
Basic Thermodynamics: Software Solutions – Part II

Dr. M. Thirumaleshwar

Dr. M. Thirumaleshwar

Basic Thermodynamics: Software Solutions – Part II

(Work, Heat, I Law applied to Closed systems and

Flow processes)

 Basic Thermodynamics: Software Solutions – Part II 1st edition © 2014 Dr. M. Thirumaleshwar & <u>bookboon.com</u> ISBN 978-87-403-0673-6

Contents

Contents

1 1.1 1.2 1.3 To see Part-I, download: Basic Thermodynamics: Software Solutions - Part I

Dedication	Part I
Message by Rev.Fr. Joseph Lobo, Director, SJEC, Mangalore, India	Part I
Preface	Part I
About the Author	Part I
About the Software used	Part I
To the Student	Part I
Introduction to Software used	Part I
Introduction	Part I
About the Software used	Part I
'Free' Software	Part I

CLIVER WYMAN

Oliver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk over in todary informage with specialize operator operators, take management, organizational transformation, and leadership development. With offices in 50-cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

Click on the ad to read more

Download free eBooks at bookboon.com

4

Contents

Part I

Part I

1.4	Summary	Part I
1.5	References	Part I
2	SI Units, Unit conversion, Pressure, Temperature etc.	Part I
2.1	Introduction	Part I
2.2	Intl. System of Units (S.I.)	Part I
2.3	Conversion of Units	Part I
2.4	Examples of Unit conversion	Part I
2.5	Examples of Pressure measurements with Manometers	Part I
2.6	Examples of Temperature measurements with Thermocouples	Part I
2.7	Constant Volume gas Thermometer	Part I
2.8	Resistance Thermometer Detectors (RTD)	Part I
2.9	Summary	Part I
2.10	References	
3.	Properties of Pure Substances	Part I
3.1	Introduction	Part I
3.2	Property diagrams for Water:	Part I

- 3.3 Property diagrams from Software:
- 3.4 Property diagrams and Tables:

© 2010 EYGM Limited. All Right

Day one and you're ready

Day one. It's the moment you've been waiting for. When you prove your worth, meet new challenges, and go looking for the next one. It's when your dreams take shape. And your expectations can be exceeded. From the day you join us, we're committed to helping you achieve your potential. So, whether your career lies in assurance, tax, transaction, advisory or core business services, shouldn't your day one be at Ernst & Young?

What's next for your future? ey.com/careers

ERNST & YOUNG Quality In Everything We Do

Click on the ad to read more

Download free eBooks at bookboon.com

5

Contents

3.5	Problems	Part I
3.6	Determination of 'quality' of wet steam:	Part I
3.7	Conclusion	Part I
3.8	References	Part I
3.9	Exercise problems	Part I
4	Work, Heat and I Law of Thermodynamics applied to Closed systems	8
4.1	Formulas used:	9
4.2	Problems solved with EES	16
4.3	Problems solved with The Expert System for Thermodynamics (TEST)	49
4.4	References:	101
5	I Law of Thermodynamics applied to Flow Processes	102
5.1	Formulas used:	102
5.2	Problems solved with EES:	108
5.3	Problems solved with The Expert System for Thermodynamics (TEST):	151
5.4	References:	284

Download free eBooks at bookboon.com

6	II Law of Thermodynamics	
6.1	Formulas used	Part III
6.2	Problems (EES)	Part III
6.3	Problems (TEST)	Part III
6.4	References	Part III
7	Entropy	Part III
7.1	Formulas used	Part III
7.2	Problems	Part III
7.3	References	Part III
8	Availability and Irreversibility	Part IV
0.1	- 1 1	
8.1	Formulas used	Part IV
8.1 8.2	Formulas used Problems	Part IV Part IV
8.2	Problems	Part IV
8.2	Problems	Part IV
8.2 8.3	Problems References	Part IV Part IV
8.2 8.3 9	Problems References Real and Ideal gases, and Gas mixtures	Part IV Part IV Part IV
8.2 8.3 9 9.1	Problems References Real and Ideal gases, and Gas mixtures Formulas used	Part IV Part IV Part IV Part IV

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Click on the ad to read more

7

BENGJERRYS

Dove

4 Work, Heat and I Law of Thermodynamics applied to Closed systems

Learning objectives:

- 1. Total energy of a system is defined as the sum of internal energy, kinetic energy and potential energy. i.e. on a *unit mass basis*: $e = u + C^2/2 + g.z$ where C is the velocity, z is the elevation from a datum.
- 2. Energy crosses the boundary of a closed system either as Work or Heat, or as both.
- 3. Both Work and Heat are 'path functions', i.e. inexact differentials.
- 4. In Thermodynamics, Work is said to be done by a system if the sole effect things external to the system can be reduced to the raising of a weight.
- 5. 'Boundary work' for a simple compressible system is given by:

$$W_{12} = \int_{V1}^{V2} p \, dV$$

- 6. Similarly, other types of work, viz. electrical work, shaft work, paddle work, flow work, work in stretching a wire, work due to surface tension, magnetization work, free expansion etc. have to be considered, if need be.
- 7. 'Heat transfer' is energy transfer due to temperature difference only.
- 8. Conduction, Convection and Radiation are the main modes of heat transfer. Heat transfer may occur in one of these modes or, in some cases, one or more modes may be present.
- 9. First Law is a statement of conservation of Energy.
- 10. First Law for a system undergoing a cycle, and for processes in a closed system are considered.
- 11. Different processes for an ideal gas in a closed system (as in a piston-cylinder device) are of special interest.

4.1 Formulas used:

4.1.1 Work:

Work = Force × distance, N.m (= 1 Joule)

Work is a 'path function' i.e. an inexact differential.

4.1.2 pdV- work or displacement work:

 $w_{12} = \int_{V1}^{V2} p \, \mathrm{d} V \quad \dots \text{Integration performed on a quasi-static path}$

- 4.1.3 pdV- work in various quasi-static processes:
 - (a). Constant pressure (isobaric) process:

$$W_{12} = p \cdot (V2 - V1)$$

(b). Constant volume (isochoric) process:

$$W_{12} = 0$$

(c). For a process in which pV = const....Isothermal process:

$$W_{12} = p1 \cdot V1 \cdot ln\left(\frac{p1}{p2}\right)$$

(d). For a process in which pV^y = const....reversible adiabatic or isentropic process:

$$W_{12} = \frac{p1 \cdot V1 - p2 \cdot V2}{\gamma - 1} = \frac{R \cdot (T1 - T2)}{\gamma - 1} = \frac{p1 \cdot V1}{n - 1} \cdot \left[1 - \left(\frac{p2}{p1}\right)^{\frac{\gamma}{\gamma}} \right]$$

Also, for a perfect gas:

