.391 \cdot 0.2} \cdot 100 = 13.644$$
 %

N2:

 $\frac{(35.364 + 9.391 \cdot 0.2 \cdot 3.76)}{7 + (35.364 + 9.391 \cdot 0.2 \cdot 3.76) + 9.391 \cdot 0.2} \cdot 100 = 82.695$ %

O2:
$$\frac{9.391 \cdot 0.2}{7 + (35.364 + 9.391 \cdot 0.2 \cdot 3.76) + 9.391 \cdot 0.2} \cdot 100 = 3.661$$
%

Note again, that these values match well with the values obtained earlier.

173

Click on the ad to read more

Prob.8.2.3 Write down the complete combustion eqn for Propane (C3H8) and determine the theoretical AF ratio.

Mathcad Solution:

Let the combustion eqn be:

C3H8 + a. (O2 + 3.76 N2) = x. CO2 + y. H2O + (3.76.a). N2

(remember that 1 mole of O2 is accompanied by 3.76 moles of N2)

Equating coeffs of C: 3 = x

Equating coeffs of H: 8 = 2.y i.e. y = 4

Equating coeffs of O: 2.a = 2.x + y = 10 i.e. a = 5

Therefore, the combustion eqn is:

C3H8 + 5. (O2 + 3.76 N2) = 3. CO2 + 4. H2O + 18.8. N2

Therefore, stoichiometric AF ratio by mass:

$$AF := \frac{5 \cdot 4.76 \cdot 29}{12 \cdot 3 + 8}$$

i.e. AF = 15.686AF ratio

Prob.8.2.4 Propane gas burns with 150% theoretical air at a pressure of 1 bar. If the air is dry, determine the mole amounts of products and the dew point temp of the mixture.

b) Plot dew point temp vs percent excess air.

Mathcad Solution:

Since we need sat. temp against sat. pressure of steam to find out dew point temp, let us first write two simple Mathcad Functions for PSAT and TSAT:

We have taken tabular data from TEST.

For Sat. water vapor (Ref: TEST)

	kPa		deg.C	
	(0.6113)		(0.01)	
	1		6.98	
	1.5		13.03	
	2		17.5	
	2.5		21.08	
	3		24.08	
	4		28.96	
	5	32.88		
	7.5		40.29	
psat :=	10	tsat :=	45.81	
	15		53.97	
	20		60.06	
	25		64.97	
	30		69.1	
	40		75.87	
	50	50		
	75		91.78	
	100		99.63	
	125		105.99	

Examples:

TSAT(P) := linterp(psat, tsat, P)	TSAT(10) = 45.81	С
PSAT(T) := linterp(tsat, psat, T)	PSAT(66) = 26.247	kPa

In the previous problem, we have already obtained the combustion eqn with 100% theoretical air as:

C3H8 + 5. (O2 + 3.76 N2) = 3. CO2 + 4. H2O + 18.8. N2

With 150% theoretical air, the excess O2 and N2 will show up in Products:

So, we have:

Therefore: Total no. of moles in Products:

 $N_{tot} := 3 + 4 + 18.8 + 2.5 + 2.5 \cdot 3.76$ i.e. $N_{tot} = 37.7$ kmol

Therefore, mole fraction of each component of products:

$$y_{CO2} := \frac{3}{N_{tot}} \cdot 100$$
 i.e. $y_{CO2} = 7.958$ %

$$y_{H2O} := \frac{4}{N_{tot}} \cdot 100$$
 i.e. $y_{H2O} = 10.61$ %

$$y_{O2} := \frac{2.5}{N_{tot}} \cdot 100$$
 i.e. $y_{O2} = 6.631$ %

$$y_{N2} := \frac{18.8 + 2.5 \cdot 3.76}{N_{tot}} \cdot 100$$
 i.e. $y_{N2} = 74.801$ %

Dew point temp of mixture:

Find, first, partial pressure of water vapor in mixture. Then, sat. temp at that partial pressure is the dew point temp.

P := 1 bar.... total pressure, by data

$\mathbf{p}_w = \mathbf{y}_{H2O} \cdot \mathbf{P} \quad \dots \text{partial pressure of water vapor}$

Now, mole fraction of water vapor = 10.61% = 0.1061

- i.e. $p_w = 0.1061$ bar
- i.e. p_w := 10.61 kPa

Now, corresponding to this p_w , find the sat. temp from the Mathcad Function written above:

$$T_{dewpoint} := TSAT(p_w)$$

i.e. T_{dewpoint} = 46.806 C Ans.

(b) Plot dew point temp vs excess air:

Write Dew point temp as a function of per-cent excess air:

In the previous problem, we have already obtained the combustion eqn with 100% theoretical air as:

C3H8 + 5. (O2 + 3.76 N2) = 3. CO2 + 4. H2O + 18.8. N2

With excess air (in percent), the excess O2 and N2 end up in products.

Therefore, if the Percent excess air is included, we have:

C3H8 + (1 + percent_excess_air/100) * 5 * (O2 + 3.76 N2) = 3. CO2 + 4. H2O + 18.8. N2 +(percent_excess_air/100) * 5 * O2 + (percent_excess_air/100) * 5 * 3.76 * N2

Let: percent_excess_air := 50 P := 1 bar.... total pressure, by data

Then, total no. of moles in products:

$$N_{tot}(percent_excess_air) := 3 + 4 + \frac{percent_excess_air}{100} \cdot 5 + \left(18.8 + \frac{percent_excess_air}{100} \cdot 3.76 \cdot 5\right)$$

Then. mole fraction of water in products:

 $y_{\text{H2O}}(\text{percent}_\text{excess}_\text{air}) \coloneqq \frac{4}{N_{\text{tot}}(\text{percent}_\text{excess}_\text{air})}$

Dew point temp of mixture:

Find, first, partial pressure of water vapor in mixture. Then, sat. temp at that partial pressure is the dew point temp.

pw(percent_excess_air,P) := yH2O(percent_excess_air) P bar...partial pressure of water vapor

Now, dew point temp is the sat. temp. of water vapor corresponding to this pw.

T_{dewpoint}(percent_excess_air,P) := TSAT(p_w(percent_excess_air,P)·100)pressure in kPa

T_{dewpoint}(percent_excess_air,P) = 46.806 C ... Ans.

Now, plot T_{dewpoint} vs percent excess air:

percent_excess_air := 0,20..300

...define a range variable

percent_excess_air	T _{dewpoint} (percent_excess_air,P)
0	54.584
20	50.851
40	47.972
60	45.766
80	43.427
100	41.536
120	39.87
140	38.114
160	36.62
180	35.333
200	34.213
220	33.229
240	32.19
260	31.163
280	30.242
300	29.412

Reactive Systems

Prob.8.2.5 Octane (C8H18) gas is burnt with dry air. Volumetric analysis of the products by Orsat apparatus is: CO2 = 10.02%, O2 = 5.62%, CO = 0.88%, and N2 = 83.48% (by balance). Determine: (i) AF ratio (ii) percentage of theoretical air used (iii) excess air

Mathcad Solution:

Note: Analysis by Orsat apparatus is on 'dry basis', i.e. water is not included. While writing combustion eqn, we will have to remember add water.

Writing for 100 kmol of dry products, combustion eqn for the given conditions is:

x. C8H18 + a. (O2 + 3.76 N2) = 10.02. CO2 + 0.88.CO + 5.62. O2 + 83.48. N2 + b.H2O

Equating coeffs of N2: a 3.76= 83.48 i.e. a = 22.202

Equating coeffs of C: 8.x = 10.02 + 0.88 = 10.9 i.e. x = 1.363

Equating coeffs of H: 18.x = 2.b i.e. b = 12.267

Therefore, the combustion eqn is:

1.363. C8H18 + 22.202. (O2 + 3.76 N2) = 10.02. CO2 + 0.88.CO + 5.62. O2 + 83.48. N2 + 12.267.H2O

Therefore: AF ratio is:

$$AF := \frac{22.202 \cdot 4.76 \cdot 29}{1.363 \cdot (12 \cdot 8 + 18)}$$

i.e. AF = 19.724 Actual AF ratio for this reaction Ans.

Theoretical air or stoichiometric air:

We have the eqn:

C8H18 + 12.5. (O2 + 3.76 N2) = 8.CO2 + 9.H2O + 12.5 * 3.76 * N2
Then, stoichiometric or Theoretical AF ratio:

$$AF_{stoich} := \frac{12.5 \cdot 4.76 \cdot 29}{12 \cdot 8 + 18}$$

i.e. AF_{stoich} = 15.136 Theoretical AF ratio Ans.

Therefore, excess air:

$$Excess_air := \frac{AF}{AF_{stoich}}$$

i.e. Excess_air = 1.303 i.e. 30.3% excess air ... Ans.

Prob.8.2.6 An unknown hydrocarbon CxHy reacts with air. Orsat analysis of products gives: CO2 = 12.1%, O2 = 3.8%, CO = 0.9%. Determine: (i) chemical eqn for actual reaction (ii) composition of fuel (iii) AF ratio, and (iv) excess or deficiency of air used.[VTU]

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

Mathcad Solution:

Note: Analysis by Orsat apparatus is on 'dry basis', i.e. water is not included. While writing combustion eqn, we will have to remember add water.

Also, by balance, percentage of N2 in products = 83.2%.

Writing for 100 kmol of dry products, combustion eqn for the given conditions is:

C_xH_v + a. (O2 + 3.76 N2) = 12.1. CO2 + 3.8. O2 + 0.9. CO + 83.2. N2 + b.H2O

Equating coeffs of N2: a 3.76= 83.2 i.e. a = 22.128

Equating coeffs of O: 2.22.128 = 2.12.1 + 2.3.8 + 0.9 + b i.e. b = 11.556

Equating coeffs of C: x = 12.1 + 0.9 i.e. x = 13

Equating coeffs of H: y = 2.b i.e. b = 23.112

Therefore, the combustion eqn is:

C₁₃H_{23.112} + 22.128. (O2 + 3.76 N2) = 12.1. CO2 + 3.8. O2 + 0.9. CO + 83.2. N2 + 11.556.H2O

Therefore, AF ratio:

$$AF := \frac{22.128 \cdot 4.76 \cdot 29}{13 \cdot 12 + 23.112 \cdot 1}$$

i.e. AF = 17.054 ... AF ratio by mass. for this reaction Ans.

Note: C₁₃H_{23.112} is not the chemical formula of fuel. It only gives the carbon to hydrogen ratio in the fuel.

Stoichiometric AF rato:

We have the eqn for reaction:

C₁₃H_{23,112} + (37.556/2) (O2 + 3.76 N2) = 13. CO2 + (23.112/2).H2O + 70.605.N2

Therefore, stoichiometric AF ratio:

 $AF_{stoich} := \frac{18.778 \cdot 4.76 \cdot 29}{13 \cdot 12 + 23.112 \cdot 1}$

i.e. AF_{stoich} = 14.472 ...Stoichiometric AF ratio by mass. Ans.

Excess Air used:

Since actual $AF > AF_{stoich}$, excess air is used:

$$\frac{AF}{AF_{stoich}} = 1.178$$
 17.8% excess air is used Ans.

Prob.8.2.7 An I.C. engine uses gasoline (C8H18) as fuel. The engine is supplied with 150% theoretical air at 1 bar, 25 C. Analysis of exhaust gases shows that 75% of carbon in fuel is converted to CO2 and the rest to CO. Combustion products leave the engine at 400 K. Calculate the amount of energy transferred to the engine per kg of gasoline. Given: Enthalpy o formation for n-octane (gas) (i.e. gasoline) is -208,450 kJ/kmol. [Ref: 11]

Mathcad Solution:

From I Law, energy transferred is calculated as:

$$Q = H_{products} - H_{Reactants}$$

i.e.
$$Q = \sum_{p} n_{e} \cdot (h_{f0} + \Delta h)_{e} - \sum_{r} n_{i} \cdot (h_{f0} + \Delta h)_{i}$$

Now, the eqn for the chemical reaction for stoichiometric combustion is:

C₈H₁₈ + 12.5 (O2 + 3.76 N2) = 8 CO2 + 9 H2O + 12.5 * 3.76 * N2

Therefore, AF ratio (on mass basis) is:

$$AF := \frac{12.5 \cdot 4.76 \cdot 29}{12 \cdot 8 + 18 \cdot 1}$$

i.e. AF = 15.136 kg of air per kg of fuel

Now, with 150% air, and 75% of C converted to CO2 and 25% to CO, the combustion eqn becomes:

C₈H₁₈+1.5*12.5*(O2 + 3.76 N2) = 6 CO2 + 2 CO + 9 H2O + 7.25 O2 + 70.5 N2

All reactants and products are in gaseous condition.

Download free eBooks at bookboon.com

Enthalpies of formation (h_{f0}) at standard condition of 298 K, for the compounds (from the Table in section 8.1.7 (from TEST):

C8H18 (g) --> -208,450 kJ/kmol CO2 (g) --> -393,520 kJ/kmol CO (g) --> -110,530 kJ/kmol

H2O (g) --> -241,820 kJ/kmol

Remember that: enthalpy of formation for stable elements such as O2, N2, H2 is zero.

Now, calculate H_{prod} and H_{react} separately, to apply the I Law:

$$H_{\text{products}} = \sum_{p} n_{e} \cdot (h_{f0} + \Delta h)_{e}$$

Now, Δh values (from Urieli's Tables, given in section 8.1.8) for products at 400 K:

CO2 (g) --> 4008 kJ/kmol CO (g) --> 2975 kJ/kmol H2O (g) --> 3452 kJ/kmol O2 (g) --> 3029 kJ/kmol N2 (g) --> 2971 kJ/kmol

Then, we have:

 $H_{\text{products}} := 6 \cdot (-393520 + 4008) + 2 \cdot (-110530 + 2975) + 9 \cdot (-241820 + 3452) + 7.25 \cdot (0 + 3029) + 70.5 \cdot (0 + 2971) + 2971 \cdot (0 + 2971$

i.e. $H_{products} = -4.466 \times 10^6$ kJ/kmol fuel

And,
$$H_{reactants} = \sum_{r} n_{i} (h_{f0} + \Delta h)_{i}$$

i.e. $H_{reactants} := 1 \cdot (-208450) + 1.5 \cdot 12.5 \cdot (0 + 0)$ siince $h_{f0} = 0$ for O2 and N2

i.e. $H_{reactants} = -2.084 \times 10^5$ kJ/kmol fuel

Therefore: Q := H_{products} - H_{reactants}

i.e. $Q = -4.258 \times 10^6$ kJ/kmol fuel

Now, 1 kg of C8H18 = 1/114 kmol = 8.772 * 10^-3 kmol

Therefore: $Q := \frac{-4.258 \cdot 10^6}{114}$ kJ/kg fuel

i.e. $Q = -3.735 \times 10^4$ kJ/kg fuel-ve sign indicating heat flowing out Ans.

b) In the above, $\Delta h = (h_T - h_{298})$, and Δh values were taken from Urieli's Tables, where the datum was 298 K (i.e. h = 0 at 298 K).

Now, we can also use the conventional Ideal gas tables, given in section 8.1.8. Here, the only difference is that datum is at 0 K, and we have to take enthalpy readings at temp T as well as at 298 K and subtract.

This procedure is shown below:

 $\Delta h = h_T - h_{298}$ values from Ideal Gas Tables:

CO2 (g) --> (h₄₀₀ - h₂₉₈) = (13372 - 9364) = 4008 kJ/kmol

CO (g) --> (h₄₀₀ - h₂₉₈) = (11644 - 8669) = 2975 kJ/kmol

H2O (g) --> (h400 - h298) = (13356 - 9904) = 3452 kJ/kmol

O2 (g) --> (h₄₀₀ - h₂₉₈) = (11711 - 8682) = 3029 kJ/kmol

N2 (g) --> (h₄₀₀ - h₂₉₈) = (11640 - 8669) = 2971 kJ/kmol

These values match very well with values from Urieli's Tables. Rest of the calculations are done as earlier.

c) Another way is not to use the Tables, but calculate Δh as (cp. ΔT), cp being calculated from the formulas given in Thermodynamics Text books for Ideal gases such as: CO2, CO, O2, N2 etc. [Ref: 11]

We have:

 $cp_{CO2}(T) := (45.369 + 3.688 \cdot 10^{-3} \cdot T - 9.619 \cdot 10^{5} \cdot T^{-2})$ kJ/kmol

 $cp_{CO}(T) := \left(28.068 + 4.631 \cdot 10^{-3} \cdot T - 0.258 \cdot 10^{5} \cdot T^{-2}\right)$ kJ/kmol

 $cp_{H2O}(T) := 28.85 + 12.055 \cdot 10^{-3} \cdot T + 1.066 \cdot 10^{5} \cdot T^{-2}$ kJ/kmol

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/

OIL & GAS ENGINEERING

ELECTRONICS

AUTOMATION & PROCESS CONTROL

> MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS

ELECTRICAL POWER

TECHNOLOG

Click on the ad to read more

Phone: +61 8 9321 1702 Email: training@idc-online.com Website: www.idc-online.com

Download free eBooks at bookboon.com

$$cp_{O2}(T) := (30.255 + 4.207 \cdot 10^{-3} \cdot T - 1.887 \cdot 10^{5} \cdot T^{-2})$$
 kJ/kmol

$$cp_{N2}(T) := 27.27 + 4.930 \cdot 10^{-3} \cdot T + 0.333 \cdot 10^{5} \cdot T^{-2}$$
 kJ/kmol

$$cp_{H2}(T) := 27.012 + 3.509 \cdot 10^{-3} \cdot T + 0.69 \cdot 10^{5} \cdot T^{-2}$$
 kJ/kmol

$$cp_{NH3}(T) := (29.747 + 25.108 \cdot 10^{-3} \cdot T - 1.546 \cdot 10^{5} \cdot T^{-2}) kJ/kmol$$

$$cp_{CH4}(T) := \left(17.449 + 60.449 \cdot 10^{-3} \cdot T + 1.117 \cdot 10^{-6} \cdot T^{2} - 7.204 \cdot 10^{-9} \cdot T^{3}\right) \quad kJ/kmol$$

$$cp_{SO2}(T) := (47.381 + 6.66 \cdot 10^{-3} \cdot T - 8.439 \cdot 10^{5} \cdot T^{-2}) kJ/kmol$$

Therefore, we have:

 Δh = $h_T^{}-h_{298}^{}$ $\,$ values from sp. heat formulas:

CO2 (g) ->
$$(h_{400} - h_{298}) = \int_{298}^{400} cp_{CO2}(T) dT = 3.936 \times 10^3$$
 kJ/kmol

CO (g) -->
$$(h_{400} - h_{298}) = \int_{298}^{400} cp_{CO}(T) dT = 3.006 \times 10^3$$
 kJ/kmol

H2O (g) -->
$$(h_{400} - h_{298}) = \int_{298}^{400} cp_{H2O}(T) dT = 3.463 \times 10^3$$
 kJ/kmol

O2 (g) --> (h₄₀₀ - h₂₉₈) =
$$\int_{298}^{400} cp_{O2}(T) dT = 3.074 \times 10^3$$
 kJ/kmol

N2 (g) --> (h₄₀₀ - h₂₉₈) =
$$\int_{298}^{400} cp_{N2}(T) dT = 2.986 \times 10^{3}$$
 kJ/kmol

Then, we have:

 $H_{products} := 6 \cdot (-393520 + 3936) + 2 \cdot (-110530 + 3006) + 9 \cdot (-241820 + 3463) + 7.25 \cdot (0 + 3074) + 70.5 \cdot (0 + 2986) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 200 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 2006 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 2006 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 2006 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 2006 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 2006 \cdot (-241820 + 3006) + 2006 \cdot (-241820 + 3463) + 70.5 \cdot (0 + 2006) + 2006 \cdot (-2006)

i.e. $H_{products} = -4.465 \times 10^6$ kJ/kol fuel

And,
$$H_{reactants} = \sum_{r} n_{i} (h_{f0} + \Delta h)_{i}$$

i.e. $H_{reactants} := 1 \cdot (-208450) + 1.5 \cdot 12.5 \cdot (0 + 0)$ siince $h_{f0} = 0$ for O2 and N2

i.e.
$$H_{reactants} = -2.084 \times 10^{\circ}$$
 kJ/kmol fuel

Therefore: Q := H_{products} - H_{reactants}

i.e.
$$Q = -4.257 \times 10^{\circ}$$
 kJ/kmol fuel

Now, 1 kg of C8H18 = 1/114 kmol = 8.772 * 10^-3 kmol

Therefore: $Q := \frac{-4.257 \cdot 10^6}{114}$ kJ/kgl fuel

i.e. $Q = -3.734 \times 10^4$ kJ/kg fuel ...-ve sign indicating heat flowing out Ans.

Prob.8.2.8 Determine the adiabatic flame temp when liquid octane (C8H18) at 25 C is burned with 300% theoretical air in a steady flow process.

Mathcad Solution:

For complete combustion of C₈H₁₈, stoichiometric eqn is:

C8H18 + 12.5 (O2 + 3.76) N2 = 8 CO2 + 9 H2O + (12.5 * 3.76) N2

Therefore, with 300 % theoretical air, we have the combustion eqn:

C₈H₁₈ + 3 * 12.5 (O2 + 3.76) N2 = 8 CO2 + 9 H2O + 25 O2 + 141 N2

For adiabatic flame temp, Q = 0:

Then:

- And, $H_{reactants} = \sum_{r} n_{i} (h_{f0} + \Delta h)_{i}$
- i.e. $H_{reactants} := 1 \cdot (-249950) + 3 \cdot 12.5 \cdot (0 + 0)$ siince $h_{f0} = 0$ for O2 and N2
- i.e. $H_{reactants} = -2.499 \times 10^5$ kJ/kmol fuel .

And,

$$H_{\text{products}} = \sum_{p} n_{e} \left(h_{f0} + \Delta h \right)_{e}$$

i.e.
$$H_{\text{products}} = 8 \cdot (-393520 + \Delta h_{\text{CO2}}) + 9 \cdot (-241820 + \Delta h_{\text{H2O}}) + 25 \cdot (0 + \Delta h_{\text{O2}}) + 141 \cdot (0 + \Delta h_{\text{N2}})$$

....siince h_{f0} = 0 for O2 and N2

i.e.
$$H_{products} = -8.393520 - 9.241820 + 8.\Delta h_{CO2} + 9.\Delta h_{H2O} + 25.\Delta h_{O2} + 141.\Delta h_{N2}$$

i.e.
$$H_{\text{products}} = -5.325 \cdot 10^6 + (8 \cdot \Delta h_{\text{CO2}} + 9 \cdot \Delta h_{\text{H2O}} + 25 \cdot \Delta h_{\text{O2}} + 141 \cdot \Delta h_{\text{N2}})$$

In the above, the temp of products which satisfies eqn. (A) is the Adiabatic Flame temp.

This has to be found out by trial and error.

Then from eqn.(A):

$$(8 \cdot \Delta \mathbf{h}_{CO2} + 9 \cdot \Delta \mathbf{h}_{H2O} + 25 \cdot \Delta \mathbf{h}_{O2} + 141 \cdot \Delta \mathbf{h}_{N2}) = 5.325 \cdot 10^6 - 2.499 \cdot 10^5$$

i.e.
$$(\$ \cdot \Delta h_{CO2} + 9 \cdot \Delta h_{H2O} + 25 \cdot \Delta h_{O2} + 141 \cdot \Delta h_{N2}) = 5.075 \times 10^6$$
eqn. (B)

Assuming that all the products are only N2, we get an approx. value for T_{flame}. Then use it as starting point to narrow down on the actual adiabatic flame temp.

Total no. of moles in products = 8 + 9 + 25 + 141 = 183

Therefore:
$$\Delta h_{N2} = \frac{5.075 \times 10^6}{183} = 2.773 \times 10^4$$
 kJ/kmol

Now, we can use Urieli's tables for N2 to get an initial value of T_{flame}.

We get, approx: T_{flame} = 1190 K

Now, start trial and error process to satisfy eqn. (B):

T = 1100 K: LHS of eqn. (B) becomes:

T = 1140 K: LHS of eqn. (B) becomes:

8-41120 + 9-31876 + 25-27632 + 141-26091 = 4.985 × 10⁶ ...slightly less than RHS of eqn. (B)

T = 1200 K: LHS of eqn. (B) becomes:

Therefore, interpolate between 1140 K and 1200 K to get the value of T_{flame} to satisfy eqn. (B):

For 1 deg:
$$\frac{5.374 \times 10^6 - 4.985 \times 10^6}{60} = 6.483 \times 10^3$$

Therefore:
$$T_{flame} := 1200 - \frac{(5.374 \times 10^6 - 5.075 \times 10^6)}{(6.483 \times 10^3)}$$

 $T_{flame} = 1.154 \times 10^3$ KAdiabatic flame temp ... Ans.

Alternatively:

We can use eqns for cp to get Δh for the different components of products, and determine T_{fame} as follows:

We have the eqn. (B):

$$(8 \cdot \Delta h_{CO2} + 9 \cdot \Delta h_{H2O} + 25 \cdot \Delta h_{O2} + 141 \cdot \Delta h_{N2}) = 5.075 \times 10^{\circ}$$
eqn. (B)

Start with a guess value:

TTflame := 1000 K guess value

Given

 $\begin{bmatrix} 8 \cdot \int_{298}^{TT \text{flame}} cp_{CO2}(T) \, dT + 9 \cdot \int_{298}^{TT \text{flame}} cp_{H2O}(T) \, dT + 25 \cdot \int_{298}^{TT \text{flame}} cp_{O2}(T) \, dT \end{bmatrix} \dots = 5.075 \cdot 10^{6}$ + 141 \cdot \int_{298}^{TT \text{flame}} cp_{N2}(T) \, dT = 0.075 \cdot 10^{6}

Find(TTflame) = 1.1599×10^3

Thus: Tflame = 1160 KAdiabatic Flame temp.... Ans.

Note: See the ease with which Tflame is calculated.

This method is surely easier than the earlier method of referring to Tables and interpolating.

(b) Plot the adiabatic flame temp as percent excess air varies from 0 to 300%:

Note: 300% theoretical air means 200% excess air.

percent excess air := 200 ... for the above problem

Now, we have the stoichiometric eqn:

C8H18 + 12.5 (O2 + 3.76) N2 = 8 CO2 + 9 H2O + (12.5 * 3.76) N2

Then, with percent_excess_air, excess O2 and N2 show up in products, and, we have the eqn for combustion:

C8H18 + (1 + percent_excess_air / 100) * 12.5 * (O2 + 3.76) N2 = 8 CO2 + 9 H2O + (12.5 * 3.76) N2 + (percent_excess_air/100) * 12.5 * O2 + (percent_excess_air/100) * 12.5 * 3.76 * N2

For adiabatic flame temp, Q = 0:

Then:

And,
$$H_{reactants} = \sum_{r} n_{i} (h_{f0} + \Delta h)_{i}$$

i.e. H_{reactants} := 1·(-249950) + 3·12.5·(0 + 0)siince h_{f0} = 0 for O2 and N2

i.e. $H_{reactants} = -2.499 \times 10^5$ kJ/kmol fuel .

Note that H_{reactants} at 25 C does not depend on excess air.

And, we will write H_{products} as a function of percent_excess_air:

$$H_{\text{products}} = \sum_{p} n_{e} (h_{f0} + \Delta h)_{e}$$

i.e.

$$\begin{split} H_{\text{products}}(\text{percent}_\text{excess}_\text{air}) &= 8 \cdot \left(-393520 + \Delta h_{\text{CO2}}\right) + 9 \cdot \left(-241820 + \Delta h_{\text{H2O}}\right) \dots \\ &+ 12.5 \cdot \frac{\text{percent}_\text{excess}_\text{air}}{100} \cdot \left(0 + \Delta h_{\text{O2}}\right) \dots \\ &+ 12.5 \cdot 3.76 \cdot \left(1 + \frac{\text{percent}_\text{excess}_\text{air}}{100}\right) \cdot \left(0 + \Delta h_{\text{N2}}\right) \end{split}$$

....siince $h_{f0} = 0$ for O2 and N2

Writing Δh as integral of cp. ΔT , we get:

$$\begin{split} H_{\text{products}}(\text{percent_excess_air}) \coloneqq & \left[\$ \cdot \left(-393520 + \int_{298}^{\text{TTflame}} \text{cp}_{\text{CO2}}(\text{T}) \, \text{dT} \right) + 9 \cdot \left(-241820 + \int_{298}^{\text{TTflame}} \text{cp}_{\text{H2O}}(\text{T}) \, \text{dT} \right) \dots \right. \\ & + 12.5 \cdot \frac{\text{percent_excess_air}}{100} \cdot \left(0 + \int_{298}^{\text{TTflame}} \text{cp}_{\text{O2}}(\text{T}) \, \text{dT} \right) \dots \\ & + 12.5 \cdot 3.76 \cdot \left(1 + \frac{\text{percent_excess_air}}{100} \right) \cdot \left(0 + \int_{298}^{\text{TTflame}} \text{cp}_{\text{N2}}(\text{T}) \, \text{dT} \right) \dots \\ & \left. \right] \end{split}$$

We shall use the Solve block of Mathcad to get Adiabatic flame temp, TTflame, by equating $H_{reactants} = H_{products}$.

Start with a guess value for TTflame:

TTflame := 1000 K

Given

$$\begin{bmatrix} 8 \cdot \left(-393520 + \int_{298}^{TT \text{flame}} \text{cp}_{\text{CO2}}(T) \, dT \right) + 9 \cdot \left(-241820 + \int_{298}^{TT \text{flame}} \text{cp}_{\text{H2O}}(T) \, dT \right) \dots \\ + 12.5 \cdot \frac{\text{percent_excess_air}}{100} \cdot \left(0 + \int_{298}^{TT \text{flame}} \text{cp}_{\text{O2}}(T) \, dT \right) \dots \\ + 12.5 \cdot 3.76 \cdot \left(1 + \frac{\text{percent_excess_air}}{100} \right) \cdot \left(0 + \int_{298}^{TT \text{flame}} \text{cp}_{\text{N2}}(T) \, dT \right) \end{bmatrix} = -2.499 \times 10^{5}$$

Tflame(percent_excess_air) := Find(TTflame) ...Get Tflame as a function of percent_excess_air

i.e. $Tflame(percent_excess_air) = 1.16 \times 10^3$ K

Note: In the above, we have written Tflame as a function of percent_excess_air, so that it becomes very easy to draw plots. See below:

Now, plot Tflame for different values of percent_excess_air:

percent_excess_air := 0,20.. 300define a range variable

percent_excess_air	Tflame(percent_excess_air)
0	2413.84
20	2144.13
40	1935.7
60	1769.72
80	1634.4
100	1521.94
120	1426.99
140	1345.74
160	1275.42
180	1213.97
200	1159.8
220	1111.69
240	1068.68
260	1029.99
280	995
300	963.21

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

197

Download free eBooks at bookboon.com

8.3 Problems solved with EES:

"**Prob.8.3.1** A sample of fuel has following percentage composition by weight: C = 86%, O2 = 2%, Ash = 1%, H2 = 8%, S = 3%. For an AF ratio of 12:1, determine: (i) stoichiometric AF ratio, and mixture strength as percentage of rich or weak (ii) the percentage composition of dry flue gases by volume. [VTU]"

"EES Solution:"

"Remembering that combustion eqns are 'mole equations', let us convert the components of fuel to respective moles and then write the combustion eqn. for 100 kg of fuel:"

 $N_C = 86/12$ "...no of kmols of Carbon"

N_O2 = 2/32"...no of kmols of oxygen"

N_H2 = 8/2"...no of kmols of hydrogen"

 $N_S = 3/32$ "...no of kmols of sulphur"

"Stoichiometric eqn. for combustion is:"

"N_C [C] + N_O2[O2] + N_H2[H2] + N_S[S] + a (O2 + 3.76 N2) = × [H2O] + y [CO2] + z [SO2] + w [N2]"

"Collect coeffs of carbon atoms:"

 $N_C = y$

"Collect coeffs of oxygen atoms:"

 $N_02 + a = x/2 + y + z$

"Collect coeffs of hydrogen atoms:"

 $N_H2 = x$

"Collect coeffs of nitrogen atoms:"

3.76 * a = w

"Collect coeffs of sulphur atoms:"

 $N_S = z$

"Solving the above eqns we get the coeffs N_C, N_O2, N_H2, N_S, a, x, y, z and w, and then we write the combustion eqn:"

" $N_C = 7.167$ $N_O2 = 0.0625$ $N_H2 = 4$ $N_N2 = 0.0625]$ $N_S = 0.09375$ a = 9.198 x = 4 y = 7.167 z = 0.09375w = 34.58

and, the combustion eqn is:"

"7.167 [C] + 0.0625[O2] + 4[H2] + 0.09375[S] + 9.198 (O2 + 3.76 N2) = 4 [H2O] + 7.167 [CO2] + 0.09375 [SO2] + 34.58 [N2]"

"Therefore, Stoichoimetric AF ratio:"

AF_stoichio = (a * 4.76 * 29) / 100 "kg air/ kg fuelsince 100 kg of fuel was taken"

"But, given that:"

 $AF_actual = 12$

"Therefore:"

Ratio = AF_actual/AF_stoichio

"Volumetric analysis of dry combustion products:"

"Total no. of kmols of dry products is:"

 $N_tot = y + z + w$

"Therefore, vol. analysis is:"

Vol_CO2 = y * 100 / N_tot "% by vol for CO2"

Vol_SO2 = z * 100 / N_tot "% by vol for SO2"

Vol_N2 = w * 100 / N_tot "% by vol for N2"

Results:

Unit Settings: SI C kPa kJ mass deg

a=9.198 [kmol]	AF _{actual} = 12	AF _{stoichio} = 12.7
N _C = 7.167 [kmol]	N _{H2} = 4 [kmol]	N ₀₂ = 0.0625 [kmol]
N _S = 0.09375 [kmol]	N _{tot} = 41.84 [kmol]	Ratio = 0.9451
Vol _{CO2} = 17.13 [%]	Vol _{N2} = 82.65 [%]	Vol _{SO2} = 0.224 [%]
w = 34.58 [kmol]	x = 4 [kmol]	y = 7.167 [kmol]
z = 0.09375 [kmol]		

Thus:

We see that AF_stoichio = 12.7, and the Ratio = 0.9451

Therefore:

It is a weak mixture, with 94.51% of theoretical air Ans.

Vol. analysis of dry combustion products is:

CO2 = 17.13%, N2 = 82.65%, SO2 = 0.224% ... Ans.

For more information, visit www.msm.nl or contact us at +31 43 38 70 808 or via admissions@msm.nl

the globally networked management school

Download free eBooks at bookboon.com

"**Prob.8.3.2** Octane (C8H18) is burnt in air and an Orsat analysis of products yields: CO2 = 10.5%, CO = 1.8%, O2 = 5.3%, and N2 = 82.4%. Determine: (i) actual AF ratio on mol basis (ii) actual AF ratio on mass basis, (iii) percent excess air, and (iv) dew point temp of the products. [VTU]"

"EES Solution:"

"Remember that Orsat analysis is on 'dry basis'. So, we have to add H2O in the products. Considering 100 kMol of dry products, we write the combustion eqn.:"

"x. [C8H18] + a [O2 + 3.76 N2] = 10.5 [CO2] + 1.8 [CO] + 5.3 [O2] + 82.4 [N2] + b. [H2O]"

"Collect coeffs of carbon atoms:"

 $8 \times x = 10.5 + 1.8$

"Collect coeffs of hydrogen atoms:"

$$18 * x = 2 * b$$

"Collect coeffs of nitrogen atoms:"

3.76 * a = 82.4

"Therefore, actual AF ratio, on kmol basis:"

 $AF_kmolbasis = (a^4.76)/x$

"And, actual AF ratio, on mass basis:"

 $AF_{massbasis} = (a * 4.76 * 29)/(x * (12 * 8 + 18))$

"Stoichiometric eqn is:"

"C8H18 + (12.5) (O2 + 3.76 N2) = 8 CO2 + 9 H2O + (12.5 * 3.76) N2"

"Therefore, stoichiometric AF ratio:"

 $AF_{stoichio} = (12.5 * 4.76 * 29) / (12 * 8 + 18)$

"Percent excess air:"

Percent_theor_air = (AF_massbasis / AF_stoichio) * 100

"Dew point temp:"

N_tot = 100 + b "...total no. of moles in products"

y_H2O = b / N_tot "...mole fraction of H2O in products"

p_w = y_H2O * 1.01325 * 100 "kPa ... partial pressure of water vapor in products"

"Dew point temp is the sat. temp. at p_w:"

T_dewpoint = T_sat(Steam_NBS,P=p_w) "C ... dew point temp"

Results:

Unit Settings: SI C kPa kJ mass deg	
a=21.91 [kmol]	AF _{kmolbasis} = 67.85
AF _{massbasis} = 17.26	AF _{stoichio} = 15.14
b = 13.84 [kmol]	N _{tot} = 113.8 [kmol]
Percent _{theor,air} = 114 [%]	p _w =12.32 [kPa]
T _{dewpoint} = 49.95 [C]	x = 1.538 [kmol]
y _{H20} = 0.1216	

Thus:

Actual AF ratio on mol basis = 67.85 Ans.

Actual AF ratio on mass basis = 17.26 Ans.

Stoichio. AF ratio (mass basis) = 15.14 Ans.

Percent theoretical air = 114 % ...i.e. 14% excess air Ans.

Dew point temp of products = 49.95 C Ans.

"Prob.8.3.3 Octane (C8H18) is burnt with 20% excess air. Determine: (i) stoichiometric AF ratio on mass basis (ii) actual AF ratio on mass basis, and, (iii) dew point temp of the products. (b) Also, plot the actual AF ratio and dew point temp as excess air varies from 0 to 200%"

"EES Solution:"

"Data:"

percent_excess_air = 20 "%"

"Soichiometric eqn for combustion is, from earlier problem:"

"C8H18 + (12.5) (O2 + 3.76 N2) = 8 CO2 + 9 H2O + (12.5 * 3.76) N2"

"Therefore, stoichiometric AF ratio:"

AF_stoichio = (12.5 * 4.76 * 29) / (12 * 8 + 18)

"Combustion eqn when there is excess air:

Now, the excess O2 and N2 show up in products:"

"C8H18 + (1 + percent_excess_air/100) * (12.5) * (O2 + 3.76 N2) = 8 CO2 + 9 H2O + (12.5 * 3.76) N2 + aa * O2 + bb * N2"

203

Click on the ad to read more

"where:"

aa = (percent_excess_air/100) * 12.5

bb = (percent_excess_air/100) * 12.5 * 3.76

"Therefore, actual AF ratio on mass basis:"

AF_actual = (1 + percent_excess_air/100)* 12.5 * 4.76 * 29 / (8 * 12 + 18)

"Dew point temp:"

N_tot = 8 + 9 + (12.5 * 3.76) + aa + bb "...total no. of moles in products"

y_H2O = 9 / N_tot "...mole fraction of H2O in products"

p_w = y_H2O * 101.325 "kPa ... partial pressure of water vapor in products"

"Dew point temp is the sat. temp. at p_w:"

T_dewpoint = T_sat(Steam_NBS,P=p_w) "C ... dew point temp"

Results:

Unit Settings: SI C kPa kJ mass deg aa = 2.5 [kmol] $AF_{actual} = 18.16$ $AF_{stoichio} = 15.14$ bb = 9.4 [kmol] $N_{tot} = 75.9$ [kmol] percent_{excess,air} = 20 [%] $p_w = 12.01$ [kPa] $T_{dewpoint} = 49.46$ [C] $y_{H20} = 0.1186$ $F_{H20} = 0.1186$

Thus:

Actual AF ratio on mass basis, with 20% excess air = 18.16 Ans.

Stoichiometric AF ratio (mass basis) = 15.14 Ans.

Dew point temp of products, with 20% excess air = 49.46 C Ans.

(b) Also, plot the actual AF ratio and dew point temp as excess air varies from 0 to 200%:

Table 1			
111	1 I percent _{excess,a} [%]	² AF _{actual}	³ T _{dewpoint}
Run 1	0	15.14	52.92
Run 2	20	18.16	49.46
Run 3	40	21.19	46.56
Run 4	60	24.22	44.08
Run 5	80	27.24	41.92
Run 6	100	30.27	40.01
Run 7	120	33.3	38.29
Run 8	140	36.33	36.74
Run 9	160	39.35	35.32
Run 10	180	42.38	34.02
Run 11	200	45.41	32.82

First, compute the Parametric Table:

MAN OLIVER WYMAN

Oliver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk usep industry knows by events because expension and an experiment, organizational transformation, and leadership development. With offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

Now, plot the Results:

"**Prob.8.3.4** The products of combustion of an unknown hydrocarbon fuel have the following composition, as measured by Orsat apparatus: CO2 = 8%, CO = 0.9%, O2 = 8.8%, N2 = 82.3%. Calculate: (i) AF ratio (ii) composition of fuel on mass basis (iii) percentage of theoretical air, on mass basis. [VTU]"

"EES Solution:"

"Note that Orsat analysis gives composition of products on dry basis, and by volume. So, we have to add water to products while writing the combustion eqn.