 $\mathbf{p} \cdot \mathbf{v} = \mathbf{R} \cdot \mathbf{T}$

And for isentropic process, pv/ = const., we have:

$$T \cdot v^{\gamma - 1} = \text{constant}$$
$$\frac{p^2}{p^1} = \left(\frac{v^1}{v^2}\right)^{\gamma}$$
$$\frac{T^2}{T^1} = \left(\frac{v^1}{v^2}\right)^{\gamma - 1}$$
$$\frac{\gamma - 1}{\gamma}$$
$$\frac{T^2}{T^1} = \left(\frac{p^2}{p^1}\right)^{\gamma}$$

(e). For a process in which pVⁿ = const....polytropic process:

$$W_{12} = \frac{p1 \cdot V1 - p2 \cdot V2}{n-1} = \frac{p1 \cdot V1}{n-1} \cdot \left[1 - \left(\frac{p2}{p1}\right)^{\frac{n}{n}} \right]$$

i.e.
$$W_{12} = \frac{R \cdot (T1 - T2)}{n-1}$$

Also: for a polytropic process:

$$\frac{p^2}{p^1} = \left(\frac{v^1}{v^2}\right)^n$$
$$\frac{T^2}{T^1} = \left(\frac{v^1}{v^2}\right)^{n-1}$$
$$\frac{T^2}{T^1} = \left(\frac{p^2}{p^1}\right)^n$$

For a perfect gas:

$$p \cdot v = R \cdot T$$
 $du = cv \cdot dT$
 $\gamma = \frac{c_p}{c_v}$ $c_p - c_v = R$
i.e. $c_v = \frac{R}{\gamma - 1}$

Then, heat transfer during a polytropic process (for a perfect gas):

$$\mathsf{Q} = (\mathsf{u}2 - \mathsf{u}1) + \mathsf{W} = \mathsf{c}_{\mathsf{V}} \cdot (\mathsf{T}2 - \mathsf{T}1) + \mathsf{R} \cdot (\mathsf{T}1 - \mathsf{T}2)$$

Simplifying, we get:

$$Q_{\text{poly}} = \frac{\gamma - n}{\gamma - 1} \cdot \frac{\mathbf{R} \cdot (T1 - T2)}{n - 1}$$

i.e.
$$Q_{poly} = \frac{\gamma - n}{\gamma - 1} \cdot W_{poly}$$

Polytropic sp. heat:

Polytr. sp. heat:
$$c_n = c_v \cdot \frac{\gamma - n}{1 - n}$$

Mean Effective Pressure (MEP, or pm):

MEP =
$$\frac{\text{Area_of_Indicator_diagram}}{\text{Stroke_length}} \cdot K$$
 ...where k = Spring constant.

Indicated Power (IP):

$$IP = \frac{p_m \cdot A \cdot L \cdot N}{60}$$
 kW...for a two stroke engine...where pm is in kPa, A in m^2, L in m, N in RPM.... this is IP for one cylinder

Note: Put N = N/2 for four stroke engine

Brake Power (BP):

$$BP = \frac{2 \cdot \pi \cdot N \cdot T}{60}$$
 ..., where N is RPM, T is Torque

Mech. efficiency:

$$\eta_{mech} = \frac{BP}{IP}$$

4.1.4 Other types of Work transfer:

1. Electrical Power:

 $W_{dot} = E \cdot I$

2. Shaft Work:

 $W_{shaft} = T \cdot \omega$...where T is Torque, ω is angular velocity

3. Paddle work or Stirring work:

$$W = \int_{1}^{2} m \cdot g \, dZ = \int_{1}^{2} T \, d\theta$$

4. Flow Work:

5. Work done in stretching a wire:

$$W = -\int_{1}^{2} J dL$$
 ...where J is the tension, dL is expansion of wire

6. Work done in changing the area of a surface film:

$$W = -\int_{1}^{2} \sigma \, dA$$
 ...where σ is the surface tension N/m)

7. Work done in magnetization of a paramagnetic solid:

$$W = -\int_{1}^{2} H dI$$
 ...where H is the field strength and I is the component of magnetization field in the direction of the field

8. Work done in Free expansion:

 $W_{free_expn} = 0$...since there is no resistance to the fluid at boundary

4.1.5 Heat Transfer, Q:

Q is positive while flowing *into* the system;

W is positive if work is done by the system.

Heat Transfer Q₁₂:


Heat transfer is a path function.

$$Q_{12} = \int_{1}^{2} T \, ds$$
 ...where T is in K, s is entropy

Specific heat, c:

It is the amount of heat required to raise a unit mass of substance through a unit rise in temperature.

$$c = \frac{Q}{m \cdot \Delta t}$$
 J/kg.K

Download free eBooks at bookboon.com

For a gas, for a constant pressure, reversible non-flow process:

 $dQ = m \cdot c_p \cdot dT$

For a gas, for a constant volume, reversible non-flow process:

 $dQ = m \cdot c_v \cdot dT$

4.1.6 First Law for a system undergoing a cycle:

 $\Sigma W = J \cdot \Sigma Q$ for a cycle. J = 1 in S.I. Units.i.e. 1 N.m = 1 Joule.

4.1.7 First Law for a closed system undergoing a change of state:

$$Q - W = \Delta E$$

or:

 $Q = \Delta E + W$

4.1.8 First Law is a statement of conservation of Energy.

Energy is a property of the system; it is therefore, a 'point function'.

Considering only the kinetic, potential and internal energies, Total energy is:

 $E = E_k + E_p + U_{int}$

4.1.9 For an Ideal gas:

Internal Energy U is a function of T only.

We write:

$$dQ = dE + dW$$

i.e. dQ = dU + dW

i.e. $dQ = dU + p \cdot dV$... when only pdV work is present

Enthalpy, h:

 $h = u + p \cdot v = J/kg$

For a perfect gas:

 $\mathbf{h} = \mathbf{c}_{\mathbf{v}} \cdot \mathbf{T} + \mathbf{R} \cdot \mathbf{T} = \left(\mathbf{c}_{\mathbf{v}} + \mathbf{R}\right) \cdot \mathbf{T} = \mathbf{c}_{\mathbf{p}} \cdot \mathbf{T}$

4.1.10 Fist Law for non-flow processes or for Closed systems: For reversible, const. volume process:

> $Q = (u2 - u1) + W \dots$ where $W = \int p \, dv$But, W = 0, since dV = 0

Therefore:
$$Q = u^2 - u^1 = c_v (T^2 - T^1) \dots J/kg$$

For reversible, const. pressure process:

 $Q = (u2 - u1) + W \dots$ where $W = \int p \, dv$But, W = p.(v2-v1)

Therefore:
$$Q = h2 - h1 = c_p \cdot (T2 - T1) \dots J/kg$$

For reversible, Isothermal process:

$$Q = (u2 - u1) + W \dots$$
 where $W = \int p \, dv$

Therefore: $Q = c_v \cdot (T2 - T1) + W = 0 + W$

i.e.
$$Q = p1 \cdot v1 \cdot ln \left(\frac{v2}{v1}\right) = p1 \cdot v1 \cdot ln \left(\frac{p1}{p2}\right) \dots J/kg$$

.....