Writing the combustion eqn on 100 kmol dry products basis:"

"CxHy + a (O2 + 3.76 N2) = 8 CO2 + 0.9 CO + 8.8 O2 + 82.3 N2 + b. H2O"

"Collect coeffs of carbon atoms:"

x = 8 + 0.9

"Collect coeffs of oxygen atoms:"

2 * a = 2 * 8 + 0.9 + 8.8 * 2 + b

"Collect coeffs of nitrogen atoms:"

3.76 * a = 82.3

"Collect coeffs of hydrogen atoms:"

y = 2 * b

"Then, actual AF ratio, on mass basis:"

 $AF_{massbasis} = (a * 4.76 * 29)/(x * 12 + y * 1)$

"Composition of fuel, on mass basis:"

 $percent_carbon = (x * 12 * 100) / (x * 12 + y)$

 $percent_hydrogen = (y * 1 * 100) / (x * 12 + y)$

"Then, Stoichiometric AF ratio:"

"Consider 100 kg of fuel. It contains (85.2) kg C and (14.8) kg H2.

Air required for complete combustion of 85.2 kg C is: from C + O2 = CO2 "

Air_for_C = 85.2 * (32/12)/0.23 "kg Air"

"Air required for complete combustion of 14.8 kg H2 is: from H2 + O = H2O"

Air_for_H2 = 14.8 * (16/2)/0.23 "kg air"

"Therefore: for 100 kg fuel, total air required:"

Air_total = Air_for_C + Air_for_H2

"Therefore, stoichio. AF ratio:"

AF_stoichio = Air_total / 100

"Therefore, excess air:"

Ratio = AF_massbasis * 100 / AF_stoichio

"Excess air:"

2010 EYGM Lir

Excess_air = Ratio - 100 "%"

Day one and you're ready

Day one. It's the moment you've been waiting for. When you prove your worth, meet new challenges, and go looking for the next one. It's when your dreams take shape. And your expectations can be exceeded. From the day you join us, we're committed to helping you achieve your potential. So, whether your career lies in assurance, tax, transaction, advisory or core business services, shouldn't your day one be at Ernst & Young?

What's next for your future? ey.com/careers

ERNST & YOUNG Quality In Everything We Do

208 Download free eBooks at bookboon.com

Results:

Unit Settings: SI C kPa kJ mass deg

a=21.89 [kmol]	AF _{massbasis} = 24.1
AF _{stoichio} = 15.03	Air _{for,C} = 987.8 [kg]
Air _{for,H2} = 514.8 [kg]	Air _{total} =1503 [kg]
b = 9.277 [kmol]	Excess _{air} = 60.41 [%]
percent _{carbon} = 85.2 [%]	percent _{hydrogen} = 14.8 [%]
Ratio = 160.4	× = 8.9 [kmol]
y = 18.55 [kmol]	

Thus:

Stoichiometric AF ratio, on mass basis = 15.03 Ans.

Actual AF ratio, on mass basis = 24.1 ... Ans.

Excess air = 60.41% Ans.

Composition of fuel on mass basis: C = 85.2%, H2 = 14.8% Ans.

"**Prob.8.3.5** Write EES Functions for molar sp. heats at const. pressure, of a few species, which are useful in combustion calculations".

EES Solution:

\$UnitSysyem SI kPa K kJ

FUNCTION cp_CO2(T)

{Gives the sp. heat of CO2 (ideal gas), in kJ/kmol

Input: T in K}

A := 45.369; B := 8.688E-03; E := -9.619E05

 $cp_CO2 := A + B * T + E / T^2$

Reactive Systems

END

"_____"

FUNCTION cp_CO(T)

{Gives the sp. heat of CO (ideal gas), in kJ/kmol

Input: T in K}

A := 28.068; B := 4.631E-03; E := -0.258E05

 $cp_CO := A + B * T + E / T^2$

END

"_____"

FUNCTION cp_H2O(T)

{Gives the sp. heat of H2O (ideal gas), in kJ/kmol

Input: T in K}

A := 28.85; B := 12.055E-03; E := 1.006E05

 $cp_H2O := A + B * T + E / T^2$

END

"_____"

FUNCTION cp_O2(T)

{Gives the sp. heat of O2 (ideal gas), in kJ/kmol

Input: T in K}

A := 30.255; B := 4.207E-03; E := -1.887E05

Reactive Systems

Click on the ad to read more

 $cp_O2 := A + B * T + E / T^2$

END

"_____"

FUNCTION cp_N2(T)

{Gives the sp. heat of N2 (ideal gas), in kJ/kmol

Input: T in K}

A := 27.27; B := 4.93E-03; E := 0.333E05

 $cp_N2 := A + B * T + E / T^2$

END

"_____"

211

Download free eBooks at bookboon.com

FUNCTION cp_H2(T)

{Gives the sp. heat of H2 (ideal gas), in kJ/kmol

Input: T in K}

A := 27.012; B := 3.509E-03; E := 0.690E05

 $cp_H2 := A + B * T + E / T^2$

END

"_____"

FUNCTION cp_NH3(T)

{Gives the sp. heat of NH3 (ideal gas), in kJ/kmol

Input: T in K}

A := 29.747; B := 25.108E-03; E := -1.546E05

 $cp_NH3 := A + B * T + E / T^2$

END

"_____"

FUNCTION cp_CH4(T)

{Gives the sp. heat of CH4 (ideal gas), in kJ/kmol

Input: T in K}

A := 17.449; B := 60.449E-03; C := 1.117E-06; D := -7.204E-09

 $cp_CH4 := A + B * T + C * T^2 + D * T^3$

END

"**Prob. 8.3.6** Calculate the enthalpy of combustion of gaseous methane in kJ/kg of fuel: (a) at 25 C, 1 atm, with liquid water in products (b) at 25 C, 1 atm, with water vapor in products, and (c) at 1000 K, 1 atm. [Ref: 3]"

"EES Solution:"

"The combustion eqn is:"

"CH4 + 2 (O2 + 3.76 N2) = CO2 + 2 H2O + 7.52 N2"

"Enthalpy of combustion (h_RP) is given by:

 $h_RP = (H_P - H_R)$, where $H_P =$ enthalpy of products, $H_R =$ enthalpy of reactants.

 $H_P = 1.$ (h_fo_CO2(g) + DELTAH_CO2) + 2. (h_fo_H2O(liq) + DELTAH_H2O)

 $H_R = 1.$ (h_fo_CH4(g) + DELTAH_CH4) + 2. (h_fo_O2 + DELTAH_O2)

All the DELTAH terms in the above are zero since the temp is 25 C. Also, remember that for N2, O2 enthalpy of formation, $h_f 0 = 0$.

Getting enthalpy of formation (h_fo) values for CH4 (g), CO2, H2O from Tables:"

h_f0_CH4_g = -74850 "kJ/kmol"

h_f0_H2O_liq = -285820"kJ/kmol"

h_f0_CO2_g = -393520"kJ/kmol"

"Then, we have:"

 $H_P_case_a = 1^* h_f0_CO2_g + 2^* h_f0_H2O_liq "kJ/kmol of fuel"$

H_R_case_a= 1 * h_f0_CH4_g + 0"kJ/kmol of fuel"

"And, enthalpy of combustion:"

h_RP_case_a = H_P_case_a - H_R_case_a"kJ/kmol of fuel"

"Per unit mass of fuel:"

h_RP_perkg_case_a = h_RP_case_a/16 "kJ/kg of CH4....16 being the Mol. wt. of CH4"

"_____"

"(b) When H2O in products is in vapor state:

Now, only change is in enthalpy of formation of water.

From Tables, we get:"

h_f0_H2O_vap = -241820"kJ/kmol"

"Therefore:"

H_P_case_b = 1* h_f0_CO2_g + 2 * h_f0_H2O_vap "kJ/kmol of fuel"

 $H_R_case_b = 1 * h_f0_CH4_g + 0"kJ/kmol of fuel"$

"And, enthalpy of combustion:"

h_RP_case_b = H_P_case_b - H_R_case_b"kJ/kmol of fuel"

"Per unit mass of fuel:"

h_RP_caseb_perkg = h_RP_case_b/16 "kJ/kg of CH4....16 being the Mol. wt. of CH4"

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Dove

"(c) When the temp of reactants and products is 1000 K:

Now, we will have to include the DELTAh values. We can, of course, refer to Tables, but, we do the following:

DELTAh is calculated as: Deltah = cp * DELTAT, and we use the EES Functions written earlier for molar sp. heats, to get DELTAh as integral of (cp.DELTAT) from 298K to 1000K, using the built-in EES Function INTEGRAL."

"Therefore, we have:"

H_P_case_c = 1* (h_f0_CO2_g + integral(cp_CO2(T), T, 298, 1000)) + 2* (h_f0_H2O_vap + integral(cp_H2O(T), T, 298, 1000)) "kJ/kmol of fuel"

 $H_R_case_c = 1 * (h_f0_CH4_g + integral(cp_CH4(T), T, 298, 1000)) + 2 * integral(cp_O2(T), T, 298, 1000) "kJ/kmol of fuel"$

"And, enthalpy of combustion:"

h_RP_case_c = H_P_case_c - H_R_case_c"kJ/kmol of fuel"

"Per unit mass of fuel:"

h_RP_casec_perkg = h_RP_case_c/16 "kJ/kg of CH4....16 being the Mol. wt. of CH4"

"Case (d): Use built-in ehthalpy functions of EES to solve case (c):

Note the great advantage here: you just enter the function for enthalpy, need not separately include enthalpy of formation."

H_P_case_d = 1* Enthalpy(CO2,T=1000) + 2 * Enthalpy(H2O,T=1000)"kJ/kmol of fuel"

 $H_R_case_d = 1 * Enthalpy(CH4,T=1000) + 2 * Enthalpy(O2,T=1000)"kJ/kmol of fuel"$

"And, enthalpy of combustion:"

h_RP_case_d = H_P_case_d - H_R_case_d"kJ/kmol of fuel"

"Per unit mass of fuel:"

h_RP_cased_perkg = h_RP_case_d/16 "kJ/kg of CH4....16 being the Mol. wt. of CH4"

Results:

Unit Settings: SI K kPa kJ molar deg

```
h<sub>f0,CH4,g</sub> = -74850 [kJ/kmol]

h<sub>f0,H20,liq</sub> = -285820 [kJ/kmol]

H<sub>P,case,a</sub> = -965160 [kJ/kmol]

H<sub>P,case,c</sub> = -791656 [kJ/kmol]

h<sub>RP,caseb,perkg</sub> = -50144 [kJ/kg]

h<sub>RP,case,b</sub> = -802310 [kJ/kmol]

h<sub>RP,case,d</sub> = -801097

H<sub>R,case,a</sub> = -74850 [kJ/kmol]

H<sub>R,case,c</sub> = 8937 [kJ/kmol]

T = 1000 [K]
```

h_{f0,C02,g} = -393520 [kJ/kmol] h_{f0,H20,vap} = -241820 [kJ/kmol] H_{P,case,b} = -877160 [kJ/kmol] H_{P,case,d} = -791695 [kJ/kmol] h_{RP,case,a} = -890310 [kJ/kmol] h_{RP,case,c} = -800593 [kJ/kmol] h_{RP,perkg,case,a} = -55644 [kJ/kg] H_{R,case,b} = -74850 [IJ/kmol] H_{R,case,d} = 9402

Thus:

Case (a):

Enthalpy of combustion at 25 C, 1 atm, (H2O in products in liq. state) = -55644 kJ/kg ... Ans.

Case (b):

Enthalpy of combustion at 25 C, 1 atm, (H2O in products in vapor state) = -50144 kJ/kg ... Ans.

Case (c):

Enthalpy of combustion at 1000 K, 1 atm. = -50037 kJ/kg ... Ans.

Case (d): Using built-in enthalpy functions of EES:

Enthalpy of combustion at 1000 K, 1 atm. = -50069 kJ/kg ... Ans.

"**Prob. 8.3.7** Liquid Octane (C8H18) at 25 C, 1 atm burns with 400% theoretical air which is also at the same temp and pressure. Determine the temp of products of combustion. [Ref: 3]"

"EES Solution:"

T1 = 25 + 273 "K"
"Eqn for stoichiometric combustion is:

C8H18 + (12.5) (O2 + 3.76 N2) = 8 CO2 + 9 H2O + (12.5 * 3.76) N2"

"Therefore, combustion eqn when there is 400% theoretical air:

Now, the excess O2 and N2 show up in products:

C8H18 + 4 * (12.5) (O2 + 3.76 N2) = 8 CO2 + 9 H2O + 37.5 O2 + (4 * 12.5 * 3.76) N2

i.e. C8H18 + 50 O2 + 188 N2 = 8 CO2 + 9 H2O + 37.5 O2 + 188 N2"

"Therefore, to find the adiabatic flame temp, put H_P = H_R:

For H_R, we get the enthalpy of formation of C8H18 from Tables:"

h_f0_C8H18_liq = -249950 "kJ/kmol"

"And: to find Adiabatic flame temp, put H_P = H_R:"

 $H_R = h_{f0}C8H18_{liq} + 50 * Enthalpy(O2,T=T1) + 188 * Enthalpy(N2,T=T1)"kJ/kmol fuel"$

H_P = 8 * Enthalpy(CO2,T=T_flame) + 9 * Enthalpy(H2O,T=T_flame) + 37.5 * Enthalpy(O2,T=T_flame) + 188 * Enthalpy(N2,T=T_flame) "kJ/kmol fuel"

 $H_P = H_R$ "..finds T_{flame} (K)"

Results:

Unit Settings: SI K kPa kJ molar deg

 $\label{eq:hf0,C8H18,liq} \begin{array}{ll} \text{H}_{\text{P}} = -249950 \ [\text{kJ/kmol}] & \text{H}_{\text{P}} = -250989 \ [\text{kJ/kmol}] \\ \text{H}_{\text{R}} = -250989 \ [\text{kJ/kmol}] & \text{T1} = 298 \ [\text{K}] \\ \hline $T_{\text{flame}} = 961.7 \ [\text{K}] \end{array}$

Thus:

Adiabatic flame temp = 961.7 K ... Ans.

Note: It is a great advantage with EES that we don't have to resort to trial and error solution, as we did while referring to Tables.

"**Prob.8.3.8** liq. Octane (C8H18) at 25 C, 1 atm. is burnt with 100% excess air, also entering at same temp and pressure. Determine the adiabatic flame temp.

(b) Also, plot the adiabatic flame temp as excess air varies from 0 to 300%"

"EES Solution:"

"Data:"

T1 = 25 + 273 "K"

percent_excess_air = 100 "%"

"Soichiometric eqn for combustion is, from earlier problem:"

"C8H18 + (12.5) (O2 + 3.76 N2) = 8 CO2 + 9 H2O + (12.5 * 3.76) N2"

"Combustion eqn when there is excess air:

Now, the excess O2 and N2 show up in products:"

Download free eBooks at bookboon.com

"C8H18 + (1 + percent_excess_air/100) * (12.5) * (O2 + 3.76 N2) = 8 CO2 + 9 H2O + (12.5 * 3.76) N2 + aa * O2 + bb * N2"

"where:"

aa = (percent_excess_air/100) * 12.5

bb = (percent_excess_air/100) * 12.5 * 3.76

"Therefore, to find the adiabatic flame temp, put H_P = H_R:

For H_R, we get the enthalpy of formation of C8H18 from Tables:"

h_f0_C8H18_liq = -249950 "kJ/kmol"

"And: to find Adiabatic flame temp, put H_P = H_R:"

 $H_R = h_{f0}C8H18_{liq} + (1 + percent_excess_air/100) * 12.5 * Enthalpy(O2,T=T1) + (1 + percent_excess_air/100) * (12.5) * 3.76 * Enthalpy(N2,T=T1)"kJ/kmol fuel"$

H_P=8*Enthalpy(CO2,T=T_flame)+9*Enthalpy(H2O,T=T_flame)+(12.5*3.76)*Enthalpy(N2,T=T_flame)+bb * Enthalpy(N2,T=T_flame)+ aa * Enthalpy(O2,T=T_flame) "kJ/kmol fuel"

 $H_P = H_R$ "..finds T_{flame} (K)"

Results:

Unit Settings: SI K kPa kJ molar deg aa = 12.5 [kmol] bb = 47 [kmol]

h _{f0,C8H18,lig} = -249950 [kJ/kmol]	Hp =-250470 [kJ/kmol]					
H _R = -250470 [kJ/kmol]	percent _{excess,air} = 100 [%]					
T1 = 298 [K]	T _{flame} = 1507 [K]					

Thus:

Adiabatic flame temp for 100% excess air = 1507 K ... Ans.

(b) Also, plot the adiabatic flame temp as excess air varies from 0 to 300%: First, compute the Parametric Table:

121	1 vercent _{excess,a}	² ▼ T _{flame} [K]
Run 1	0	2392
Run 2	20	2120
Run 3	40	1913
Run 4	60	1749
Run 5	80	1617
Run 6	100	1507
Run 7	120	1414
Run 8	140	1335
Run 9	160	1267
Run 10	180	1207
Run 11	200	1154
Run 12	220	1107
Run 13	240	1065
Run 14	260	1027
Run 15	280	992.9
Run 16	300	961.7
Run 17	320	933.2
Run 18	340	907.1
Run 19	360	883
Run 20	380	860.7
Run 21	400	840.1

Now, plot the Results:

"**Prob.8.3.9** Methane (CH4) gas is burnt with 130% theoretical air in a closed tank. Both CH4 and air are at 200 kPa and 298 K to start with, and the final temp in tank is 1000 K. Find the final pressure in the tank and also the heat transfer.

(b) Plot final pressure and heat transfer as the final temp varies from 400 K to 1100 K."

"EES Solution:"

T1 = 298 **"K"**

P1 = 200 **"kPa"**

Tf = 1000 **"K"**

 $R_u = 8.314$ "kJ/kmol.K"

"Since it is a closed tank, we get heat transfer as Q = change in Internal energies at the initial and final states. Also, U = H - P.v

And, final pressure is easily calculated from Ideal gas eqn."

"Stoichiometric eqn for combustion of CH4 is:"

"CH4 + 2 (O2 + 3.76 N2) = CO2 + 2 H2O + 7.52 N2"

"Then, combustion eqn with 130% theoretical air is:

CH4 + (1 + 0.3) * 2 * (O2 + 3.76 N2) = CO2 + 2 H2O + 7.52 N2 + 0.6 O2 + (0.6 * 3.76) N2

i.e. CH4 + 2.6 (O2 + 3.76 N2) = CO2 + 2 H2O + 0.6 O2 + 9.776 N2"

" To find final pressure:"

"P1 * V = N_reactants * R_u * T1

Pf * V = N_products * R_u * Tf, where N_reactants = no. of moles of reactants, N_products = no. of moles of products."

"Therefore:"

 $N_{reactants} = 1 + 2.6 + (2.6 * 3.76)$

 $N_{products} = 1 + 2 + 7.52 + 0.6 + (0.6 * 3.76)$

Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

222 Download free eBooks at bookboon.com

P1 / Pf = (N_reactants / N_products) * (T1 / Tf) "....finds Pf, kPa"

"Now, to find heat transfer, Q: Apply the I Law:"

 $\label{eq:U_R} U_R = 7.5 * (Enthalpy(CH4,T=T1) - R_u * T1) + 2.6 * (Enthalpy(O2,T=T1) - R_u * T1) + (2.6 * 3.76) * (Enthalpy(N2,T=T1) - R_u * T1) "kJ/kmol fuel"$

 $\label{eq:U_P} U_P = 1 * (Enthalpy(CO2,T=Tf) - R_u * Tf) + 2 * (Enthalpy(H2O,T=Tf) - R_u * Tf) + 0.6 * (Enthalpy(O2,T=Tf) - R_u * Tf) + 9.776 * (Enthalpy(N2,T=Tf) - R_u * Tf) "kJ/kmol fuel"$

 $Q = U_R - U_P$

Results:

Unit Settings: SI K kPa kJ molar deg

N _{products} = 13.38	N _{reactants} = 13.38	P1 = 200 [kPa]
Pf = 671.1 [kPa]	Q = 70647 [kJ/kmol]	R _u = 8.314 [kJ/kmol-K]
T1 = 298 [K]	Tf = 1000 [K]	Up = -679451 [kJ/kmol]
U _B = -608804 [kJ/kmol]		

Thus:

Final pressure, Pf = 671.1 kPa Ans.

Heat transfer, Q = 70647 kJ/kmol fuel ... Ans.

(b) Plot final pressure and heat transfer as the final temp varies from 400 K to 1100 K:

First, compute the Parametric Table:

18	1	² ₽f [kPa]	³ Q [kJ/kmol]		
Run 1	400	268.5	271061		
Run 2	500	335.6	240322		
Run 3	600	402.7	208546		
Run 4	700	469.8	175676		
Run 5	800	536.9	141712		
Run 6	900	604	106686		
Run 7	1000	671.1	70647		
Run 8	1100	738.3	33658		

Now, plot the Results:

"**Prob. 8.3.10** A small gas turbine uses C8H18 (L) for fuel, and 400% theoretical air. The air and fuel enter at 25 C and the products of combustion leave at 900 K. The output of engine and the fuel consumption are measured and it is found that the specific fuel consumption is 0.25 kg/s of fuel per Megawatt output. Determine the heat transfer from the engine. Assume complete combustion. [Ref: 2]"

"EES Solution:"

T1 = 25 + 273 "K"

T2 = 900 **"K"**

"Eqn for stoichiometric combustion is:

C8H18 + (12.5) (O2 + 3.76 N2) = 8 CO2 + 9 H2O + (12.5 * 3.76) N2"

"Combustion eqn when there is 400% theoretical air:

Now, the excess O2 and N2 show up in products:

Reactive Systems

C8H18 + 4 * (12.5) (O2 + 3.76 N2) = 8 CO2 + 9 H2O + 37.5 O2 + (4 * 12.5 * 3.76) N2

i.e. C8H18 + 50 O2 + 188 N2 = 8 CO2 + 9 H2O + 37.5 O2 + 188 N2"

"Therefore, to find the heat transfer, Q, put: Q + H_R = W + H_P:

For H_R, we get the enthalpy of formation of C8H18 from Tables:"

h_f0_C8H18_liq = -249950 "kJ/kmol enthalpy of formation of liq. octane"

"And:"

H_R = h_f0_C8H18_liq + 50 * Enthalpy(O2,T=T1) + 188 * Enthalpy(N2,T=T1)"kJ/kmol fuel"

 $H_P = 8 * Enthalpy(CO2,T=T2) + 9 * Enthalpy(H2O,T=T2) + 37.5 * Enthalpy(O2,T=T2) + 188 * Enthalpy(N2,T=T2) "kJ/kmol fuel"$

W = (1000/0.25) * 114.23 "kJ/kmol, since by data, for 0.25 kg/s of fuel, there is 1000 kW of work output"

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**

Download free eBooks at bookboon.com

"Therefore:"

 $Q + H_R = W + H_P$ "...finds Q, kJ/kmol of fuel"

Results:

Unit Settings: SI K kPa kJ molar deg $h_{f0,C8H18,liq} = -249950 [kJ/kmol]$ $H_P = -752641 [kJ/kmol]$ $H_R = -250989 [kJ/kmol]$ Q = -44732 [kJ/kmol]T1 = 298 [K]T2 = 900 [K]W = 456920 [kJ/kmol]T2 = 900 [K]

Thus:

Heat transfer, Q = -44732 kJ/kmol of fuel Ans. (-ve sign indicates heat being rejected)

XX RBS Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

8.4 Problems solved with TEST:

It is very easy and convenient to make combustion calculations with TEST.

The combustion TEST Calc (or 'daemon' as it was called in earlier versions of TEST) is slightly different to operate compared to other daemons.

Following are the important points to remember:

1. As with some other daemons, there are two types of combustion daemons: one for Closed systems and the other for Open systems, as shown below:

2. Hovering the mouse pointer over Closed 'Combustion and Chemical Equilibrium' daemon gives following explanatory pop-up:

3. Similarly, hovering the mouse pointer over Open 'Combustion and Chemical Equilibrium' daemon gives following explanatory pop-up:

Node Specific Help					
Steady-State Reactors Analyze open steady reacting systems such as a combustion chamber. Select from premixed	Species	kg 0.8918	kmol 0.0318	Mass Fra 0.0030	Mole Frac 0.0030
or non-premixed combustors for fundamental combustion analysis. Use the equilibrium TESTcalcto study emissions. For simulating a combustion chamber, check out the Combustion RIA.	CO2 H H H2 H2	42.6082 0.0006 0.0286	0.9681 0.0006 0.0142	0.1465 0.0000 0.0000	0.0917 0.0000 0.0013
Chapters 13 and 14 cover combustion and equilibrium analysis.		35.6795	1.9805	0.1226	0.1877

4. Clicking on Closed Process 'Combustion and Chemical Equilibrium' gives the following Material selection window:

5. Clicking on Open system 'Combustion and Chemical Equilibrium' gives the following Material selection window:

6. Combustion daemon is built on the basic panel called the **'Reaction panel'**. It has 3 sections or blocks as shown below: Fuel block, Oxidizer block and Products block:

thermofluids.net • TESTo	calcs (Java A	pplets) · Syst	ems · Open	 Steady St 	tate • S	Specific · C	ombustion/0	ChemEqulib	rium • uno	defined • n-IG	6 Mode
Look for accurate values of va	ariables on thi	s panel. For addit	tional messages,	enable the Ti	urn Help C)n checkbox b	elow.				
• SI C English	C Mass	Mole	🔽 Help Mes	sages On		Super-Calcu	late	Load		Super-Initialize	
Reaction Par	nel		State Panel			Device	Panel		1/	O Panel	
Select an Action After Cho	osing Fuel(s)	Perfe	orm Action	▲ /	(% Theor	. Air) ion 💌	 (Eqv. Ratio 1.0) fraction	✓ 1.0	Scaling Factor	~
Fuel Block:		Select Fuel(s)			·	xidizer Block	(try default):		Select Ox	idizer	~
kmol		kmol		kmol		Air	kmol	~		kmol	
kmol	~	kmol		kmol			kmol	~		kmol	~
Products Block (try default	selections fir					Select Produc	ts				~
C02			H20			N2			02		
kmol	×		kmol	× .		km	ol	×		kmol	×
kmol	×		kmol	~		km	ol			kmol	×

7. We can select any one or more of fuels from the 'Select Fuel(s)' widget. Similarly, any of the oxidizers and Products can be selected from Oxidizer or Products widgets.

8. After selecting a fuel, choose the required action from the 'Select an action...' widget, and then perform that action by clicking on 'Perform Action':

ORACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

Operation of the second

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

231

Download free eBooks at bookboon.com

9. State panel calculates the States of Fuel, oxidizer or Products, as per the selection:

No	on-Premixed Open-Stead	y Compustion TES	Sicalc: n-1G Model				
thermofluids.net + TESTcalcs (Java App	olets) · Systems · Open · Si	eady State 🔸 Specific	Combustion/ChemEquilibri	ium 🔸 undefined 🔸 n-IG Model			
Move mouse over a variable to display its valu	e with more precision.						
• SI C English C Mass	• Mole 🔽 Help Message	s On Super-	Calculate	Super-Initialize			
Reaction Panel	State Panel		evice Panel	I/O Panel			
	otato i ano			and and			
< State-1 > <-Select To	ogether> <mark>Fuel </mark> ♥ Fuel	Calculate	No-Plots 💌	Initialize			
p1	T1 Oxidizer v1		u1	h1			
kPa 💙	AProducts	m^3/kg 💉	kJ/kg 🚩	kJ/kg 💙			
	<u>۲</u> ۱	el1	✓ z1	e1			
kJ/kg.K 👻	kJ/kg ⊻ 0.0	m/s 🗡	0.0 m 🗠	kJ/kg 🗙			
j1 mdo	t1 V	oldot1	A1	MM1			
∫ kJ/kg ♥	kg/s 🖌	m^3/s 💙	m^2 💉	kg/kmol 💉			
c_p1 Mod	el1						
kJ/kg.K ⊻ 1.0	UnitLess						
A Note on State Evaluation			Fuel Composition	on (Mass)			
Set up the reaction in the reaction panel before evaluating states of the reactants and products in this panelMass Fractions, x							
The mass and compositions of fuel, oxidizer and	products are deduced from the reaction.	f you need to	Mole Fractions, y				
change the mass flow rate, go back to the reacti scaling factor.	on panel and multiply (from the action mer	u) the reaction by a suitable					
In evaluating a state, select the state number first	t and then the type of the mixture - Fuel, 0	xidizer, or Products	✓				

10. Device panel: Here, we enter Q and W values. One thing to remember is that values calculated here are not automatically transported to States panel, but we have to manually copy and paste them in to the States panel, if required, to complete the States calculations.

thermofluids.net • TE	STcalcs (Java Ap	plets) · System	is · Open · Stea	dy State • Spe	cific • Combustic	on/ChemEqulibrium	• undefined • n-	IG Mode
• SI C English	C Mass	 Mole 	Fion.	m St	per-Calculate	Load	Super-Initializ	.e
Reaction	Panel		State Panel		Device Panel	1	I/O Panel	
Initi	alize		< Device-A	* >		C	alculate	
i1-State: State-Null	*		i2-State:	State-Null 💌		e-State: S	State-Null 💌	
Qdot k	W 💙	Wdot_ext	ĸW	✓ T_B ✓ 298.15	к	Sdot_g	en kW/K	~
Jdot_net	w 🗸	Sdot_net	KW/K	~				
KW KWK Steady Mixing Reacting Device - A Mass, Energy, and Entropy Equations: State-Null: $0 = (\dot{m}_{i1} + \dot{m}_{i2}) - \dot{m}_{e}$ $I = X$ $0 = (\dot{m}_{i1}j_{i1} + \dot{m}_{i2}j_{i2}) - \dot{m}_{e}j_{e} + \dot{Q} - \dot{W}_{ext}$ $I = X$ $0 = (\dot{m}_{i1}g_{i1} + \dot{m}_{i2}g_{i2}) - \dot{m}_{e}g_{e} + \dot{Q} - \dot{W}_{ext}$ $I = X$ $0 = (\dot{m}_{i1}g_{i1} + \dot{m}_{i2}g_{i2}) - \dot{m}_{e}g_{e} + \dot{Q} - \dot{W}_{ext}$ $I = X$ $0 = (\dot{m}_{i1}g_{i1} + \dot{m}_{i2}g_{i2}) - \dot{m}_{e}g_{e} + \dot{Q} + \dot{R}_{gan}$ $I = X$ $0 = (\dot{m}_{i1}g_{i1} + \dot{m}_{i2}g_{i2}) - \dot{m}_{e}g_{e} + \dot{Q} + \dot{R}_{gan}$ V $0 = (\dot{m}_{i1}g_{i1} + \dot{m}_{i2}g_{i2}) - \dot{m}_{e}g_{e} + \dot{Q} + \dot{R}_{gan}$ V $0 = (\dot{m}_{i1}g_{i1} + \dot{m}_{i2}g_{i2}) - \dot{m}_{e}g_{e} + \dot{Q} + \dot{R}_{gan}$ V $0 = (\dot{m}_{i1}g_{i1} + \dot{m}_{i2}g_{i2}) - \dot{m}_{e}g_{e} + \dot{Q} + \dot{R}_{gan}$ V $0 = (\dot{m}_{i1}g_{i1} + \dot{m}_{i2}g_{i2}) - \dot{m}_{e}g_{e} + \dot{Q} + \dot{R}_{gan}$ V $0 = (\dot{m}_{i1}g_{i1} + \dot{m}_{i2}g_{i2}) - \dot{m}_{e}g_{e} + \dot{Q} + \dot{R}_{gan}$ V								

With this short introduction, now let us solve a few standard types of combustion problems:

Prob. 8.4.1 Methane(gas) burns with theoretical air. Find out the AF ratio by moles and by mass.

(b) If 50% excess air is supplied, find the composition of products on mole basis, and also the Dew point temp.

TEST Solution:

Following are the steps:

1. Select the Open, Steady combustion daemon, choose non-premixed (i.e. fuel and oxidizer come in separate streams) Ideal Gas (IG) model. Various actions that are possible after choosing the fuel are shown below:

Non	-Premixed Open-Ste	eady Com	bustion TEST	calc: n-IG Mode	e/		
thermofluids.net • TESTcalcs (Java Apple	s) • Systems • Open	Steady St	ate • Specific •	Combustion/Chem	Equlibrium • und	defined • n-IG	Model
Qdot = kW [Net heat transfer rate]							
🖲 SI C English C Mass 🕞 I	Mole 🔽 Help Mess	sages On	Super-Ca	Iculate	Load	Super-Initialize	
Reaction Panel	State Panel		Devi	ce Panel	U.	O Panel	
Theoretical Combustion with Air	Y Perform Action	1.0	(% Theor. Air)	C (Eqv. Ratio)	on 🗸 1.0	Scaling Factor	~
Select an Action After Choosing Fuel(s)	^	1					
Initialize the Reaction Panel	el(s)		V Oxidizer Blo	ick (try default):	Select Ox	idizer	~
Theoretical Combustion with Air Theoretical Combustion with Oxygen		kmol		Air	~	kmol	~
Excess/Deficient Air (set by lambda)	·						-
kmol 🗸	kmol 🛛	kmol		kmol	~	kmol	~
Products Block (try default selections first):			Select Pro	ducts			~
C02	H20		N2		02		
kmol 💙	kmol			kmol 💙		kmol	×
kmol	kmol	~		kmol 🗸		kmol	~

2. Select Methane (CH4) as fuel, 'Theoretical combustion with Air' from Action widget, and click on 'Perform Action'. We get:

Note: You	Note: You can remove a default species by clicking its checkbox twice!										
@ SI	C English	C Mass	Mole	Mole 🔽 Help Messages On		S	Super-Calculate		Load	Super-Initialize	
	Reaction Pa	anel		State Panel	1		Device F	'anel		I/O Panel	
Theoretical Combustion with Air Perform Action Perform Action (Eqv. Ratio) Scaling Factor 1.0 fraction (I.0 fraction) 1.0 fraction (I.0 No Unit											
Fuel Bloc	sk:		Select Fuel(s)			V Oxio	lizer Block (try default):		Select Oxidizer	~
_	Methane(CH4)						Air				
1.0	kmol		kmol		kmol	9.52	3809	kmol	~	kmol	×
	kmol		kmol		kmol	× -		kmol	V	kmol	×
Products	Block (try defau	It selections fir				Se	lect Product	s			~
1.0	CO2	1	2.0	H2O kmol	~ 7	.5238094	N2 kmc	1	¥	kmol	×

Note that in the above, **Moles** radio button was chosen by default; also ,**Air** as oxidizer was chosen by default. And, products compositions of CO2, H2O and N2, are shown. We find that:

AF ratio on mole basis: 9.5238 Ans.

3. To get AF ratio on Mass basis: Click Mass radio button: immediately, screen changes to:

	English (• Mass C	Mole	Help Messages On	Sup	er-Calculate	Load	Super-Initialize	e
	Reaction Panel		5	itate Panel		Device Panel		I/O Panel	
heoretica	al Combustion with	Air	Perform	Action	λ (% Theor. Air)	C (Eqv. Rati	0)	Scaling Factor	r
iel Block:		Sel	ect Fuel(s)		Oxidiz	er Block (try default):	Select Oxidizer	
✓ Me 5.04	ethane(CH4)		kg 💙	kg	275.90	Air 0475 kg	v	kg	
	kg 🗸		kg 💙	kg		kg		kg	
aducts B	llock (try default sei	lections first):			Sele	ct Products			
						2			

Click on the ad to read more

234

Now, **normalize reaction** to get mass of air for 1 kg of fuel:

Note: You	i can remove	e a default speci	es by clicking its	checkbox twice!						
	C Englis	sh 🔍 Ma	iss C Mole	🔽 Help	Messages On	Su	per-Calculate	Load	Super-Initialize	•
	React	ion Panel		State Pan	el	[Device Panel		I/O Panel	
Normali	ize Reaction) (by mass or m	ole of fuel) 👻	Perform Action	√ 1.0	\ (% Theor. Air) 🗆 (Eqv. R	tatio) fraction	Scaling Factor	· · · · · · · · · · · · · · · · · · ·
Fuel Blo	ck:		Select Fue	(s)		V Oxidi	zer Block (try defa	ult):	Select Oxidizer	~
-	Methane(Cl	14)			J		Air			
1.0	kg	×	kg	×	kg	17.20)1044 kg	×	kg	X
	kg	~	kg	×	kg	~	kg	~	kg	×
Products	s Block (try	default selectio	ns first):			Sel	ect Products			~
	CO2			H2O			N2			
2.74376	56	kg	× 2.246882	27 kg	× [13.133832	kg	~	kg	~

Therefore: AF ratio = 17.2 on mass basis ... Ans.

4. If 50% excess air is supplied:

Choose λ as 150%, and, from Action widget, select Excess/Deficient Air as shown below:

Note: You can remove a default species by clic	king its checkbox twice!						
	Mole 🔽 Help Mess	ages On	Super-Calculate	Load	oad Super-Initialize		
Reaction Panel	State Panel		Device Panel		I/O Panel		
Excess/Deficient Air (set by lambda) Excess/Deficient Air (set by lambda)	Perform Action	✓ λ (% The 150 9	eor. Air) 🛛 (Eqv. Ra	atio) fraction 💌	Scaling Factor	~	
Convert Air to O2 and N2 Balance Reaction (by atom balance) Read As Is (all coefficients are set)	el(s)		Oxidizer Block (try defau	ilt):	Select Oxidizer	~	
Normalize Reaction (by mass or mole of fue Multiply by the Scaling Factor		kg 💉	17.201044 kg	v	kg	×	
kg 🗸	kg 🗸	kg 🗸	kg	×	kg	×	
Products Block (try default selections first):			Select Products			~	
CO2	H2O		N2				
2.7437656 kg 🗸 2	.2468827 kg	✓ 13.1338	332 kg	*	kg	×.	

And, Click on 'Perform action'. We get:

Error: This sp	oecies has bee	n already chos	en.									
⊂ SI ⊂	English	Mass	C Mole	🔽 Help Mess	sages On		Super-Cal	culate	Load	Sup	oer-Initialize	
	Reaction Pa	nel		State Panel			Devid	e Panel		I/O Pa	nel	
Excess/Det	ficient Air (set <mark>l</mark>	by lambda)	Y Pe	rform Action	1 50.0	λ (% The	or. Air)	C (Eqv. Rat	i0) fraction	✓ Sca	ling Factor	-
Fuel Block:			Select Fuel(s)			~	Oxidizer Bloc	k (try default:):	Select Oxidize	r	~
✓ Met	thane(CH4)						🖌 🖌	ir				
1.0	kg	×	kg		kg	~	25.801567	kg	~		kg	~
	kg	~	kg		kg			kg	<u>⊻</u>		kg	~
Products Bl	ock (try defaul	t selections fir	st):				Select Prod	ucts				*
2.7437656	CO2 kg	~	2.2468827	H2O kg	~	19.70074	N2	g	✓ 1.995	02 50124 kg		~

Note that now, extra O2 and N2 show up in products.

5. **If we desire results on mole basis,** select Mole radio button and Normalize, click Perform Action. We get:

Error: This species has been already chosen.			
● SI C English C Mass ● I	Mole 🔽 Help Messages On	Super-Calculate	Load Super-Initialize
Reaction Panel	State Panel	Device Panel	I/O Panel
Normalize Reaction (by mass or mole of fuel	Perform Action 150.0	λ (% Theor. Air) % 0.6666667 fractio	Scaling Factor
Fuel Block: Sele	ect Fuel(s)	• Oxidizer Block (try default):	Select Oxidizer 💌
Methane(CH4)		Air	
1.0 kmol 🗸	kmol 🖌 kmol	14.285714 kmol	▼ kmol ♥
kmol	kmol V	V kmol	V kmol V
Products Block (try default selections first):		Select Products	v
C02	H2O	N2	02
1.0 kmol 2.0	0 kmol 👻	11.285714 kmol 💌	0.99999994 kmol 👻

Then, we observe:

Total no. of moles in products = 1 + 2 + 11.286 + 1 = 15.286

Mole fraction of water vapor in products = 2 / (15.286) = 0.131

Therefore, partial pressure of water vapor = 0.131 * P = 0.131 bar = 13.1 kPa (where P = total pressure of mixture = 1 bar)

And, corresponding dew point temp = sat. temp at this partial pressure = 50.87 C Ans.

Prob. 8.4.2 4.4 kg propane gas is burnt completely with 3 kmol of air. Find excess air and molar analysis of dry combustion products. [VTU]

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on +44 (0)20 7000 7573.