For reversible, adiabatic process:

$$Q = (u2 - u1) + W \dots$$
 where $W = \int p \, dv$

But, Q = 0 for adiabatic process.

Therefore: 0 = (u2 - u1) + W

i.e. W = u1 - u2for any adiabatic process

And, for rev. adiab. process: $p \cdot v^{\gamma} = const$ And: $W = \frac{p_1 \cdot v_1 - p_2 \cdot v_2}{\gamma - 1} = \frac{R \cdot (T1 - T2)}{\gamma - 1}$

4.2 Now, let us work out a few problems with EES:

"**Prob.4.1.** A perfect gas is undergoing a process in which T is proportional to $V^{-2/5}$. Calculate the work done by the gas in going from state 1 in which pressure is 100 bar and volume is 4 m³ to the state 2 in which volume is 2 m³. Also calculate the final pressure. [VTU-BTD-Dec-06–Jan-07]"

EES Solution:

"Data:"

P1=100E05[Pa] V1=4[m^3] V2=2[m^3]

Grant Thornton—a^great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

Download free eBooks at bookboon.com

16

"We have: T = k1 * V^(-2/5); But, PV = RT for perfect gas. i.e. P.V / R = k1 * V^(-2/5) i.e. P.V^(7/5) = k where k = k1 * R, a const." P1 * V1^(7/5) = P2 * V2^(7/5) k = P1 * V1^(7/5) Work=integral(k*V^(-7/5),V,V1,V2) "...using the built-in integral function of EES"

"Note: In the above, we calculate Work as Integral of P.dV. So, P is expressed as a function of V. V1 and V2 are limits of integration, i.e. from V1 to V2."

Now, hit F2 to calculate.

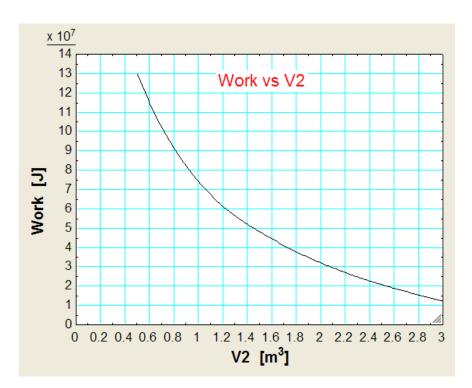
Results:

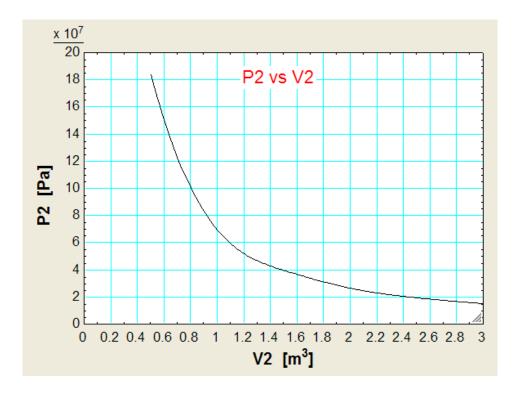
Unit Settings: SI K Pa J mass deg				
k = 6.964E+07	P1 = 1.000E+07 [Pa]	P2 = 2.639E+07 [Pa]		
∨ =2 [m ³]	V1 = 4 [m ³]	V2 = 2 [m ³]		
Work = -3.195E+07	ຐ			

Thus:

Work = -3.195E07 W ... negative sign indicates that work is done on the system....Ans.

Final pressure, P2 = 2.639E07 Pa = 263.9 bar ... Ans.


Additionally, plot the variation of Work and P2 as the final volume varies from 0.5 m³ to 3 m³:

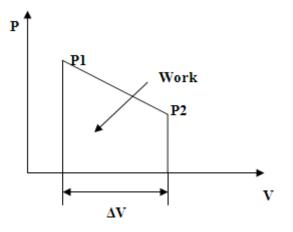

First, compute the Parametric Table:

(Note that we have written the absolute value of Work done, i.e. without the negative sign).

Table 1			
▶ 16	1 V2 [m3]	2 Work [J]	P2 [Pa]
Run 1	0.5	1.297E+08	1.838E+08
Run 2	1	7.411E+07	6.964E+07
Run 3	1.5	4.804E+07	3.948E+07
Run 4	2	3.195E+07	2.639E+07
Run 5	2.5	2.068E+07	1.931E+07
Run 6	3	1.220E+07	1.496E+07

Now, plot the results:

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ


The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**

19 Download free eBooks at bookboon.com "**Prob.4.2**. An engine cylinder has a piston of area 0.12 m² and contains gas at a pressure of 1.5 MPa. The gas expands according to a process which is represented by a straight line on a p-V diagram. The final pressure is 0.15 MPa. Calculate the work done by the gas if the piston stroke is 0.3 m. [VTU-BTD-July/Aug.2004-New-Scheme]"

EES Solution:

"Data:"

P1 = 1.5E03 [kPa] P2 = 0.15E03 [kPa] A = 0.12 [m^2] "....piston area" L = 0.3 [m] "...stroke"

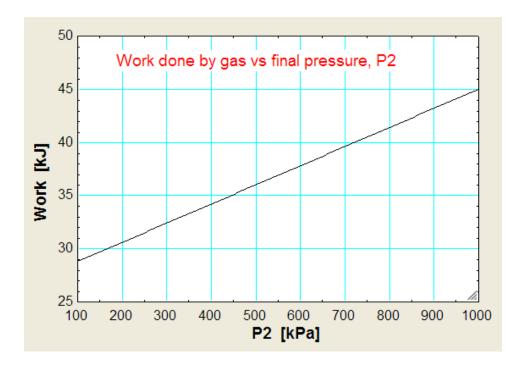
"Calculations:"

DELTAV = A * L "[m^3]" Work = P2 * DELTAV + (P1 – P2) * DELTAV/2 "[kJ]"

Solution:

Unit Settings: SI C kPa kJ mass deg			
A = 0.12 [m ²]	∆V = 0.036 [m ³]	L = 0.3 [m]	P1 =1500 [kPa]
P2 =150 [kPa]	Work = 29.7 [kJ]		

Thus:


Work done by the gas = 29.7 kJ....Ans.