* Figures taken from London Business School's Masters in Management 2010 employment report

TEST Solution:

Following are the steps:

 Select the Open, Steady combustion daemon, choose non-premixed (i.e. fuel and oxidizer come in separate streams) Ideal Gas (IG) model. Select Propane for fuel, and for oxidizer, Air is chosen by default. Fill up 4.4 kg and 3 mol respectively for Propane and Air. Select 'Balance Reaction (by atom balance)' from Action widget, and click on 'Perform Action'. We get:

	Non-Premixed Open-St	eady Combus	tion TESTcalc: n-IG	Model		
thermofluids.net • TESTcalcs (Java /	Applets) · Systems · Open	 Steady State 	Specific · Combustion	n/ChemEqulibrium	• undefined • n-IG M	lodel
Wdot_ext = kW [External work tran	sfer rate]					
• SI C English C Mass	🏵 Mole 🛛 🔽 Help Mes	ssages On	Super-Calculate	Load	Super-Initialize	
Reaction Panel	State Panel		Device Panel		I/O Panel	
Balance Reaction (by atom balance)	Perform Action	_ ∧ (% TI	neor. Air) Graction Control	io) fraction	Scaling Factor	•
Fuel Block:	Select Fuel(s)	¥	Oxidizer Block (try defaul	l): Se	lect Oxidizer	~
Propane(C3H8)			Air			
4.4 kg 💌	kmol 🗸	kmol 🗸	3.0 kmol	¥	kmol	×
kmol 🗸	kmol 💙	kmol 💙	kmol	~	kmol	×
Products Block (try default selections fi			Select Products			*
CO2	H2O		N2		02	
0 2993197 kmpl	0 20000007	2.27	Concernence of the second second second second second second second second second second second second second s	0 40440070		

Note that composition of products is calculated.

Molar analysis of dry combustion products (i.e. ignoring H2O):

Total no. of moles of CO2 + N2 + O2 = 0.2993 + 2.37 + 0.1311 = 2.8004 kmol

Therefore,

mole% of CO2 = 0.2993 * 100 / 2.8 = 10.689% ... Ans.

mole% of N2 = 2.37 * 100 / 2.8 = 84.643% Ans.

mole% of O2 = 0.1311 * 100 / 2.8 = 4.682% ... Ans.

2. To get results on mass basis for this reaction, we select Mass radio button, and we get:

Wdot_ext =	kW [Extern	al work trans	fer rate]									
⊂ SI ⊂ E	Inglish	• Mass	C Mole	🔽 Help	Messages On		Super-C	alculate	Load	1	Super-Initialize	
	Reaction Pan	el		State Par	nel	1	De	vice Panel			I/O Panel	
Balance Read	ction (by atom	balance)	P	erform Action	√ 1.0	∧ (% The fra	or. Air)	C (Eqv. Rat	i0) fraction	× 1.0	Scaling Factor	~
Fuel Block:		[Select Fuel(s)		~	Oxidizer B	lock (try default	i):	Select O	xidizer	~
Propa	ane(C3H8)		kg		kg	~	✓ 86.91	Air kg	~		kg	~
	kg		kg		kg	~		kg	×		kg	~
Products Bloc	k (try default s	elections fir	st):				Select Pr	oducts				~
	CO2			H2O			N2			02		
13.173061	kg	~	7.191655	kg	×	66.36		kg	✓ 4.196	5281	kg	*

Therefore, actual AF ratio = 86.91 / 4.4 = 19.752 on mass basis.

3. To get stoichiometric AF ratio: select 'Theoretical combustion with Air' from Action widget, and click on 'Perform Action'. We get:

Note: You	can remove a d	efault species t	y clicking its che	ckbox twice!								
🔍 SI	C English	Mass	C Mole	🔽 Help Me	ssages On		Super-Calo	culate	Load	Su	per-Initialize	
	Reaction I	Panel		State Panel			Devic	e Panel		I/O P	anel	
Theoret	ical Combustior	n with Air	Per	form Action	✓ 1.0	λ (% The	eor. Air) action	C (Eqv. Rati	iO) fraction	✓ Sc	aling Factor	
Fuel Bloc	ck:		Select Fuel(s)			~	Oxidizer Bloc	k (try default):	Select Oxidiz	er	~
 Image: A second s	Propane(C3H8)						A	ir				
1.0	kg	×	kg		kg		15.64086	kg	~		kg	×
	kg		kg		kg	~		kg	~		kġ	~
Products	Block (try defa	ult selections f					Select Prod	ucts				~
2 99387	CO2		1 6344671	H2O		11 9425	N2					
2.33307	Kg		1.0344071	ĸg		11.3425		g		K	y.	

We see that: Stoichio. AF ratio = 15.6409 on mass basis.

Therefore, (Actual AF / Stoichio. AF) = 1.263 = 126.3%

i.e. Excess air = 26.3% ... Ans.

Prob. 8.4.3 A hydrocarbon fuel $C_{12}H_{26}$ is burnt with 50% excess air. Determine the volumetric (molal) analysis of products of combustion and also the dew point temp of products, if the pressure is 101 kPa. [VTU]

TEST Solution:

Following are the steps:

Select the Open, Steady combustion daemon, choose non-premixed (i.e. fuel and oxidizer come in separate streams) Ideal Gas (IG) model. Select C12H26 for fuel, and for oxidizer, Air is chosen by default. Change λ to 150% (since 50% excess air). Select 'Excess/Deficient Air' from Action widget, and click on 'Perform Action'. We get:

		1	Non-Premi	xed Open-St	eady Con	nbust	ion TESTca	lc: n-IG M	1odel			
thermofluid	ds.net • TEST	īcalcs (Java Aj	pplets) · Sy	stems · Open	• Steady S	tate •	Specific • C	ombustion/C	hemEqulibr	ium • unde	fined • n-IG	Mode
Error: This s	species has bee	n aiready chos	en.									
(€ SI (C English	C Mass	• Mole	🔽 Help Me	ssages On		Super-Calcu	ulate	Load	5	Super-Initialize	1
_	Reaction Pa	inel		State Panel			Device	Panel		1/0	Panel	
Excess/De	eficient Air (set	by lambda)	Pe	rform Action	150.0	λ (% The	or. Air)	(Eqv. Ratio) 0.6666667	fraction	✓ 1.0	Scaling Factor	~
Fuel Block			Select Fuel(s)			~	Oxidizer Block			Select Oxid	izer	~
✓ Do	Decane(C12H2	6)					Air	t.				
1.0	kmol	×	kmol		kmol	~	132.14285	kmol	~		kmol	×.
	kmol		kmol		kmol	×		kmol			kmol	~
Products B	Block (try defaul	t selections fir	st):				Select Produ	cts				~
	CO2			H2O			N2			02		
			42.0			104 302	85	a al	9 2499	98	Innal	~
12.0	kmol	~	13.0	kmol		104.552	KII	nor	0.2400	50	KINOI	

Thus, mole fraction of products:

Total no. of moles in products = 138.643

Mole% of CO2 = 12 * 100 / 138.643 = 8.655% ... Ans.

Mole% of H2O = 13 * 100 / 138.643 = 9.377% Ans.

Mole% of N2 = 104.393 * 100 / 138.643 = 75.296% ... Ans.

Mole% of O2 = 9.25 * 100 / 138.643 = 6.672% Ans.

Reactive Systems

2. Dew point temp:

Knowing that mole fraction of H2O is 0.09377, we get the partial pressure of water vapor in products = $101 \times 0.09377 = 9.471$ kPa (where P = 101 kPa = total pressure).

Dew point temp is the sat. temp corresponding to this partial pressure:

We get: Dew point temp = 44.642 C Ans.

Download free eBooks at bookboon.com

3. In addition, to get the Stoichio. AF ratio:

Select Mass radio button, and also select 'Theoretical combustion with Air' as Action item, and click on 'Perform Action'. Immediately, we get:

Thus: Theoretical or Stoichiometric AF ratio (by mass) = 15.012 ... Ans.

Prob. 8.4.4 A sample of fuel has following percentage composition by weight: C = 84%, O2 = 3.5%, H2 = 10%, Ash = 1%, N2 = 1.5%. Determine: (i) stoichiometric AF ratio by mass (ii) if 20% excess air is supplied, find the percentage composition of dry flue gases by volume. [VTU]

Note: This is the same as Prob.8.2.2, solved with Mathcad.

Now, let us solve it with TEST:

Following are the steps:

Select the Open, Steady combustion daemon, choose non-premixed (i.e. fuel and oxidizer come in separate streams) Ideal Gas (IG) model. Choose Mass radio button. Select fuels: C, H2, Ash, O2 and N2 and fill in the fractions as shown. Air is chosen as oxidizer, by default. Select 'Read As Is' from Action widget, and click on 'Perform Action'. Then, select 'Theoretical Combustion with Air' from Action widget, and click on 'Perform Action'. We get:

		No	on-Premixed	Open-Stead	ly Combust	tion TESTcalc	: n-IG Model			
thermofluids	s.net • TESTca	alcs (Java App	lets) · System	ns • Open • S	teady State	Specific • Con	nbustion/ChemE	qulibrium • u	ndefined • n-IG	Mode
Note: You can	n remove a defau	It species by cli	cking its checkbo	(twice!						
ି SI ୍	English	• Mass	[°] Mole	🔽 Help Message	es On	Super-Calcula	te 🚺	oad	Super-Initialize	
	Reaction Pan	el		State Panel		Device Pa	anel		I/O Panel	
Theoretical	Combustion wit	h Air	Y Perform	Action	λ (% Th	eor. Air)	(Eqv. Ratio) fraction	~	Scaling Factor	×
Fuel Block:		Se	elect Fuel(s)	-	×	Oxidizer Block (t	ry default):	Select (Dxidizer	~
🖌 C(s))	1110		(Aph/p)						
		✓ HZ		✓ Ash(s)		Air				
0.84	kg 1	 ✓ H2 Ø.1 	kg 🗸	• 0.01	kg 💌	Air 12.918715	kg	·	kg	~
0.84 ✓ 02	kg 1	 ✓ H2 ✓ 0.1 ✓ N2 	kg 💌	• Ash(s) 0.01	kg 💌	Air 12.918715	kg		kg	~
0.84 ✓ O2 0.035	kg f	 H2 0.1 N2 0.015 	kg 🗸	ASII(5) 0.01	kg 💌	Air 12.918715	kg 1		kg kg	×
0.84 02 0.035 Products Blo	kg f	 H2 0.1 0.015 elections first) 	kg 🗸	Asii(s) O.01	kg 💌	Air 12.918715 Select Products	kg (*	<pre></pre>	kg kg	~
0.84 CO2 0.035 Products Blo	kg f	 ✓ H2 0.1 ✓ N2 ✓ 0.015 elections first) 	kg 🔮	Asin(s)	kg 💌	Air 12.918715 Select Products Ash(s)	kg P	v	kg	
0.84 02 0.035 Products Bio 3.0778787	kg (kg) kg (try default s CO2	 0.1 0.1 0.015 elections first) 	kg ¥ kg ¥ H24 0.8939379	Asir(s)	kg 💙 kg 💙	Air 12.918715 Select Products Ash(s)	kg kg	×	kg kg kg	~

Therefore, we read: Stoichiometric AF ratio = 12.92, by mass.... Ans.

1. With 20% Excess air: Change λ to 1.2 (i.e. 20% excess air). From Action widget, select 'Excess/Deficient Air (set by Lambda)' and click on 'Perform Action'. Immediately, we get:

2. Then, to get Products by volume, choose the Mole radio button. Immediately, we get:

Error: This species has been already chosen.			
🕫 SI C English C Mass 🕫	Mole Verse Help Messages On	Super-Calculate	oad Super-Initialize
Reaction Panel	State Panel	Device Panel	I/O Panel
Excess/Deficient Air (set by lambda)	Perform Action	A (% Theor. Air)	Scaling Factor
Fuel Block: Sel	lect Fuel(s)	• Oxidizer Block (try default):	Select Oxidizer 👻
✓ C(s) 0.069935896 kmol ✓ H2	Ash(s) kmol V 1.66666666E-4 kmol	✓ Air 0.5351211 kmol	kmol 🗸
✓ 02 ✓ N2 0.00109375 kmol ≶.3571427E-	4 kmol kmol	kmol	V kmol V
Products Block (try default selections first):		Select Products	v
CO2	H2O	Ash(s)	N2
0.069935896 kmol 🗸 0	1.049608096 kmol ⊻	1.6666666E-4 kmol ✓ 0	.42328137 kmol 👻
02 0.01872924 kmol 🗸	kmol 👻	kmol 😪	kmol 🗸

Then, we observe:

Percentage of dry products by volume:

Total no. of kmol for products (excluding ash and H2O): 0.5119 kmol

% CO2 = 0.0699 * 100 / 0.5119 = 13.658% Ans.

% N2 = 0.4328 * 100 / 0.5119 = 84.564% Ans.

% O2 = 0.0187 * 100 / 0.5119 = 3.517% Ans.

Prob. 8.4.5 Methane (CH4) is burnt with atm. air. The analysis of products of combustion on a dry basis is as follows: CO2 = 10%, O2 = 2.37%, CO = 0.53%, N2 = 87.1%. Calculate the AF ratio and the percent theoretical air and determine the combustion equation. [VTU]

TEST Solution:

Following are the steps:

2. Select the Open, Steady combustion daemon, choose non-premixed (i.e. fuel and oxidizer come in separate streams) Ideal Gas (IG) model. Choose **Mole** radio button. Select fuel: CH4, and in the Products block fill in the fractions as shown. Air is chosen as oxidizer, by default.

Look for accurate values of variables on this p	anel. For additional messages, enable the	Turn Help On checkbox below.	
• SI C English C Mass •	Mole 🔽 Help Messages On	Super-Calculate	Load Super-Initialize
Reaction Panel	State Panel	Device Panel	I/O Panel
		\\ (% Theor, Air) □ (Eqv. Ratio)	Scaling Factor
Read As Is (all coefficients are set)	Perform Action	fraction 🕥 1 fraction	n 💌 1 No Unit 💌
Excess/Deficient Air (set by lambda) Convert Air to O2 and N2	el(s)	Oxidizer Block (try default):	Select Oxidizer 💌
Balance Reaction (by atom balance) Read As Is (all coefficients are set)		Air	V kmol V
Normalize Reaction (by mass or mole of fue	H) V		
kmol 💙	kmol 🗸	kmol	V kmol V
Products Block (try default selections first):	Sector Contraction of the sector of the sect	Select Products	~
✓ CO2	H20	✓ N2	✓ co
10 kmol 💌	kmol 🕑	87.1 kmol 💌 🕻	0.53 kmol 🗸
✓ 02			
2.37 kmol 💌	kmol 🗸	kmol 💌	kmol 💙

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

Download free eBooks at bookboon.com

3. Select 'Read As Is' from Action widget, and click on 'Perform Action'. We get:

Look for accurate values of variables on this panel. For additional messages, enable the Turn Help On checkbox below.								
🔍 SI C English C Mass 🤆	Mole 🔽 Help Mes	ssages On	Super-Calculate	Load Super-Initialize				
Reaction Panel	State Panel		Device Panel	I/O Panel				
Read As Is (all coefficients are set)	Perform Action	۸ (% Theo fra	or. Air) Ction	Scaling Factor				
Fuel Block:	elect Fuel(s)	~	Oxidizer Block (try default):	Select Oxidizer 🗸				
Methane(CH4)		_	Air					
kmol 😽	kmol 🗸	kmol 👻	kmol	Memol Memol				
kmol Y	kmol 👻	kmol 👻	kmol	w kmol w				
Products Block (try default selections first)			Select Products	•				
✓ C02	H2O		✓ N2	✓ co				
10.0 kmol 🛩	kmol	87.1	kmol 💉	0.53 kmol ¥				
 ✓ 02 2.37 kmol 	kmol	×	kmol 💙	kmol 👻				

4. Select 'Balance Reaction (by atom balance)' from the Action widget:

Look for accurate values of variables on this pa	nel. For additional messages, enabl	the Turn Help On checkbox below.			
ଙ୍ଗ SI C English C Mass ଙ	Mole 🔽 Help Messages	On Super-Calculate	Load Super-Initialize		
Reaction Panel	State Panel	Device Panel	I/O Panel		
Balance Reaction (by atom balance) Excess/Deficient Air (set by lambda)	Perform Action	Λ (% Theor. Air) fraction fraction fraction	Scaling Factor		
Convert Air to O2 and N2	el(s)	• Oxidizer Block (try default):	Select Oxidizer 🗸 🗸		
Balance Reaction (by atom balance) Read As Is (all coefficients are set)		Air			
Normalize Reaction (by mass or mole of fuel	of 🗸 kn	kmol	✓ kmol ✓		
	kmol V kn	ol Y	v kmol v		
Products Block (try default selections first):		Select Products	▼		
✓ C02	H20	✓ N2	✓ co		
10.0 kmol 🕑	kmol		0.53 kmol 👻		
₹ 02 2.37 kmol ♥	kmol	kmol 🗸	kmol 🗸		

5. And, click on 'Perform Action'. We get:

thermoflu	uids.net • TEST	calcs (Java A	oplets) • Sys	tems · Open ·	Steady State	e · Specific ·	Combustion/	ChemEqulibri	um • undefined • I	n-IG Model
Look for a	occurate values of v	ariables on thi	s panel. For add	itional messages, e	enable the Turn	Help On checkb	ox below.			
• si	C English	C Mass	• Mole	🔽 Help Mess	ages On	Super-C	alculate	Load	Super-Initia	lize
	Reaction Pa	nel		State Panel		De	vice Panel		I/O Panel	
Balance	Balance Reaction (by atom balance) Perform Action Fraction (by atom balance) Perform Action Reaction (by atom balance) Perform Action (by atom balance) P									
Fuel Bloc			Select Fuel(s)			Oxidizer Bl			Select Oxidizer	*
	Methane(CH4)						Air			
10.53	kmol	×	kmol		kmol	110.25317	kmol	×	kmol	×
	kmol		kmol		kmol	-	kmol	I.Y.	kmol	~
Products	Block (try default	selections fir				Select Pr	oducts			~
	✓ CO2			H2O		🖌 N2			✓ co	
10.0	kmol	~	21.06	kmol	▶ 87.1		kmol	✓ 0.53	kmol	~
2.358164	02 45 kmol	~		kmol	~		kmol	~	kmol	~

Therefore, combustion eqn is:

10.53 CH4 + (110.253/4.76). (O2 + 3.76 N2) = 10 CO2 + 21.06 H2O + 87.1 N2 + 0.53 CO + 2.358 O2

6. To convert by mass, simply choose Mass radio button. Immediately, we get:

Look for accurate values of variables on this panel. For additional messages, enable the Turn Help On checkbox below.											
⊛ si	C English	Mass	C Mole	🔽 Help Me	ssages On		Super-Calcula	ate	Load	Super-Initialize	l
	Reaction I	Panel		State Panel		1	Device P	anel		I/O Panel	
Balance	Reaction (by at	tom balance)	Pe	rform Action	J P	λ (% The	or. Air)	(Eqv. Ratio)	ion 💌	Scaling Factor	v
Fuel Bloc	ska		Select Fuel(s)			~	Oxidizer Block (try default):		Select Oxidizer	~
	Methane(CH4)						Air				
168.901	2 kg	×	kg		kg	M	3194.0342	kg	×	kg	~
	kg		kg	V	kg	~		kg		kg	
Products	Block (try defa	ult selections fir					Select Products	5			*
	✓ CO2			H2O			✓ N2			СО	
440.1	kg	~	379.5012	kg	¥ 2	2438.8	kg	*	14.8453	kg	~
75.4612	02 66 kg	~		kg			kg	Y		kg	*

7. **To get the eqn on unit mass of fuel basis:** choose 'Normalize Reaction' in Action widget, and click on 'Perform Action'. We get:

We read from the above: AF = 18.91 by mass basis. ... Ans.

8. **To get Theoretical Air required:** Choose 'Theoretical Combustion with Air' from Action widget, and click on 'Perform Action'. We get:

We see that: Theoretical AF ratio = 17.2 by mass.

Therefore, percent theoretical air = 18.91 * 100 / 17.2 = 109.942%

i.e. 9.942 % excess air ... Ans.