(b) Plot the variation of Work as the final pressure P2 varies from 100 kPa to 1000 kPa:

First, compute the Parametric Table:

Table 1		
110	1 ₽2 [kPa]	Work [kJ]
Run 1	100	28.8
Run 2	200	30.6
Run 3	300	32.4
Run 4	400	34.2
Run 5	500	36
Run 6	600	37.8
Run 7	700	39.6
Run 8	800	41.4
Run 9	900	43.2
Run 10	1000	45

Now, plot the results:

"Prob.4.3. A spherical balloon of 1 m dia contains a gas at 200 kPa pressure. The gas inside the balloon is heated until the pressure reaches 500 kPa. During the process of heating, the pressure of gas inside the balloon is proportional to the cube of the diameter of the balloon. Determine the work done by the gas inside the balloon. [VTU-BTD-June-July-08]"

EES Solution:

"Data:"

P1=200[kPa] D1=1[m^3] k=200 "....since P1 = k * D1^3" P2=500[kPa]

"Calculations:"

P2=k*D2^3 "...finds D2" V1=(pi/6)*D1^3"[m^3]" V2=(pi/6)*D2^3"[m^3]" Work = integral(k*6 * V/pi,V,V1,V2) "[kJ]....Note the use of built-in integral function of EES"

"Note: In the above, we calculate Work as Integral of P.dV. So, P is expressed as a function of V. V1 and V2 are limits of integration, i.e. from V1 to V2."

X KBS Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

Click on the ad to read more

22

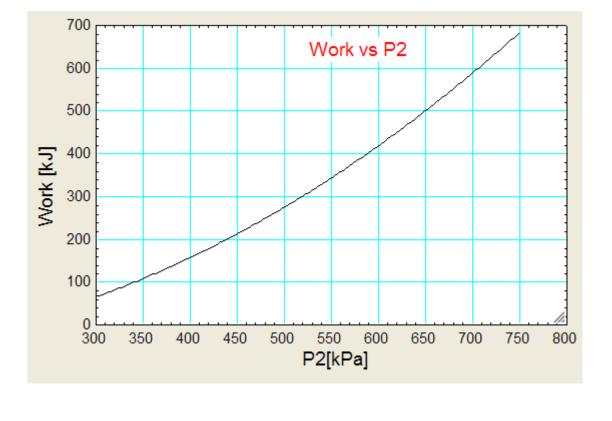
Results:

Unit Settings: SI C kPa kJ mass deg

D1 =1 [m ³]	D2 = 1.357 [m]	k = 200	P1 = 200 [kPa]
P2 = 500 [kPa]	∨ =1.309	∨1 = 0.5236 [m ³]	V2 = 1.309 [m ³]
Work = 274.9 [kJ]			

Thus:

Work done by the gas = $274.9 \text{ kJ} \dots \text{Ans.}$


(b) Plot the variation of Work as the final pressure P2 varies from 300 kPa to 750 kPa:

First, compute the Parametric Table:

😼 Paramet	ric Table			
Table 1				
110	1 P2 [kPa]	Work [kJ]		
Run 1	300	65.45		
Run 2	350	108		
Run 3	400	157.1		
Run 4	450	212.7		
Run 5	500	274.9		
Run 6	550	343.6		
Run 7	600	418.9		
Run 8	650	500.7		
Run 9	700	589		
Run 10	750	684		

Now, plot the results:

"Prob.4.4. A spherical balloon of 1 m dia contains a gas at 1.5 bar pressure. Due to heating, the pressure reaches 4.5 bar. During the process of heating, the pressure is proportional to the cube of the diameter of the balloon. Determine the work done by the gas inside the balloon. [VTU-BTD-Feb. 2002]"

EES Solution:

This is similar to the previous problem.

"Data:"

P1=150[kPa] D1=1[m^3] k=150 "....since P1 = k * D1^3" P2=450[kPa]

"Calculations:"

```
P2=k*D2^3 "...finds D2"
V1=(pi/6)*D1^3"[m^3]"
V2=(pi/6)*D2^3"[m^3]"
Work = integral(k * 6 * V/pi,V,V1,V2) "[kJ]....Note the use of built-in integral function of EES"
```

"Note: In the above, we are calculating Work as Integral of P.dV. So, P is expressed as a function of V.

V1 and V2 are limits of integration, i.e. from V1 to V2."

Results:

Unit Settings: SI C	kPa kJ mass deg		
D1 = 1 [m ³]	D2 = 1.442 [m]	k = 150	P1 =150 [kPa]
P2 = 450 [kPa]	∨ = 1.571	∨1 = 0.5236 [m ³]	∨2 =1.571 [m ³]
Work = 314.2 [kJ]			

Thus: Work done by the gas = 314.2 kJ Ans.

"Prob.4.5. A spherical balloon of dia 0.5 m is initially at a pressure of 100 kPa. Due to heating, pressure increases to 400 kPa during which the inside pressure varies directly proportional to the square of the diameter of the balloon. Determine the displacement work during this process. [VTU-BTD-July-2007]"

ORACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

Click on the ad to read more

Download free eBooks at bookboon.com

25

EES Solution:

"Data:"

P1=100[kPa] D1=0.5[m^3] P1=k*D1^2 "...determines k" P2=400[kPa] P2=k*D2^2 "...determines D2"

"Calculations:"

V1=(pi/6)*D1^3"m3" V2=(pi/6)*D2^3"m3" Work = integral(k*(6*V/pi)^(2/3),V,V1,V2) "kJ....using the built-in function integral of EES"

"Note: In the above, we are calculating Work as Integral of P.dV. So, P is expressed as a function of V.

V1 and V2 are limits of integration, i.e. from V1 to V2."

Results:

Unit Settings: SI C kPa kJ mass deg

D1 = 0.5 [m ³]	D2 = 1 [m]	k = 400	P1 =100 [kPa]
P2 = 400 [kPa]	∨ = 0.5236 [m ³]	∨1 = 0.06545 [m ³]	∨2 = 0.5236 [m ³]
Work = 121.7 [kJ]			

Thus: Work done by the gas = 121.7 kJ Ans.

"Prob.4.6. A quasi-static process occurs such that $P = (V^2 + 8/V)$, where P is the pressure in bar and V is the volume in m^3. Find the work done when volume changes from 1 m^3 to 3 m^3. [VTU-Jan.2004]"

EES Solution:

"Data:"

p=(v^2+8/v) "bar" v1=1"m^3" v2=4"m^3"

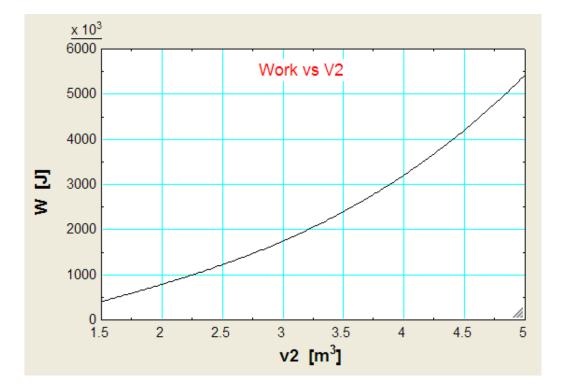
W=10^5*(integral(p,v,v1,v2)) "J....uses the built-in integral function of EES"