Prob. 8.4.6 The products of combustion of an unknown hydrocarbon CxHy have the following composition as measured by an Orsat apparatus: CO2 = 8%, CO = 0.9%, O2 = 8.8%, N2 = 82.3%. Determine: (i) the composition of fuel (ii) AF ratio (iii) The percent excess air used. [VTU]

TEST Solution:

Following are the steps:

Select the Open, Steady combustion daemon, choose non-premixed (i.e. fuel and oxidizer come in separate streams) Ideal Gas (IG) model. Choose Mole radio button. Select fuels: C and H2, and in the Products block fill in the fractions as shown. Air is chosen as oxidizer, by default. Select 'Read As Is' from Action widget, and click on 'Perform Action' to register the entered values:

	Non-Premixed Open-Steady Combustion TESTcalc: n-IG Model									
thermofluids.net • TESTcalcs (Jav	va Applets) • Sys	stems · Open ·	Steady St	ate • Specific	Combustion/	ChemEquiibriu	um • undefined • n-IG	Model		
Error: This species has been already c	hosen.									
GSI CEnglish CMas	ss 🕫 Mole	🔽 Help Mess	ages On	Super-	Calculate	Load	Super-Initialize	ĺ.		
Reaction Panel		State Panel		De	evice Panel		I/O Panel			
Read As Is (all coefficients are set)	Per	form Action	<u>√</u> ∧ 1.0	(% Theor. Air)	C (Eqv. Ratio) fraction 💙	Scaling Factor	~		
Fuel Block:	Select Fuel(s)			Oxidizer E			Select Oxidizer	~		
H2	C(s)				Air					
kmol 🗸	kmol	~	kmol		kmol	×	kmol	~		
kmol 💙	kmol		kmol	~	kmol	×	kmol	~		
Products Block (try default selection	s first):			Select P	roducts	1499 C		~		
✓ CO2		H2O		🖌 N2			✓ 02			
8.0 kmol	~	kmol	8	2.3	kmol	✓ 8.8	kmol	~		
✓ co			_		- Constant	_				
0.9 kmol	~	kmol	×		kmol	× .	kmol	Y		

 Next, select 'Balance Reaction (by atom balance)' and click on 'Perform Action'. Immediately, the eqn is balanced and we get:

Error: This species has been already ch	osen.			
G SI C English C Mass	s 🔍 Mole	🔽 Help Messages On	Super-Calculate	Load Super-Initialize
Reaction Panel	1	State Panel	Device Panel	I/O Panel
Balance Reaction (by atom balance)	✓ Perfo	rm Action	λ (% Theor. Air) fraction	o) fraction V Scaling Factor No Unit V
Fuel Block:	Select Fuel(s)		• Oxidizer Block (try default)	Select Oxidizer 💌
H2	C(s)		Air	
9.254431 kmol 💌 8.9	kmol	kmol	104.177216 kmol	Kmol 🗸
kmol V	kmol	V kmol	kmol	kmol V
Products Block (try default selections	first):		Select Products	
✓ C02	ŀ	H2O	✓ N2	✓ 02
8.0 kmol	♥ 9.254431	kmol 💌	82.3 kmol	8.8 kmol 🗸
✓ co				
0.9 kmol	~	kmol 🗠	kmol	× kmol ×

3. To convert on mass basis: click on Mass radio button. Immediately, we get:

Error: This species has been already chosen.									
🖲 SI 🔿 English	• Mass	Mole 🔽 He	elp Messages On	Super-	Calculate	Load	Super-Initialize		
Reaction Pa	nel	State	Panel	D	evice Panel		I/O Panel		
Balance Reaction (by ator	n balance)	Perform Actio	yn <mark>1.0</mark>	\ (% Theor. Air)	 (Eqv. Ratio) 1.0) fraction	Scaling Factor	~	
Fuel Block:	Se	lect Fuel(s)		V Oxidizer			Select Oxidizer	*	
H2	C(s)				Air				
18.65508 kg	✓ 106.8979	kg 💌	kg	3018.014	kg	~	kg	~	
kg		kg 🗸	kg		kg	~	kg	~	
Products Block (try defaul	selections first):			Select F	roducts			~	
✓ CO2		H2O		🖌 N2	_		✓ 02		
352.08 kg	× 1	166.76483 kg	g 💉 2	304.4	kg	✓ 281.6	kg	~	
✓ co						_			
25.209 kg	~	k			kg	~	kg	~	

Technical training on *WHAT* you need, *WHEN* you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/ OIL & GAS ENGINEERING

ELECTRONICS

AUTOMATION & PROCESS CONTROL

> MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS

ELECTRICAL POWER

Phone: +61 8 9321 1702 Email: training@idc-online.com Website: www.idc-online.com

Click on the ad to read more

252

Download free eBooks at bookboon.com
4. **To get on unit mass of fuel basis:** select 'Normalize Reaction' from Action widget, and click on 'Perform Action'. We get:

Error: This species has been already	rchosen.								
🖲 SI C English 💮 M	ass C Mole	🔽 Help Mess	ages On	Super-C	alculate	Load	Super-Initialize		
Reaction Panel		State Panel		De	vice Panel		I/O Panel		
Normalize Reaction (by mass or m	nole of fuel) 💌 Per	form Action	✓ ∧ 1.0	(% Theor. Air)	ction 💌	Scaling Factor			
Fuel Block:	Select Fuel(s)			V Oxidizer B	S	Select Oxidizer 🗸 🗸			
H2 0.14858334 kg 🗸 0.8	C(s) 5141665 kg	kg 🗸		Air 24.037771 kg		~	kg	~	
kg M	kg		kg	v	kg	~	kg	~	
Products Block (try default selection	ons first):			Select Pr	oducts			*	
✓ C02		H2O		🖌 N2			 ✓ 02 		
2.8042345 kg	1.3282428	kg	✓ 18	3.354004	kg 😽	2.242878	kg	~	
CO 0.20078376 kg	×	kg	~		kg 🗸		kg	~	

Thus, Fuel contains: 14.86% by mass of H2 and 85.14% by mass of C..... Ans.

And, actual AF ratio, by mass = 24.04 Ans.

5. **To find 'Theoretical air':** select 'Theoretical combustion with Air' from Action widget, and click on 'Perform Action'. We get:

Note: You can remove	a default species by clic	king its checkbox twice!				
• SI C Englisi	h 🔍 Mass G	Mole 🔽 Help Me	essages On	Super-Calculate	Load	Super-Initialize
Reaction	on Panel	State Panel		Device Panel		I/O Panel
Theoretical Combus	tion with Air	Perform Action	<mark>✓</mark> (%	6 Theor. Air)	Ratio) fraction 💌	Scaling Factor
Fuel Block:	Sel	ect Fuel(s)		• Oxidizer Block (try def	ault):	Select Oxidizer 🗸
✓ H2	✓ C(s)			Air		
0.14858334 kg	✓ 0.85141665	kg 💉	kg	v 14.86314 kg	×	kg 🗸
kg		kg V	kg	✓ kg	×.	kg V
Products Block (try d	efault selections first):			Select Products		×
CO2		H2O		N2		
3.119711	kg 💙 🚺	.3282428 kg	✓ 11.3	348728 kg	~	kg 🗸
	kg 💌	kg	~	kg	×	kg. 🗡

And, Theoretical (or stoichiometric) AF ratio, by mass = 14.86 Ans.

6. Excess air: (Actual AF ratio) / (Theoeretical AF ratio) = 24.04/14.86 = 1.618 = 161.8%

Therefore, Excess air = 61.8% Ans.

Note: See the ease with which these calculations are made in TEST.

Prob. 8.4.7 The analysis of dry exhaust gas from an internal combustion engine gave 12% CO2, 2% CO, 4% CH4, 1% H2, 4.5% O2, 76.5% N2. Calculate the proportions by mass of carbon to hydrogen in the fuel, assuming it to be a pure hydrocarbon fuel, and the AF ratio used. [VTU]

TEST Solution:

Following are the steps:

 Select the Open, Steady combustion daemon, choose non-premixed (i.e. fuel and oxidizer come in separate streams) Ideal Gas (IG) model. Choose Mole radio button. Select fuels: C and H2, and in the Products block, fill in the fractions as shown. Air is chosen as oxidizer, by default. Select 'Read As Is' from Action widget, and click on 'Perform Action' to register the entered values. Then, select 'Balance Reaction' from the Action widget, and click on 'Perform Action'. We get:

	N	lon-Premixed C	pen-Steady Co	mbusti	on TEST	alc: n-IG M	lodel		
thermofluids.net • T	ESTcalcs (Java Ap	plets) • Systems	• Open • Steady	State •	Specific •	Combustion/C	hemEqulibr	ium • undefine	ed • n-IG Mod
Error: You must select a	I fuel before using ar	iy of the reaction com	mands.						
G SI C English	C Mass	• Mole 🖓	Help Messages On		Super-Cal	culate	Load	Sup	er-Initialize
Reaction	n Panel	Sta	ate Panel		Devi	ce Panel		I/O Par	rel
				A W The	a Airo	D (Em) Datia			in Footon
Balance Reaction (by	atom balance)	Perform Ad	tion 1.0	∧ (% Theo	or. Alr)	1.0	fraction	 ✓ Scal ✓ 1.0 	No Unit
Fuel Block:		Select Fuel(s)		~	Oxidizer Blo	ock (try default):		Select Oxidizer	~
C(s)	н	2				Air			
18.0 kmol	₩ 14.670886	kmol 💌	kmol	\sim	96.83544	kmol	~	1	kmol 🗸
kmol		kmol 💌	kmol	~		kmol	×		amol 💌
Products Block (try de	fault selections firs	t):			Select Proc	lucts			~
✓ CO2		H2O			✓ N2			✓ 02	
12.0	kmol 💙	5.670886	kmol 💌	76.5		kmol	✓ 4.5	km	ol 🗸
✓ CO		✓ Metha	ine(CH4)		✓ H2				
2.0	kmol 💉	4.0	kmol 💌	1.0		kmol	~	km	ol 🗸

2. To convert it on mass basis, simply select the Mass radio button. Immediately, we get:

		(Non-Premi	xed Open-Ste	eady Cor	nbusti	on TEST	calc: n-IG	Model			
thermoflu	uids.net • TE	STcalcs (Java A	Applets) · Sy	stems · Open	Steady 9	State ·	Specific •	Combustion	n/ChemEqu	librium • u	ndefined • n-IG	Model
Error: You	ı must select a f	uel before using	any of the react	ion commands.								
• si	C English	Mass	C Mole	🔽 Help Mes	sages On		Super-Ca	Iculate	Loa	1	Super-Initialize	1
	Reaction	Panel		State Panel			Devi	ce Panel			I/O Panel	
Balance	Reaction (by a	tom balance)	✓ Performed and the second	rform Action	√ 1.0	λ (% Theo fra	or. Air)	C (Eqv. Rat	iio) fraction	✓ 1.0	Scaling Factor	~
Fuel Bloc			Select Fuel(s)			~	Oxidizer Bl		uit):	Select	Oxidizer	~
	C(s)		H2					Air				
<mark>216.198</mark>	kg	29.5735	72 kg	×	kg	×	2805.3228	kg	~		kg	×
	kg	M	kg		kg	~		kg	¥		kg	×
Products	s Block (try defa	ault selections fi					Select Pro	ducts				~
	✓ CO2			H2O			✓ N2			✓ 02		
528.12	kg	1	102.18937	kg	~	2142.0		kg	✓ 144.	0	kg	~
	✓ со		-	Methane(CH4)			✓ H2					
56.02	kg		64.16	kg	×	2.0158		kg	~		kg	×.

3. Now, to get it for unit mass of fuel, select 'Normalize Reaction' from ction widget, and click on 'Perform Action'. We get:

Error: You must select a fuel before using any	of the reaction commands.		
ଙ୍ଗ SI ି English ଙ୍କ Mass ି	Mole 🔽 Help Messages On	Super-Calculate	Load Super-Initialize
Reaction Panel	State Panel	Device Panel	I/O Panel
Normalize Reaction (by mass or mole of fue	el) V Perform Action 1.0	A (% Theor. Air) Fraction	scaling Factor
Fuel Block: Se	elect Fuel(s)	• Oxidizer Block (try default):	Select Oxidizer 👻
C(s) H2		Air	
0.8796705 kg 🕑 0.12032951	kg 💉	V 11.4143505 kg	🖌 kg 👻
kg V	kg V	kg	v kg v
Products Block (try default selections first):		Select Products	v
✓ C02	H2O	✓ N2	 ✓ 02
2.1488247 kg 😪 C	0.41579002 kg 💙	8.71541 kg 🗸	0.5859099 kg 😪
✓ CO	Methane(CH4)	✓ H2	
0.22793522 kg 💉 0	0.2610554 kg 💉	0.008201925 kg 💙	kg 🗸 🗸

4. Thus, we see that:

Fuel contains: 87.97% of Carbon by mass, and 12.03% by mass of H2 Ans.

AF ratio used = 11.414, by mass.... Ans.

Prob. 8.4.8 Liquid Octane (C_8H_{18}) at 25 C is burnt with 400 % theoretical air at 101 kPa, 25 C in a steady flow process. Determine the adiabatic flame temp.

(b) Plot adiabatic flame temp vs percent excess air.

TEST Solution:

Following are the steps:

Select the Open, Steady combustion daemon, choose non-premixed (i.e. fuel and oxidizer come in separate streams) Ideal Gas (IG) model. Choose Mole radio button. Select Octane (L) for fuel, and select λ as 4 (fraction) i.e. 400%. Air is chosen as oxidizer, by default. Select 'Excess/Deficient Air' from Action widget, and click on 'Perform Action'. We get:

Non-Premixed Open-Steady Combustion TESTcalc: n-IG Model

thermofluids.net + TESTcalcs (Java A	Applets) · Systems · Open	• Steady State •	Specific · Combustion	n/ChemEqulibrium	• • undefined • n-IG Mo	odel
Error: This species has been already chos	sen.					
	ତ Mole 🔽 Help Mes	ssages On	Super-Calculate	Load	Super-Initialize	
Reaction Panel	State Panel		Device Panel		I/O Panel	
Excess/Deficient Air (set by lambda)	Perform Action	<mark>√</mark> ∧ (% The	eor. Air) 🛛 (Eqv. Ra action 💙 0.25	tio) fraction	Scaling Factor	
Fuel Block:	Select Fuel(s)	~	Oxidizer Block (try defau	lit):	Select Oxidizer	~
✓ Octane(L)			Air			
1.0 kmol 💌	kmol 🔍	kmol 🔍	238.09525 kmol	×	kmol	~
kmol	kmol 🗸	kmol 🗸	kmol	×	kmol	~
Products Block (try default selections fi			Select Products			~
CO2	H2O		N2		02	
8.0 kmol	9.0 kmol	✓ 188.095	25 kmol	37.500004	kmol	~

 Now, go to States panel. For State 1, Fuel is chosen by default. Fill in P and T as 101 kPa and 25 C respectively. Click on Calculate. Immediately, State 1 is calculated:

3. State 2: this is for Oxidizer. Again, fill in P and T as shown, and press Enter or click on Calculate. Now, State 2 is calculated:

4. State 3 is for Products. Here temp is the unknown. Fill in the known value of P as shown, press Enter. We get:

Of course, State 3 is not completely calculated since data is not enough. We will revisit this State after completing the Device panel.

5. Now, go to Device panel. Fill in State 1 and State 2 for i10-state and i2-state, and State 3 for e-state. Also, enter Wdot_ext = 0 and Qdot = 0. Click on 'Calculate':

6. Now, go back to State 3. Observe that j3 is posted (with a grey background) there:

Vel = 0.0 m/s [V	'elocity]															
I SI C Er	nglish	C Mas	s 🖲 N	loie 🔽	Help I	Aess	ages On		Super	-Calculate		Load		Super	-Initialize	
F	Reaction Panel			Sta	State Panel			Device Panel					1	/O Pane	1	
< 0	State-3 🗸 >	<se< td=""><td></td><td>ther> Produc</td><td colspan="3">> Products 🗸</td><td>Calculate</td><td></td><td></td><td>No-Plot</td><td>s 💌</td><td></td><td>Init</td><td>ialize</td><td></td></se<>		ther> Produc	> Products 🗸			Calculate			No-Plot	s 💌		Init	ialize	
🖌 рЗ			T3				<i>v</i> 3			u3			h3			
101.0	kPa	×		deg-C	~			m^3/kg	*]	kJ/k	g 🎽			kJ/kg	~
s3			g3			✓	Vel3			✓ z3			e3		(
	kJ/kg.K	×		kJ/kg	×	0.0		m/s	*	0.0	m	~			kJ/kg	~
🗾 j3			mdot3				Voldot3			A3			MM3			
-35.786556	kJ/kg	✓ 6	980.9272	kg/s	~			m^3/s	*		m^2	2	28.77603)	kg/kmol	~
c_p3			Mode/3													
	kJ/kg.K	× 3	.0	UnitLess	~											
A Note Set up the reacting The mass and co change the mass scaling factor.	kJ/kg.K 3.0 UnitLess A Note on State Evaluation CO2: 352.0800000000003 kg; Set up the reaction in the reaction panel before evaluating states of the reactants and products in this panel. CO2: 352.080000000000 kg; The mass and compositions of fuel, oxidizer and products are deduced from the reaction. If you need to change the mass flow rate, go back to the reaction panel and multiply (from the action menu) the reaction by a suitable scaling factor. CO2: 1200.000799999988 kg; In evaluating a state, select the state number first and then the type of the mixture - Fuel Oxidizer, or Products Mass Fractions, x															

7. Now, click on 'Calculate', and, immediately calculations of State 3 are completed as shown below:

Move mouse over a variable	to display its value with m	ore precision.								
• SI C English	C Mass 🔆 Mole	🔽 Help Me	essages On	Supe	r-Calculate	Load	Super	r-Initialize		
Reaction Pa	inel	State Panel			Device Panel		I/O Pane	el		
< <mark>©State-3</mark> ¥	<select th="" together<=""><th>Products 🗸</th><th></th><th colspan="3">Calculate No-Plots</th><th colspan="3">✓ Initialize</th></select>	Products 🗸		Calculate No-Plots			✓ Initialize			
🖌 рЗ	T3		v3		u3		h3			
101.0 kPa	♥ 959.5006	К 💙 2.	74475	m^3/kg 💙	-313.00653	kJ/kg	✓ -35.78656	kJ/kg 🛩		
s3	g3		Vel3		🖌 z3		e3			
8.22897 kJ/kg.K	✓ -7931.4893	kJ/kg 💉 0.	0	m/s 💙	0.0	m	✓ -313.00653	kJ/kg 💌		
✓ j3	mdot3		Voldot3		A3		ММЗ			
-35.786556 kJ/kg	✓ 6980.9272	kg/s 💉 🚺	9160.914	m^3/s 💙	1.91609126E	9 m^2	✓ 28.77603	kg/kmol 💉		
c_p3	Mode/3									
1.16986 kJ/kg.K	3.0	UnitLess 💉								
A Note on State Ev. Set up the reaction in the rea The mass and compositions (change the mass flow rate, g scaling factor.	1.16996 kJ/kg.K 3.0 UnitLess Set up the reaction in the reaction panel before evaluating states of the reactants and products in this panel. CO2: 352.0800000000003 kg; H20: 162.180000000001 kg; U20: 162.180000000001 kg; U20: 162.180000000001 kg; U20: 100.00007999999898 kg; CO2: 352.66693000001 kg; U20: 100.0000799999998 kg; CO2: 352.66693000001 kg; U20: 100.000799999998 kg; CO2: 352.666930000000000000000000000000000000000									

We observe from the above that T3 = 959.5 K = Adiabatic Flame temp Ans.

8. Now that the State 3 is completely known, go back to Device panel, and click on Calculate. Immediately, **Second Law analysis** is completed, and we get:

We observe that: **entropy generated in the reaction = Sdot_net = 9606.593 kW/K**, and the **Irreversibility** (or, exergy loss) can be calculated as $T_0 * Sdot_gen$, kW where T_0 is the surroundings temp in K.

- 9. To plot Adiabatic Flame temp vs Excess air is now very easy:
 - i. Go to Reaction panel, change λ to 3.5 (i.e. 350% theor. Air or 250% excess air), Select 'Excess/Deficient Air' from Action widget, and click on 'Perform Action'. And, click on SuperCalculate. Immediately, all calculations are updated. Go to State 3, and read T3, the adiabatic Flame temp.
 - ii. Repeat this procedure for desired values of λ , and tabulate the results as shown below:

Adiabatic flame temp vs excess air:

% Theoretical air,	% Excess air	Adiab. Flame temp (K)
۸.		
400	<u>300</u>	<u>959.5</u>
350	<mark>250</mark>	<mark>1043.63</mark>
300	<mark>200</mark>	<mark>1152.54</mark>
250	<mark>150</mark>	1299.25
200	<mark>100</mark>	1507.97
150	<mark>50</mark>	<mark>1829.43</mark>
100	Stoichio.	2396.17

Now, plot the results in EXCEL:

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

262

Download free eBooks at bookboon.com

10. To see the TEST code etc. go to I/O panel:

#~~~~OUTPUT OF SUPER-CALCULATE :

TESTcalc Path: ..Open>Steady>Specific>UnMixedCombustion>IG-Mixture; v-10.ce02

#-----Start of TEST-Codes -----

States {

State-1: Fuel;

Given: { p1= 101.0 kPa; T1= 25.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; mdot1= 114.231 kg/s; Model1= 1.0 UnitLess; }

State-2: Oxidizer;

```
Given: { p2= 101.0 kPa; T2= 25.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; mdot2= 6897.6196 kg/s; Model2= 2.0 UnitLess; }
```

State-3: Products;

Given: { p3= 101.0 kPa; Vel3= 0.0 m/s; z3= 0.0 m; mdot3= 6980.9272 kg/s; Model3= 3.0 UnitLess; }

}

Analysis {

Device-A: i-State = State-1, State-2; e-State = State-3; Mixing: true;

Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; }

}

#-----End of TEST-Code: Reaction Block Starts -----

Reaction (Note: To reproduce the TEST solution from the TEST-codes, **this reaction has to be manually set up** after the loading the TEST-codes.):

(1.0 kmol) Octane(L) + (238.09525 kmol) Air = (8.0 kmol) CO2 + (9.0 kmol) H2O + (188.09525 kmol) N2 + (37.500004 kmol) O2

#-----End of Reaction Block -----

#*****DETAILED OUTPUT:

Evaluated States:

#	State-1: Fuel > IG-Mixture;
#	Given: p1= 101.0 kPa; T1= 25.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; mdot1= 114.231 kg/s; Model1= 1.0 UnitLess;
#	Calculated: v1= 0.00142 m^3/kg; u1= -2188.2542 kJ/kg; h1= -2188.11 kJ/kg;
#	s1= 3.15754 kJ/kg.K; g1= -3129.532 kJ/kg; e1= -2188.2542 kJ/kg;
#	j1= -2188.11 kJ/kg; Voldot1= 0.0 m^3/s; A1= 0.0 m^2;
#	MM1= 114.231 kg/kmol; c_p1= 1.71127 kJ/kg.K;
#	State-2: Oxidizer > IG-Mixture;
#	Given: p2= 101.0 kPa; T2= 25.0 deg-C; Vel2= 0.0 m/s;
#	z2= 0.0 m; mdot2= 6897.6196 kg/s; Model2= 2.0 UnitLess;
#	Calculated: v2= 0.84718 m^3/kg; u2= -85.54667 kJ/kg; h2= 0.01836 kJ/kg;
#	s2= 6.88333 kJ/kg.K; g2= -2052.2454 kJ/kg; e2= -85.54667 kJ/kg;
#	j2= 0.01836 kJ/kg; Voldot2= 5843.5156 m^3/s; A2= 5.8435155E8 m^2;
#	MM2= 28.97 kg/kmol; c_p2= 1.00416 kJ/kg.K;
#	State-3: Products > IG-Mixture;
#	Given: p3= 101.0 kPa; Vel3= 0.0 m/s; z3= 0.0 m;
#	mdot3= 6980.9272 kg/s; Model3= 3.0 UnitLess;
#	Calculated: T3= 959.5006 K; v3= 2.74475 m^3/kg; u3= -313.00653 kJ/kg;
#	h3= -35.78656 kJ/kg; s3= 8.22897 kJ/kg.K; g3= -7931.4893 kJ/kg;
#	e3= -313.00653 kJ/kg; j3= -35.78656 kJ/kg; Voldot3= 19160.914 m^3/s;
#	A3= 1.91609126E9 m^2; MM3= 28.77603 kg/kmol; c_p3= 1.16986 kJ/kg.K;
# Mass	, Energy, and Entropy Analysis Results:
#	Device-A: i-State = State-1, State-2; e-State = State-3; Mixing: true;
#	Given: Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K;
#	Calculated: Sdot_gen= 9606.593 kW/K; Jdot_net= -0.0076252595 kW; Sdot_net=
-9606.5	93 kW/K;

Reactive Systems

Prob. 8.4.9 Liquid propane (C3H8) enters a steady flow combustion chamber at 25 C and 1 atm at a rate of 0.4 kg/min where it is mixed and burned with 150% excess air that enters the combustion chamber at 12 C. If the combustion products leave at 1200 K and 1 atm, determine: (i) mass flow rate of air, (ii) rate of heat transfer from the combustion chamber, and (iii) the rate of entropy generation during this process. Assume T0 = 25 C.

(b) Plot the rate of exergy destruction for the surrounding temp varying from 0 to 38 C. [Ref: 1]

the globally networked management school

Click on the ad to read more

Download free eBooks at bookboon.com

TEST Solution:

Following are the steps:

Select the Open, Steady combustion daemon, choose non-premixed (i.e. fuel and oxidizer come in separate streams) Ideal Gas (IG) model. Choose Mole radio button. Select Propane (L) for fuel, and select λ as 250% i.e. 150% excess air. Air is chosen as oxidizer, by default. Select 'Excess/Deficient Air' from Action widget, and click on 'Perform Action'. We get:

		Ν	Ion-Premi:	ked Open-St	teady Cor	nbusti	on TESTc	alc: n-IG	Model			
hermofluid:	ls.net • TES	Tcalcs (Java Ap	plets) · Sy	stems · Open	• Steady S	tate •	Specific •	Combustion	/ChemEquli	brium • un	defined • n-I	G Mode
Error: This s	pecies has bee	n already chose										
⊙ si (C English	C Mass	Mole	🔽 Help Me	ssages On		Super-Cale	culate	Load		Super-Initialize	
	Reaction Pa	anel		State Panel			Devic	e Panel		ĺ.	/O Panel	
Excess/De	aficient Air (set	by lambda)	Dor	form Action	-	۸ <mark>(% The</mark> o	or. Air)	🗆 (Eqv. Rat	io)		Scaling Factor	
Excessibe	encient All (Set	by lambda)		IOTHI ACUOIT	250.0	%	×	0.4	fraction	✓ 1.0	No Unit	~
Fuel Block:	t.		Select Fuel(s)			~	Oxidizer Blo	ck (try defaul	i):	Select O	kidizer	*
🖌 Pi	ropane(L)						× .	Air				
1.0	kmol	~	kmol	× .	kmol	\sim	59.52381	kmol	~		kmol	\sim
	kmol		kmol	× .	kmol	1		kmol	×		kmol	1
Products B	lock (try defau	It selections firs	it):				Select Prod	ucts				~
	CO2			H2O			N2			02	<i>6</i> .	

Therefore: Flow rate of air for a flow rate of 0.4 kg/min of fuel:

 $\frac{59.5238 \cdot 29}{44.1} \cdot 0.4 = 15.657$ kg/min air for 0.4 kg/min of fuel ...Ans.

2. Go to State 1, i.e. Fuel: enter p1 = 1 atm, T1 = 25 C, hit Enter. We get:

Move mouse over a variable to display its	s value with more precision.									
	s 🕫 Mole 🔽 H	lelp Messages On	Super	-Calculate	Load	Supe	r-Initialize			
Reaction Panel	State	Panel	Device Panel I/O Panel							
< <mark>©State-1 v</mark> > <sele< td=""><td>ect Together> <mark>Fuel</mark></td><td>~</td><td>Calculate</td><td></td><td>No-Plots 🔽</td><td>Init</td><td>tialize</td></sele<>	ect Together> <mark>Fuel</mark>	~	Calculate		No-Plots 🔽	Init	tialize			
🖌 p1 🗹	T1	v1		u1		h1				
1.0 atm 💉 25	5.0 deg-C	♥ 0.002	m^3/kg 💌	-2782.9692	kJ/kg 🗸 🗸	-2782.7666	kJ/kg 💉			
s1	g1	✓ Vel1		¥ z1		e1				
4.29291 kJ/kg.K ❤ -40	062.6968 kJ/kg	▶ 0.0	m/s 💙	0.0	m 🗸	-2782.969	kJ/kg 💊			
jt	mdot1	Voldot1		A1		MM1				
-2782.7666 kJ/kg 🗡 44	kg/s	♥ 0.0	m^3/s 💌	0.0	m^2 🗸	44.1	kg/kmol 💉			
c_p1	Model1									
2.77007 kJ/kg.K 🛛 1.0	0 UnitLess	~								
2.77007 kUkg K 1.0 UnitLess A Note on State Evaluation Fropane(L): 44.1 kg: Set up the reaction in the reaction panel before evaluating states of the reactants and products in this panel. Propane(L): 44.1 kg: The mass and compositions of fuel, oxidizer and products are deduced from the reaction. If you need to change the mass flow rate, go back to the reaction panel and multiply (from the action menu) the reaction by a suitable scaling factor. Propane(L): 42.1 kg: In evaluating a state select the state number first and then the two of the mixture - Firel Oxidizer or Products Propane(L): y = 1.0										

Note that mdot1 = 44.1 kg/s is automatically selected, since 1 kmol of fuel was entered in the Reaction panel.

3. State 2: Enter p2, T2 for oxidizer. Hit Enter. We get:

Move mouse over a variable to disp	play its value with more prec	ision.		
• SI C English C I	Mass 🔍 Mole	🔽 Help Messages On	Super-Calculate	oad Super-Initialize
Reaction Panel		State Panel	Device Panel	I/O Panel
< <mark>©State-2 v</mark> > <	Select Together> <mark>Oxi</mark>	dizer 🗸	Calculate No-Plots	Initialize
🖌 p2	🖌 T2	v2	u2	h2
1.0 atm	12.0 deg-1	0.80764	m^3/kg -94.86336 kJ/kg	✓ -13.02914 kJ/kg ✓
s2	g2	✓ Vel2	✓ z2	e2
6.83816 kJ/kg.K 🔊	 -1962.9299 kJ/kg 	✓ 0.0	m/s 💉 0.0 m	✓ -94.86336 kJ/kg ✓
j2	mdot2	Voldot2	A2	MM2
-13.02914 kJ/kg 💙	1724.4048 kg/s	✓ 1392.6998	m^3/s ↔ 1.39269984E8 m^2	✓ 28.97 kg/kmol ✓
c_p2	Mode/2			
1.00348 kJ/kg.K 🚿	2.0 UnitLet	s 🗸		

4. State 3, for Products. Again, enter p3, T3 and hit Enter. We get:

Nove mouse over a variable to display its value with more precision.										
Load Super-Initialize										
I/O Panel										
v Initialize										
h3										
✓ -187.51718 kJ/kg ✓										
e3										
✓ -536.1194 kJ/kg ✓										
ММЗ										
✓ 28.61943 kg/kmol ✓										

5. Now, go to Device panel. Enter State 1, State 2 and State 3 for i1-state, i2-state and e-state. Also enter Wdot_ext = 0. Hit Enter. Click on SuperCalculate. We get:

Therefore, Heat Transfer, Q = -184983.36 KJ/s for 1 kmol/s of fuel

And, Heat Transfer for 0.4 kg/min of fuel:

 $\frac{-184988.36}{44.1} = -4.195 \times 10^{3}$ kJ..per kg of propane -4195·0.4 = -1.678 × 10³ kJ for 0.4 kg/min of propane Ans..

Entropy generation: Sdot_gen = 3734.5896 kJ for 44.1 kg of fuel

Then, entropy gen. for 0.4 kg/min of fuel:

 $\frac{3734.59}{44.1} \cdot 0.4 = 33.874$ kJ/min.K for 0.4 kg/min of propane.... Ans.

And, Irreversibility (or, loss of exergy) = $T_0 * S_{gen}$:

298.15-33.874 = 1.01 × 10⁴ kJ/min.... Ans.

6. I/O panel gives the TEST code etc:

#~~~~~OUTPUT OF SUPER-CALCULATE

TESTcalc Path: ..Open>Steady>Specific>UnMixedCombustion>IG-Mixture; v-10.ce02

#-----Start of TEST-Codes -----

States {

State-1: Fuel;

Given: { p1= 1.0 atm; T1= 25.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; mdot1= 44.1 kg/s; Model1= 1.0 UnitLess; }

Reactive Systems

State-2: Oxidizer;

Given: { p2= 1.0 atm; T2= 12.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; mdot2= 1724.4048 kg/s; Model2= 2.0 UnitLess; }

State-3: Products;

Given: { p3= 1.0 atm; T3= 1200.0 K; Vel3= 0.0 m/s; z3= 0.0 m; mdot3= 1760.7767 kg/s; Model3= 3.0 UnitLess; }

}

Analysis {

Device-A: i-State = State-1, State-2; e-State = State-3; Mixing: true;

Given: { Wdot_ext= 0.0 kW; T_B= 298.15 K; }

}

#-----End of TEST-Code: Reaction Block Starts -----

Click on the ad to read more

Reaction (Note: To reproduce the TEST solution from the TEST-codes, this reaction has to be manually set up after the loading the TEST-codes.):

(1.0 kmol) Propane(L) + (59.52381 kmol) Air = (3.0 kmol) CO2 + (4.0 kmol) H2O + (47.02381 kmol) N2 + (7.5 kmol) O2

#-----End of Reaction Block -----

#*****DETAILED OUTPUT:

Evaluated States:

#	State-1: Fuel > IG-Mixture;
#	Given: p1= 1.0 atm; T1= 25.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; mdot1= 44.1 kg/s; Model1= 1.0 UnitLess;
#	Calculated: v1= 0.002 m^3/kg; u1= -2782.9692 kJ/kg; h1= -2782.7666 kJ/kg;
#	s1= 4.29291 kJ/kg.K; g1= -4062.6968 kJ/kg; e1= -2782.969 kJ/kg;
#	$j1 = -2782.7666 \text{ kJ/kg}; \text{ Voldot}1 = 0.0 \text{ m}^3/\text{s}; \text{ A}1 = 0.0 \text{ m}^2;$
#	MM1= 44.1 kg/kmol; c_p1= 2.77007 kJ/kg.K;
#	State-2: Oxidizer > IG-Mixture;
#	Given: p2= 1.0 atm; T2= 12.0 deg-C; Vel2= 0.0 m/s;
#	z2= 0.0 m; mdot2= 1724.4048 kg/s; Model2= 2.0 UnitLess;
#	Calculated: v2= 0.80764 m^3/kg; u2= -94.86336 kJ/kg; h2= -13.02914 kJ/kg;
#	s2= 6.83816 kJ/kg.K; g2= -1962.9299 kJ/kg; e2= -94.86336 kJ/kg;
#	j2= -13.02914 kJ/kg; Voldot2= 1392.6998 m^3/s; A2= 1.39269984E8 m^2;
#	MM2= 28.97 kg/kmol; c_p2= 1.00348 kJ/kg.K;
#	State-3: Products > IG-Mixture;
#	Given: p3= 1.0 atm; T3= 1200.0 K; Vel3= 0.0 m/s;
#	z3= 0.0 m; mdot3= 1760.7767 kg/s; Model3= 3.0 UnitLess;
#	Calculated: v3= 3.44044 m^3/kg; u3= -536.1194 kJ/kg; h3= -187.51718 kJ/kg;
#	s3= 8.57304 kJ/kg.K; g3= -10475.163 kJ/kg; e3= -536.1194 kJ/kg;
#	j3= -187.51718 kJ/kg; Voldot3= 6057.8413 m^3/s; A3= 6.0578413E8 m^2;
#	MM3= 28.61943 kg/kmol; c_p3= 1.23771 kJ/kg.K;
# Mass	, Energy, and Entropy Analysis Results:
#	Device-A: i-State = State-1, State-2; e-State = State-3; Mixing: true;
#	Given: Wdot_ext= 0.0 kW; T_B= 298.15 K;
#	Calculated: Qdot= -184988.36 kW; Sdot_gen= 3734.5896 kW/K; Jdot_net= 184988.36
kW; Sd	lot_net= -3114.1357 kW/K;

(b) Plot the rate of exergy destruction for the surrounding temp varying from 0 to 38 C:

Procedure is quite simple:

In the Analysis panel, change the T_B to desired value, hit Enter, and click on SuperCalculate.

Tabulate Sdot_gen against T_B. Complete the Table as shown below, remembering that Exergy destroyed = Irreversibility = T_B * Sdot_gen.

Т_В (К)	Sdot_gen (kW/K)	Sdot_gen. for 0.4 kg/min of fuel = Col. 2 * 0.4 / 44.1 (kJ/min.K)	Exergy destroyed = T0 * Sdot_gen = Col. 1 * Col. 3 (kJ/min)
273.15	3791.38	34.389	9393.337
278.15	3779.2	34.278	9534.553
283.15	3767.46	34.172	9675.794
288.15	3756.12	34.069	9817.016
293.15	3745.17	33.970	9958.246
298.15	3734.59	33.874	10099.483
303.15	3714.45	33.691	10213.474
311.15	3708.67	33.639	10466.691

< OLIVER WYMAN

ver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk usep industry knowledge with specialized expertise in stategy, operations, tak management, organizational transformation, and leadership development. With offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

Now, plot the Results:

Prob. 8.4.10 A gasoline engine consumes 0.011 kg/s of Liquid Octane (C8H18) at 1 atm, 25 C, and delivers 150 kW. It uses 150% theoretical air, entering at 1 atm, 45 C. Products of combustion leave the engine at 750 K. Find out the heat transfer.

TEST Solution:

Following are the steps:

Select the Open, Steady combustion daemon, choose non-premixed (i.e. fuel and oxidizer come in separate streams) Ideal Gas (IG) model. Choose Mass radio button. Select Octane(L) for fuel, and select λ as 150%. Air is chosen as oxidizer, by default. Select 'Excess/ Deficient Air' from Action widget, and click on 'Perform Action'. We get:

ror: This species	has been already chos	en.									
🔍 SI O En	glish 🖲 Mass 🔿 Mo	le	Free Help Message	es On	Su	per-Calculate	I	Load		Super-Initialize	
Rea	ction Panel		State Panel			Device P	anel	1	1	/O Panel	
xcess/Deficient	Air (set by lambda)	Y Per	form Action	150.0	%	v	.6666667	fraction	· 1.0	No Unit	
xcess/Deficient	Air (set by lambda)	Select Euel(s)	form Action	150.0	% %	xidizer Block (.6666667 trv default):	fraction	Select O	No Unit	
el Block:	Air (set by lambda)	Select Fuel(s)	form Action	150.0	× 0	xidizer Block	.6666667 try default):	fraction	Select O	No Unit	
el Block:	Air (set by lambda)	Select Fuel(s)	form Action	150.0	% % 2:	xidizer Block Air 2.643654	.6666667 try default): kg	fraction N	Select O	No Unit xidizer	
el Block:	Air (set by lambda)	Select Fuel(s)	form Action	kg	♥ </td <td>xidizer Block Air 2.643654</td> <td>.6666667 try defauit): kg</td> <td>fraction 1</td> <td>Select O</td> <td>No Unit xidizer kg</td> <td></td>	xidizer Block Air 2.643654	.6666667 try defauit): kg	fraction 1	Select O	No Unit xidizer kg	
el Block: Cotane(L Cotane(L Reconstruction) Reconstruction	Air (set by lambda)	V Per Select Fuel(s) kg kg st):	torm Action	kg	% % √ 2: ×	xidizer Block 2.643654 Select Product	6666667 try default): kg	fraction	v 1.0 Select 0.	No Unit xidizer kg	

2. To convert on basis of 0.011 kg/s of fuel: Select the scaling factor as 0.011 and from the Action widget, select 'Multiply by the Scaling factor' and click on 'Perform Action'. We get:

Error: This species has been	already chosen.									
• SI • English •	Mass 🤆 Mole		Help Messages Or	1	Super-Calculate			Super-Initialize		
Reaction Pan	iel		State Panel		Device	Panel		I/O Panel		
Multiply by the Scaling Fact	tor	Perform	Action	✓ A (% The	eor. Air)	(Eqv. Ratio) 1.0) fraction	✓ Scaling 0.011 N	Factor	
Fuel Block:	Sel	ect Fuel(s)		~	Oxidizer Bloc	k (try default):		Select Oxidizer	~	
✓ Octane(L)					🖌 🖌	ir				
0.011 kg	~	kg N	2	kg 🗸	0.2490802	kg	~	kg	×	
kg		kg		kg 💙		kg	×	kg	~	
Products Block (try default	selections first):				Select Produ	icts			~	
CO2	✓ 0.	.015617302) kg	✓ 0.19018	N2 48 kg	3	✓ 0.01925	02 59222 kg	~	

3. Now, go to States panel. Here, mass flow rates are chosen automatically, with reference to the Reaction panel. So, flow rate of fuel is 0.011 kg/s. For State 1 (i.e. fuel), enter p1, T1 as shown and hit Enter. We get:

Day one and you're ready

Day one. It's the moment you've been waiting for. When you prove your worth, meet new challenges, and go looking for the next one. It's when your dreams take shape. And your expectations can be exceeded. From the day you join us, we're committed to helping you achieve your potential. So, whether your career lies in assurance, tax, transaction, advisory or core business services, shouldn't your day one be at Ernst & Young?