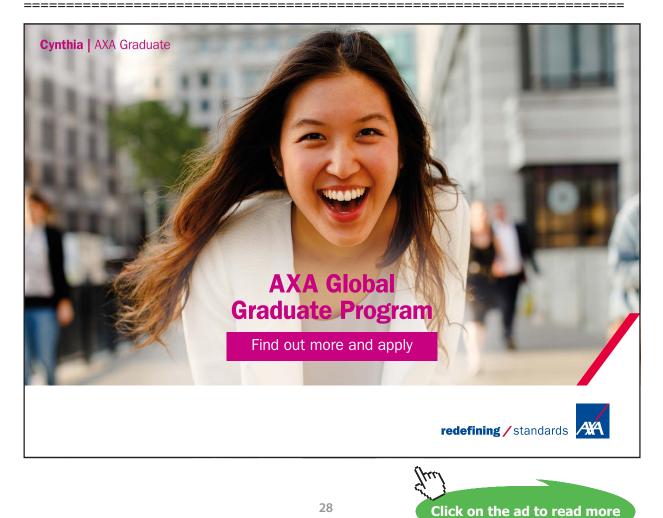
Results:

 Unit Settings: SI K kPa kJ molar deg

 p = 18 [bar]
 v = 4 [m³]
 v1 = 1 [m³]
 v2 = 4 [m³]

 W = 3.209E+06 [J]
 v2 = 4 [m³]
 v2 = 4 [m³]


Thus: Work done by the gas = 3.209E06 J Ans.


(b) In addition, plot Work against V2, as V2 changes from 1.5 m³ to 5 m³:

First, compute the Parametric Table:

😼 Parametri		
Table 1		
▶ 18	1 v2 [m³]	2 V V [J]
Run 1	1.5	403540
Run 2	2	787857
Run 3	2.5	1.221E+06
Run 4	3	1.746E+06
Run 5	3.5	2.398E+06
Run 6	4	3.209E+06
Run 7	4.5	4.207E+06
Run 8	5	5.421E+06

Now, plot the graph:

_

Download free eBooks at bookboon.com

"Prob.4.7. 1 kg of air at 15 C and 100 kN/m² is compressed isentropically to 600 kN/m². Determine the final temp and the work done. If the air is cooled to 15 C at constant pressure, calculate the heat transferred. Take gamma = 1.4, cp = 1.0213 kJ/kg.K, R = 0.287 kJ/kg.K. [VTU-Jan. 2005]"

EES Solution:

"Data:"

m = 1 "[kg]" T1=15+273 "[K]" p1=10^5 "[Pa]" p2=6*10^5 "[Pa]" gamma=1.4 "...ratio of sp. heats,(cp/cv) for air" cp=1.0213*10^3"[J/kg.K]....sp. heat" R=287 "[J/kg.K]....gas const."

"Calculations:"

 $T2/T1 = (p2/p1)^{((gamma-1)/gamma)"...temp ratio for an isentropic process.... determines T2" W_ad=R^{(T1-T2)/(gamma-1) "Adiabatic work" Q=m^{cp^{(T2-T1)}"[J]....heat transferred, when cooled to T1 from T2, at const. pressure"$

Results:

Unit Settings: SI K kPa kJ molar deg

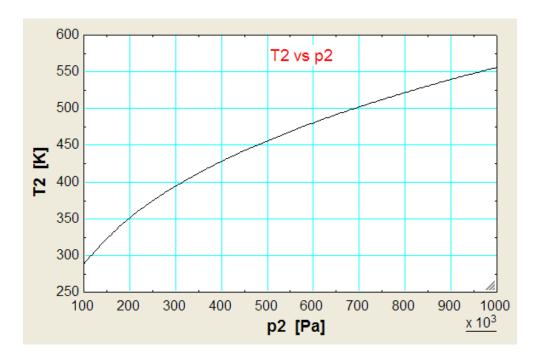
cp = 1021 [J.kg-K]	γ = 1.4	m =1 [kg]	p1=100000 [Pa]
p2=600000 [Pa]	Q = 196632 [J]	R = 287 [J/kg _K]	T1 = 288 [K]
T2 = 480.5 [K]	W _{ad} = -138141 [J]		

Thus:

Final temp T2 = 480.5 K Ans.

Work done = -138141 J Ans. negative sign indicating work done on the system

Heat transferred in const. pressure cooling, Q = 196632 J ... Ans.


(b) In addition, as p2 varies from 100 kPa to 1000 kPa, plot the variation of T2, W and Q against p2:

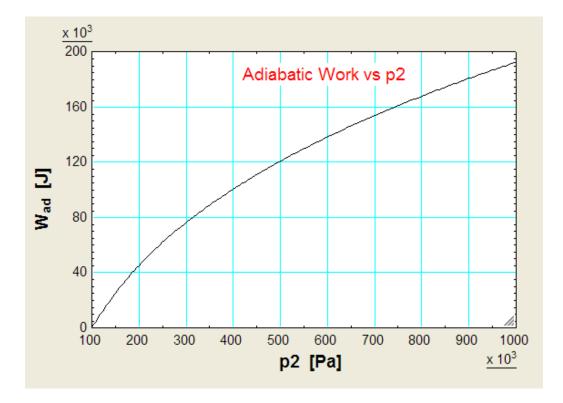

First,	compute	the	Parametric	Table:
--------	---------	-----	------------	--------

Table 1				
110	1	2 T2 [K]	³ ♥ W _{ad} [J]	4
Run 1	100000	288	0	0
Run 2	200000	351.1	45257	64419
Run 3	300000	394.2	76196	108459
Run 4	400000	428	100426	142948
Run 5	500000	456.1	120640	171721
Run 6	600000	480.5	138141	196632
Run 7	700000	502.2	153666	218730
Run 8	800000	521.7	167677	238675
Run 9	900000	539.6	180488	256910
Run 10	1000000	556	192319	273750

Note that in the above Table, we have taken the absolute value of Work, with the understanding that it is the work done on the gas during compression.

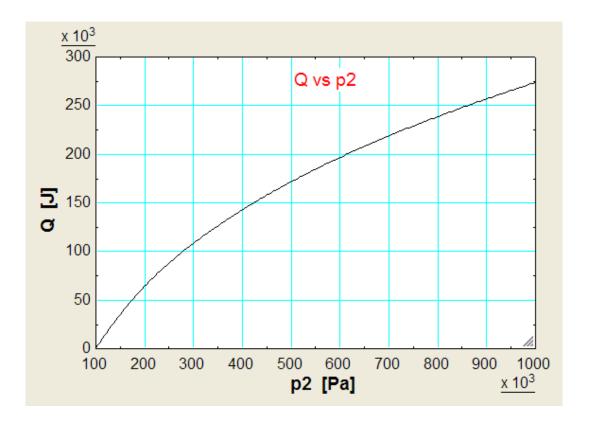
Now, plot the results:

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.