What's next for your future? ey.com/careers

JERNST & YOUNG Quality In Everything We Do

© 2010 EYGM Lin

ed. All Rid

Move mouse	over a variable to	display its	value with mo	re precision											
• SI	C English 🔍 M	lass 🤆 M	lole	🔽 Help	Mes	sages On	Sup	er-Ca	alcula	ate	Load	1	Sup	oer-Initialize	
	Reaction Panel			Stat	e Pan	el	1	I	Devic	e Panel			I/O Pa	anel	
<	©State-2 🗸 >	<sele< th=""><th></th><th>Oxidizer</th><th>~</th><th></th><th>Calculate</th><th></th><th></th><th></th><th>No-Plots 💌</th><th></th><th></th><th>nitialize</th><th></th></sele<>		Oxidizer	~		Calculate				No-Plots 💌			nitialize	
🖌 p2		<u> </u>	T2			v2				u2			h2		
1.0	atm	✓ 45.0	0	deg-C	~	0.90111	m^3/kg	~	-71.	18205	kJ/kg	~	20.12271	kJ/kg	~
s2			g2			✓ Vel2			1	z2			e2		
6.94773	kJ/kg.K	✓ -21	90.2974	kJ/kg	~	0.0	m/s	~	0.0		m	*	-71.18205	kJ/kg	~
j2		n	ndot2			Voldot2				A2			MM2		
20.12271	kJ/kg	✓ 0.2	490802	kg/s	~	0.22445	m^3/s	۷	224	44.816	m^2	*	28.97	kg/kmol	*
c_p2		h	Model2												
1.00652	kJ/kg.K	✓ 2.0		UnitLess	~										
A N Set up the re The mass an change the m scaling facto In evaluating	lote on State Evalua action in the reactior d compositions of fu lass flow rate, go b r. a state, select the si	tion n panel befo uel, oxidizer ack to the re tate number	and products ar eaction panel an r first and then th	ates of the re re deduced fro d multiply (fro ne type of the	actants om the m the a mixtur	and products in th reaction. If you nee ction menu) the rea e - Fuel, Oxidizer, o	is panel. ed to action by a suit ir Products	able		Air: 0.24 Mi Air: x = Mi Air: y =	Oxidizer Co 9080194 kg; ass Fractions, x 1.0 ole Fractions, y- 1.0	ompo (

4. Similarly, for State 2, (i.e. Oxidizer) enter p2, T2 and hit Enter. We get:

5. And, for State 3: enter p3, T3 and hit Enter. We get:

Move mouse ov	ver a variable to o	display	its value wi	th more precisio	n.									
ା ମା	English 🖲 M	ass (Mole	🔽 He	lp Mes	sages On	Su	per-Cal	iculate	Loa	d	Sup	er-Initialize	
	Reaction Panel			St	ate Par	el		D	evice Panel			I/O Pa	nel	
< (DState-3 ♥ >	<s< td=""><td>elect Toget</td><td>ner> <mark>Produc</mark></td><td>ts 🗸</td><td></td><td>Calculat</td><td>e</td><td></td><td>No-Plots 💌</td><td></td><td>1</td><td>nitialize</td><td></td></s<>	elect Toget	ner> <mark>Produc</mark>	ts 🗸		Calculat	e		No-Plots 💌		1	nitialize	
🖌 рЗ			🖌 T3			v3			u3			h3		
1.0	atm	~	750.0	К	~	2.14614	m^3/kg	~	-1694.2028	kJ/kg	~	-1476.7448	kJ/kg	~
s3			g3			✓ Vel3			🖌 z3			e3		
8.02829	kJ/kg.K	~	-7497.963	kJ/kg	~	0.0	m/s	~	0.0	m	~	-1694.2026	kJ/kg	~
j3			mdot3			Voldot3			A3			ММЗ		
-1476.7448	kJ/kg	~	0.25896525	kg/s	~	0.55578	m^3/s	~	55577.64	m^2	*	28.67452	kg/kmol	*
с_р3			Model3											
1.17584	kJ/kg.K	~	3.0	UnitLess	~									
A No Set up the read The mass and change the ma scaling factor.	te on State Evalua ction in the reaction compositions of fu ss flow rate, go ba state, select the st	tion n panel lel, oxid ack to th tate nur	before evalua izer and prodi he reaction pa nber first and	ting states of the r ucts are deduced nel and multiply (fi then the type of th	reactant from the rom the a	a and products in th reaction. If you new action menu) the re- e - Fuel, Oxidizer, c	nis panel. ad to action by a s or Products	uitable	 CO2: 0.0 H2O: 0.0 N2: 0.19 O2: 0.01 CO2: x H2O: x 	Products C 13390393150720 1561730178322i 01848081215050 92592225232999 ass Fractions, = 0.13092076903 = 0.06030655056	Comp 908 kg 8722 k 94 kg; 54 kg; x 328969 916769	osition g; g; 38 19		<

 Now, go to Device panel. Enter State 1, State 2 and State 3 for i1-state, i2-state and e-state respectively. Also, enter for Wdot_ext = 150 kW. Hit Enter. Also, click on SuperCalculate. We get:

Thus, heat transfer, Qdot = -213.37 kW for a fuel flow rate of 0.011 kg/s (-ve sign indicates heat flowing *out* of system).... Ans.

7. I/O panel gives the TEST code etc:

#~~~~~OUTPUT OF SUPER-CALCULATE:

TESTcalc Path: ..Open>Steady>Specific>UnMixedCombustion>IG-Mixture; v-10.ce02

#*****TEST-CODES:

#-----Start of TEST-Codes -----

States {

State-1: Fuel;

Given: { p1= 1.0 atm; T1= 25.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; mdot1= 0.011 kg/s; Model1= 1.0 UnitLess; }

State-2: Oxidizer;

Given: { p2= 1.0 atm; T2= 45.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; mdot2= 0.24908 kg/s; Model2= 2.0 UnitLess; }

Reactive Systems

State-3: Products;

Given: { p3= 1.0 atm; T3= 750.0 K; Vel3= 0.0 m/s; z3= 0.0 m; mdot3= 0.25897 kg/s; Model3= 3.0 UnitLess; }

}

Analysis {

Device-A: i-State = State-1, State-2; e-State = State-3; Mixing: true;

Given: { Wdot_ext= 150.0 kW; T_B= 298.15 K; }

}

#-----End of TEST-Code: Reaction Block Starts ------

Download free eBooks at bookboon.com

Reaction (Note: To reproduce the TEST solution from the TEST-codes, this reaction has to be manually set up after the loading the TEST-codes.):

(0.011 kg) Octane(L) + (0.2490802 kg) Air = (0.03390393 kg) CO2 + (0.015617302 kg) H2O + (0.1901848 kg) N2 + (0.019259222 kg) O2

#-----End of Reaction Block -----

#*****DETAILED OUTPUT:

Evaluated States:

#	State-1: Fuel > IG-Mixture;
#	Given: p1= 1.0 atm; T1= 25.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; mdot1= 0.011 kg/s; Model1= 1.0 UnitLess;
#	Calculated: v1= 0.00142 m^3/kg; u1= -2188.2542 kJ/kg; h1= -2188.11 kJ/kg;
#	s1= 3.15754 kJ/kg.K; g1= -3129.532 kJ/kg; e1= -2188.2542 kJ/kg;
#	$j1 = -2188.11 \text{ kJ/kg}$; Voldot $1 = 0.0 \text{ m}^3/\text{s}$; A $1 = 0.0 \text{ m}^2$;
#	MM1= 114.231 kg/kmol; c_p1= 1.71127 kJ/kg.K;
#	State-2: Oxidizer > IG-Mixture;
#	Given: p2= 1.0 atm; T2= 45.0 deg-C; Vel2= 0.0 m/s;
#	z2= 0.0 m; mdot2= 0.24908 kg/s; Model2= 2.0 UnitLess;
#	Calculated: v2= 0.90111 m^3/kg; u2= -71.18205 kJ/kg; h2= 20.12271 kJ/kg;
#	s2= 6.94773 kJ/kg.K; g2= -2190.2974 kJ/kg; e2= -71.18205 kJ/kg;
#	j2= 20.12271 kJ/kg; Voldot2= 0.22445 m^3/s; A2= 22444.816 m^2;
#	MM2= 28.97 kg/kmol; c_p2= 1.00652 kJ/kg.K;
#	State-3: Products > IG-Mixture;
#	Given: p3= 1.0 atm; T3= 750.0 K; Vel3= 0.0 m/s;
#	z3= 0.0 m; mdot3= 0.25897 kg/s; Model3= 3.0 UnitLess;
#	Calculated: v3= 2.14614 m^3/kg; u3= -1694.2028 kJ/kg; h3= -1476.7448 kJ/kg;
#	s3= 8.02829 kJ/kg.K; g3= -7497.963 kJ/kg; e3= -1694.2026 kJ/kg;
#	j3= -1476.7448 kJ/kg; Voldot3= 0.55578 m^3/s; A3= 55577.64 m^2;
#	MM3= 28.67452 kg/kmol; c_p3= 1.17584 kJ/kg.K;
# Mass	s, Energy, and Entropy Analysis Results:
#	Device-A: i-State = State-1, State-2; e-State = State-3; Mixing: true;
#	Given: Wdot_ext= 150.0 kW; T_B= 298.15 K;
#	Calculated: Qdot= -213.36855 kW; Sdot_gen= 1.0294154 kW/K; Jdot_net= 363.36856
kW; Sd	lot_net= -0.31377375 kW/K;

Prob. 8.4.11 One kmol of Methane (CH4) gas undergoes complete combustion with stoichiometric amount of air in a rigid container. Initially, the air and methane are at 100 kPa and 25 C. The products of combustion are at 567 C. How much heat is rejected from the container, in kJ/kmol fuel? Also, find the exergy lost and the final pressure.

(b) Plot final pressure, heat rejected and exergy lost as the final temp varies from 300 C to 650 C.[Ref: 1]

TEST Solution:

Following are the steps:

1. Select the Closed system, Combustion daemon, since the reaction occurs in a closed vessel, as shown below:

2. Select Pre-mixed, Ideal Gas (IG) for Material selection:

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Blue Bar

ANN & JERRY

Dove

3. Clicking on IG mixture model gives the following window, where we have to choose the reactants, i.e. Methane and Air, in the present case:

actants Bloc	k: Select reactant(s) and specify a	mount(s) if known.	a · process ·	Specific • Combust	ion/Chemedulibhur	m · Premixed · h-16 r	100
•si ⊂e	English C	Mass 🔍 🕅	lole 🔽 Help Mess	ages On	Super-Calculate	Load	Super-Initialize	I
	Reaction Panel		State Panel		Process Pane		I/O Panel	_
ect an Act	ion After Choosing	Reactant(s)	Perform Action	✓ \ (% Th	eor. Air) 🛛 (Eqv.	Ratio) fraction 💙	Scaling Factor	
					Methane	(CH4)		
					Select R	eactants		
	kmol	v	kmol	×	Select R C(s) S	eactants		
	kmol kmol	 	kmol		C(s) Select R C(s) H2 Ash(s) Methane	(CH4)		
ducts Bloc	kmol kmol	IS, products ar	e auto-seleted):	× ×	Select R C(s) S H2 Ash(s) Methane Select Pro	(CH4) e(C2H2) ducts		

4. After choosing Methane and Air, choose 'Theoretical reaction with Air' from the Action widget, and click on 'Perform Action'. We get:

• SI	C English	C Mass	• Mole	🔽 Help Messa	iges On	Sup	per-Calculate	Lo	ad	Super-Initialize	
	Reaction Pan	iel		State Panel			Process Panel			I/O Panel	
Select a	n Action After Cho	osing Reactant	t(s) ⊻ Perf	orm Action	√ 1.0	λ (% Theor. Air)) 🛛 (Eqv. R	atio) fraction	✓ 1.0	Scaling Factor	~
							Select Re	actants			~
	Methane(CH4	4)		Air							
1.0	kmol	~	9.523809	kmol	~	-	kmol			kmol	×
	kmol	×		kmol	×		kmol	×		kmol	×
Products	s Block (for some a	actions, produc	ts are auto-se	eleted):			Select Prod	ucts			~
	C02			H20		N	12				
1.0	kmol	~	2.0	kmol	×	7.5238094	kmol	~		kmol	\sim

5. Now, go to State panel. For State 1, enter p1 = 100 kPa, T1 = 25 C, as shown and hit Enter. We get:

6. For State 2, enter T2 = 567 C, Vol2 = Vol1 (since it is a rigid vessel). Hit Enter. We get:

C SI C English C Mass C Mole	🔽 Help Messages On	Super-Calculate	Load	Super-Initialize
Reaction Panel	State Panel	Process Pan	el 🛛	I/O Panel
< OState-2 > <select td="" together-<=""><td>> Products 💌</td><td>Calculate</td><td>No-Plots 💌</td><td>Initialize</td></select>	> Products 💌	Calculate	No-Plots 💌	Initialize
p2 🖌 T2	v2	u2		h2
281.78775 kPa 😪 567.0	deg-C 💉 0.89732	m^3/kg 💉 -2624.8916	kJ/kg 💉 -23	372.0378 kJ/kg 💙
s2g2	✓ Vel2	✓ z2		e2
8.13791 kJ/kg.K 😪 -9209.101	kJ/kg 🕑 0.0	m/s 💉 0.0	m 🖌 -26	624.8918 kJ/kg 💙
j2 m2	✓ Vol2	MM2		c_p2
-2372.0378 kJ/kg 🛛 290.71667	kg 💙 =Vol1	m^3 ❤ 27.62466	kg/kmol 💉 1.2	27063 kJ/kg.K 💙
Model2				
3.0 UnitLess				
A Note on State Evaluation		CO2: 44.0	Products Compositio)1 kg:)n
Set up the reaction in the reaction panel first.		H2O: 36.0)4 kg;	
The mass and compositions of reactants and products are	picked up from the balanced reaction. T	o change	0000000000009 Kg;	
the mass (or mass flow rate), use the Scaling Factor in the	reaction panel.	Ma	ess Fractions, x	
In evaluating a state, select the state number first and then	the mixture type - reactans or products	H2O: x =	0.12396950065929024	

Note that p2 is 281.79 kPa ... Ans.

 Now, go to Process panel. Fill in State 1 for bA-state, Null-state for bB-state, and State 2 for f-state. Also, W_ext = 0. Hit Enter. Click on SuperCalculate. We get:

Note that heat transfer , $Q = -662146.94 \text{ kJ} \dots$ Ans. (-ve sign indicates heat rejected from system). And, Entropy generated = S_gen is also calculated, and exergy loss = T_B * S_gen.

8. I/O panel gives the TEST code etc:

#~~~~~OUTPUT OF SUPER-CALCULATE

TESTcalc Path: ..Closed>Process>Specific>PreMixedCombustion>IG-Mixture; v-10.ce02

#-----Start of TEST-Codes -----

States {

State-1: Reactants;

Given: { p1= 100.0 kPa; T1= 25.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 291.94476 kg; Model1= 1.0 UnitLess; }

State-2: Products;

Given: { T2= 567.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; m2= 290.71667 kg; Vol2= "Vol1" m^3; Model2= 3.0 UnitLess; }

}

Analysis {

Process-A: b-State = State-1; f-State = State-2;

Given: { W_ext= 0.0 kJ; T_B= 298.15 K; }

}

#-----End of TEST-Code: Reaction Block Starts -----

Reaction (Note: To reproduce the TEST solution from the TEST-codes, this reaction has to be manually set up after the loading the TEST-codes.):

(1.0 kmol) Methane(CH4) + (9.523809 kmol) Air = (1.0 kmol) CO2 + (2.0 kmol) H2O + (7.5238094 kmol) N2

#-----End of Reaction Block -----

#*****DETAILED OUTPUT:

Evaluated States:

#	State-1: Reactants > IG-Mixture;
#	Given: p1= 100.0 kPa; T1= 25.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; m1= 291.94476 kg; Model1= 1.0 UnitLess;
#	Calculated: v1= 0.89355 m^3/kg; u1= -345.79453 kJ/kg; h1= -256.43988 kJ/kg;
#	s1= 7.24025 kJ/kg.K; g1= -2415.1194 kJ/kg; e1= -345.79453 kJ/kg;
#	j1= -256.43988 kJ/kg; Vol1= 260.8662 m^3; MM1= 27.74136 kg/kmol;
#	c_p1= 1.07163 kJ/kg.K;
#	State-2: Products > IG-Mixture;
#	Given: T2= 567.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m;
#	m2= 290.71667 kg; Vol2= "Vol1" m^3; Model2= 3.0 UnitLess;
#	Calculated: p2= 281.78775 kPa; v2= 0.89732 m^3/kg; u2= -2624.8916 kJ/kg;
#	h2= -2372.0378 kJ/kg; s2= 8.13791 kJ/kg.K; g2= -9209.101 kJ/kg;
#	e2= -2624.8918 kJ/kg; j2= -2372.0378 kJ/kg; MM2= 27.62466 kg/kmol;
#	c_p2= 1.27063 kJ/kg.K;
# Mass,	, Energy, and Entropy Analysis Results:
#	Process-A: b-State = State-1; f-State = State-2;
#	Given: W_ext= 0.0 kJ; T_B= 298.15 K;
#	Calculated: Q= -662146.94 kJ; S_gen= 2472.9243 kJ/K; Delta_E= -662146.94 kJ; Delta_
S= 252.	07263 kJ/K;

(b) Plot final pressure (p2), heat rejected and exergy lost vs final temp:

Procedure as follows:

Go to State panel, and in State 2, change the T2 to desired value, hit Enter, observe new value of p2, and click on SuperCalculate. Then, go to Process panel, and note new values of Q and S_gen.

Tabulate values of p2, Q, S_gen against T2. Complete the Table as shown below, remembering that Exergy destroyed = T_B * Sdot_gen:

T_B = 298.15 K				
T2 (C)	Heat	S_gen	Exergy loss =	p2 (kPa)
	rejected, Q	(kJ/K)	T_B * S_gen	
	(kJ)		(kJ)	
300	734490.94	2612.190	778824.36	192.24
350	721407.06	2590.225	772275.67	209.00
400	708099.44	2566.108	765085.10	225.78
450	694584.1	2540.169	757351.30	242.55
500	680855.6	2512.460	749090.07	259.32
550	666929.44	2483.224	740373.35	276.09
567	662146.94	2472.924	737302.38	281.79
600	652801.06	2452.484	731208.22	292.86
650	638485.5	2420.428	721650.61	309.63

Now, plot the results in EXCEL:

8.5 References:

- 1. *Yunus A. Cengel & Michael A. Boles*, Thermodynamics, An Engineering Approach, 7th Ed. McGraw Hill, 2011.
- 2. *Sonntag, Borgnakke & Van Wylen*, Fundamentals of Thermodynamics, 6th Ed. John Wiley & Sons, 2005.
- 3. *Michel J. Moran & Howard N. Shapiro*, Fundamentals of Engineering Thermodynamics, 4th Ed. John Wiley & Sons, 2000.
- 4. P.K. Nag, Engineering Thermodynamics, 2nd Ed. Tata McGraw Hill Publishing Co., 1995.
- 5. *R.K. Rajput,* A Text Book of Engineering Thermodynamics, Laxmi Publications, New Delhi, 1998
- 6. Domkunndwar et al, A course in Thermal Engineering, Dhanpat Rai & Co., New Delhi, 2000
- 7. <u>http://www.conservationphysics.org/atmcalc/atmoclc2.pdf</u> "Equations describing the physical properties of moist air"
- 8. Rayner Joel, Basic Engineering Thermodynamics, 5th Ed. Addison-Wesley Longman, 1996.
- 9. <u>www.thermofluids.net</u> TEST Software
- 10. http://www.ohio.edu/mechanical/thermo/Applied/Chapt.7_11/Chapter11.html
- 11. Y.V.C. Rao, Engineering Thermodynamics through examples, Khanna Book Publishing Company, Delhi, 1999.

Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

Grant Thornton

An instinct for growth

288 Download free eBooks at bookboon.com