For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on **+44 (0)20 7000 7573**.

* Figures taken from London Business School's Masters in Management 2010 employment report

Download free eBooks at bookboon.com

31

"Prob.4.8. 5 kg of Nitrogen at 100 C is heated in a reversible, non-flow, constant volume process till the pressure becomes three times the initial pressure. Determine: (i) final temp (ii) change in internal energy (iii) change in enthalpy, and (iv) heat transfer. Take R = 0.297 kJ/kg.K, cv = 0.7435 kJ/kg.K.

EES Solution:

[VTU-Jan. 2004]"

"Data:"

m = 5 "kg" PressureRatio = 3 "pr. ratio= p2/p1" T1=100+273 "K" cv=743.5 "J/kg.K" R=297 "J/kg.K"

T2 = PressureRatio * T1"..finds T2... since p1/T1 = p2/T2 at const. volume" cp - cv = R "..for Ideal gas...finds cp" DELTAU=m * cv * (T2-T1) "J... change in internal energy" DELTAH=m * cp * (T2-T1) "J... change in enthalpy" W = 0 "..since it is a const. volume process" Q=DELTAU +W "J.. from I law for a closed system"

Results:

Unit Settings: SI K kPa kJ molar deg

cp = 1041 [J/kg-K]	cv = 743.5 [J/kg-K]	∆H = 3.881E+06 [J]
∆U = 2.773E+06 [J]	m = 5 [kg]	PressureRatio = 3
Q = 2.773E+06 [J]	R = 297 [J/kg-K]	T1 = 373 [K]
T2 = 1119 [K]	W = 0 [J]	

Thus:

Final temp, T2 = 1119 K, Change in Int. energy, DELTAU = 2.773E06 J,

Change in enthalpy, DELTAH = 3.881E06 J, Heat transfer, Q = 2.773E06 J Ans.

"Prob.4.9. 1 kg of air contained in a closed system at 100 kPa and 300 K is compressed isothermally till the volume halves. During the process, it is also stirred with a Torque of 1 N.m at 400 RPM for 1 hour. Calculate the net work done on the system. Assume R = 0.285 kJ/kg.K. [VTU-July 2003]"

EES Solution:

"Data:"

m=1 "kg" p1=100*10^3 "Pa" T1=300 "K" p1=0.5*p2 "...since p1.V1 = p2.V2 at constant T" N=400*60 "Revolutions in one hour" T=1 "N.m... torque" R=285 "J/kg.K"

W_iso = R * T1 * ln(p1/p2) "J.... isothermal work on the system" W1=-2 * pi * N * T "J.... stirring work on the system" W_net=W_iso+W1 "J.... net work on the system"

Results:

Unit Settings: SI K kPa kJ molar deg m = 1 [kg] N = 24000 [rev.] p1 = 100000 [Pa] p2 = 200000 [Pa] R = 285 [J/kg-K] T = 1 [N.m] T1 = 300 [K] W1 = -150796 [J] W_{iso} = -59264 [J] W_{net} = -210061 [J] V1 = -150796 [J]

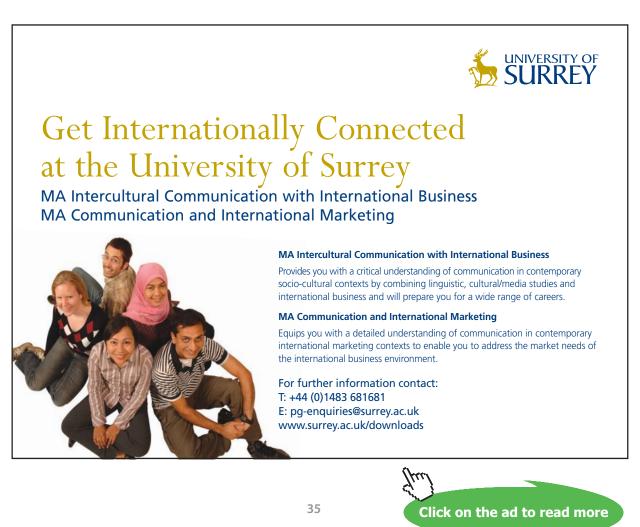
Thus:

Net work done on the system = -210061 J.....Ans. Negative sign indicating that work is done *on* the system.

"Prob.4.10. 1.5 kg of a gas undergoes a quasi-static process, in which the pressure and sp. vol. are related by the equation: p = a - b.v, where a and b are constants. The initial and final pressures are 1000 kPa and 200 kPa respectively. The corresponding volumes are 0.2 m³ and 1.2 m³. The specific internal energy of the gas is given by the relation: u = 1.5 p v - 35, where u is in kJ/kg, p is in kPa, and v is in m³/kg. Find the magnitude and direction of heat transfer and the max. internal energy of the gas during the process. [VTU-Jan. 2005]"

EES Solution:

"Data:"


m=1.5 "kg" "u=1.5 * p * v - 35 internal energy" p1=1000 "kPa ... initial pressure" v1=0.2/m "m3/kg . initial sp. volume" p2=200 "kPa ... final pressure" v2=1.2/m "m3/kg ... final sp. volume"

"To find a and b:"

P1 = a - b * v1"...initial pressure" P2 = a - b * v2 "...final pressure"

"To find W, Q and DELTAU:"

DELTAU = U2-U1 "J change in internal energy" p = a - b * v "..... reln. between p and v, by data" $W = m * 10^3 * integral(p,v,v1,v2)$ "J..... using the built-in function 'integral' of EES" Q = W + (U2 - U1) "J ... by I Law for a closed system" $U1 = m * (1.5 * p1 * v1 - 35) * 10^3$ "J.... internal energy at state 1" $U2 = m * (1.5 * p2 * v2 - 35) * 10^3$ "J ... internal energy at state 2"

Download free eBooks at bookboon.com

Results:

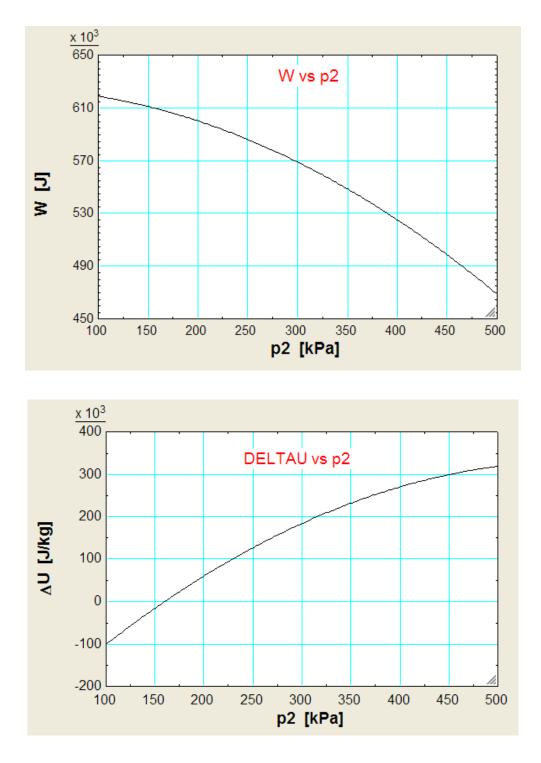
Unit Settings: SI K kPa kJ molar deg

a=1160	b = 1200	∆U = 60000 [J/kg]	m = 1.5 [kg]
p=200 [kPa]	p1 = 1000 [kPa]	p2=200 [kPa]	Q = 660000 [J]
U1 = 247500 [J]	U2 = 307500 [J]	v = 0.8 [m ³]	∨1 = 0.1333 [m ³]
∨2 = 0.8 [m ³]	W = 600000 [J]		

Thus:

Q = 660000 J Ans. It is positive, indicating that heat is *transferred to* the system.

```
U2 = max. int. energy = 307500 J .... Ans.
```



(b) Plot Q, W and DELTAU as final pressure p2 varies from 500 to 100 kPa:

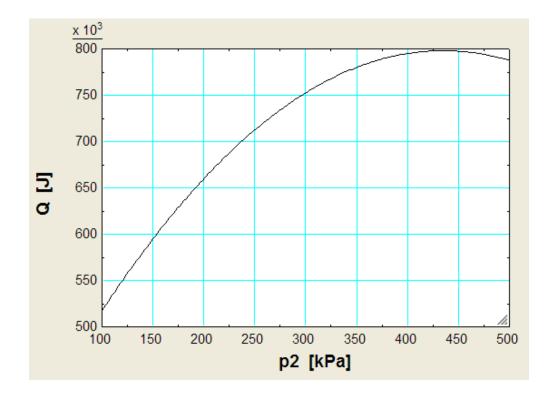
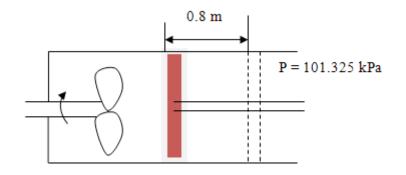

First, compute the Parametric Table:

Table 1				
19	1	2 W [J]	3 _∆U [J/kg]	4
Run 1	500	468750	318750	787500
Run 2	450	498438	299063	797500
Run 3	400	525000	270000	795000
Run 4	350	548438	231563	780000
Run 5	300	568750	183750	752500
Run 6	250	585938	126563	712500
Run 7	200	600000	60000	660000
Run 8	150	610938	-15938	595000
Run 9	100	618750	-101250	517500

Next, plot the results:

Note that after p2 = approx. 160 kPa, DELTAU becomes negative.


Note that after p2 = approx. 425 kPa, Q decreases.

"Prob.4.11. A piston-cylinder mechanism containing a fluid has a stirring device as shown. The piston is frictionless and held against the fluid by atm. pressure of 101.325 kPa. The stirring device is turned 10000 revolutions with an average torque against the fluid, of 1.275 N.m. The piston is 0.6 m dia and it moves by 0.8 m. Calculate the net work transfer. [VTU-July 2002]"

EES Solution:

"Data:"

N=10000 "revolutions" T=1.275[J] d = 0.6[m] L=0.8[m] p=101.325E03[Pa]

"Calculations:"

W1=-2 * pi * N * T "J ... stirring work done on the system" W2=F * L "J...boundary work done by the system" F=p * A "N...force exerted on the piston by atm." $A=(pi/4) * (d)^2$ "m^2 area of piston" W_tot = W1+W2 "J....net work"

Results:

Unit Settings: SI K kPa kJ molar deg

A = 0.2827 [m ²]	d = 0.6 [m]	F=28649 [N]	L = 0.8 [m]
N = 10000 [Rev.]	p=101325 [Pa]	T = 1.275 [J]	W1 = -80111 [J]
W2 = 22919 [J]	W _{tot} = -57191 [J]		

Thus: Net work done = -57191 J, negative sign indicating work done *on* the system.

"Prob.4.12. A closed system undergoes a cycle composed of 4 processes 1-2, 2-3, 3-4 and 4-1. The energy transfers are as tabulated:

Process	Q(kJ/min.)	W (kJ/min.)	ΔU (kJ/min.)		
1–2	400	150	-		
2–3	200	-	300		
3–4	-200	-	-		
4–1	0	75	-		

(i) complete the Table (ii) determine the rate of work in kW [VTU-Jan. 2004]"

EES Solution:

"Data:"

"Process 1-2:"

Q_12=W_12+DELTAU_12 "kJ/min" Q_12=400 "kJ/min" W_12=150 "kJ/min"

"Process 2-3:"

Q_23=W_23+DELTAU_23 "kJ/min" Q_23=200 "kJ/min" DELTAU_23=300 "kJ/min"

"Process 3-4:"

Q_34=W_34+DELTAU_34 "kJ/min" Q_34=-200 "kJ/min"

"Process 4-1:"

Q_41=W_41+DELTAU_41 "kJ/min" Q_41=0 "kJ/min" W_41=75 "kJ/min"

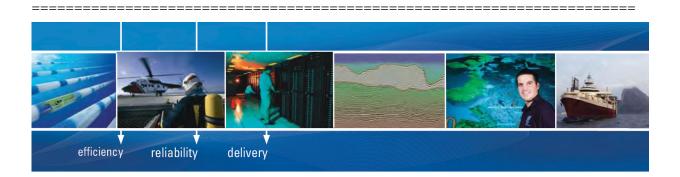
Q_12+Q_23+Q_34+Q_41=W_12+W_23+W_34+W_41 "...First Law for the whole cycle"

"Net Heat and Work in cycle:"

 $Q_net = (W_{12} + W_{23} + W_{34} + W_{41}) / 60 "[kJ/s]"$ $W_net = (W_{12} + W_{23} + W_{34} + W_{41}) / 60 "[kJ/s]"$

Results:

Unit Settings: SI K kPa kJ molar deg


∆U ₁₂ = 250 [kJ/min]	∆U ₂₃ = 300 [kJ/min]	∆U ₃₄ = -475 [kJ/min]
∆U ₄₁ = -75 [kJ/min]	Q ₁₂ = 400 [kJ/min]	Q ₂₃ = 200 [kJ/min]
Q ₃₄ = -200 [kJ/min]	Q ₄₁ =0 [kJ/min]	Q _{net} = 6.667 [kW]
W ₁₂ = 150 [kJ/min]	W ₂₃ = -100 [kJ/min]	W ₃₄ = 275 [kJ/min]
W ₄₁ = 75 [kJ/min]	W _{net} = 6.667 [kW]	

Thus:

Following is the completed Table:

Process	Q(kJ/min.)	W (kJ/min.)	ΔU (kJ/min.)
1-2	400	150	250
2-3	200	-100	300
3-4	-200	275	-475
4-1	0	75	-75

And, W_net = 6.667 kW Ans.

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

"**Prob.4.13.** During a reversible, constant pressure process in a closed system with p = 105 kPa, properties of the system change from V1 = 0.25 m^3, t1 = 10 C to V2 = 0.45 m^3, t2 = 240 C. Specific heat at const. pressure, cp is given by: cp = (0.4 + 18 / (t + 40)) kJ/kg.C. Assuming the mass of the system as 1 kg, determine: (i) heat transfer (ii) work transfer (iii) change in internal energy, and (iv) change in enthalpy. [VTU-Jan. 2003]"

EES Solution:

"Data:"

p=105 * 10^3 "Pa" V1=0.25 "m3" V2=0.45 "m3" t1=10 "C" t2=240 "C" Cp=(0.4+18/(t+40)) * 10^3 "J/kg.C"

"Calculations:"

Q=integral(Cp,t,t1,t2) "J....finds heat transfer" W = p * (V2-V1) "J..... finds work transfer" Q = W + DELTAU "....by I Law for a closed system" DELTAH = Q "J...change in enthalpy for const. pressure process"

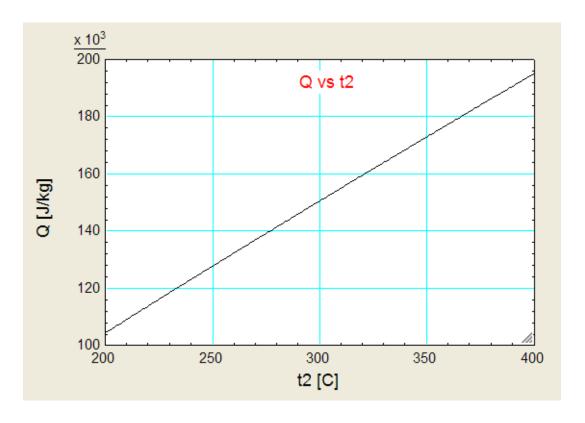
Results:

Unit Settings: SI K kPa kJ molar deg

Cp = 464.3 [J/kg-C]	∆H = 123011 [J/kg]	∆U = 102011 [J/kg]	p=105000 [Pa]
Q = 123011 [J/kg]	t = 240 [C]	t1 = 10 [C]	t2 = 240 [C]
√1 = 0.25 [m ³]	∨2 = 0.45 [m ³]	W = 21000 [J/kg]	

Thus:

Q = 123011 J/kg, W = 21000 J/kg, ΔU = 102011 J/kg, ΔH = 123011 J/kg Ans.



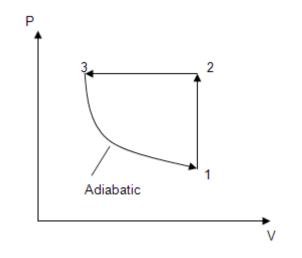
(b) As t2 varies from 200 C to 400 C, plot the variation of Q:

First, compute the Parametric Table:

Table 1		
111	1 t2 [C]	2 Q [J/kg]
Run 1	200	104236
Run 2	220	113677
Run 3	240	123011
Run 4	260	132253
Run 5	280	141414
Run 6	300	150506
Run 7	320	159535
Run 8	340	168508
Run 9	360	177431
Run 10	380	186309
Run 11	400	195147

Now, plot the results:

"Prob.4.14. A system receives 200 kJ of heat at constant volume. Then, it rejects 70 kJ of heat at constant pressure and work done on the system being 50 kJ. If the system is restored to the initial state by an adiabatic process, how much work will be done during the adiabatic process? Calculate the change in internal energy for the above mentioned processes and draw the p-V diagram. [VTU-Feb. 2002]"


EES Solution:

"Let:

process 1-2 : constant vol. process,

process 2-3: constant pr. process,

process 3-1: adiabatic process."

"Process 1-2:"

Q_12 = 200"kJ.... heat transfer, by data" W_12 = 0 "kJ ... for const. vol. process" Q_12 = W_12 + DELTAU_12 "...by First Law for the process"

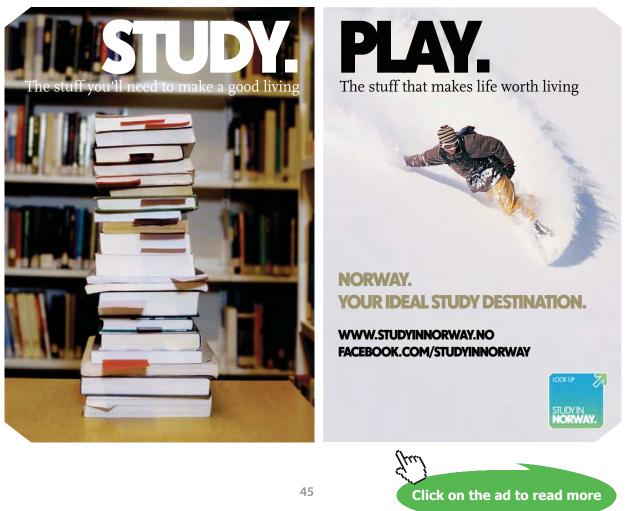
"Process 2-3:"

Q_23 = -70"kJ.... heat rejected, by data" W_23 = -50 "kJ... work done on the system, by data" Q_23 = W_23 + DELTAU_23 "...by First Law for the process"

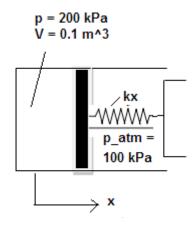
"Process 3-1:"

Q_31 = 0 "kJ.... since adiabatic, by data" Q_31 = W_31 + DELTAU_31 "...by First Law for the process" DELTAU_12 + DELTAU_23 + DELTAU_31 = 0 "....since it is a closed cylce"

Results:


∆U ₁₂ = 200 [kJ]	∆U ₂₃ = -20 [kJ]	∆U ₃₁ = -180 [kJ]	Q ₁₂ =200 [kJ]
Q ₂₃ = -70 [kJ]	Q ₃₁ = 0 [kJ]	W ₁₂ = 0 [kJ]	W ₂₃ = -50 [kJ]
W ₃₁ = 180 [kJ]			

Thus:


Work done in adiabatic process, W_31 = 180 kJ ... Ans.

Change in internal energies: $\Delta U_{12} = 200 \text{ kJ}$, $\Delta U_{23} = -20 \text{ kJ}$, $\Delta U_{31} = -180 \text{ kJ} \dots$ Ans.

"Prob. 4.15. Consider the system shown in fig. Initial conditions of the gas are: $V1 = 0.1 \text{ m}^3$, p1 = 200 kPa. Ambient pressure: 100 kPa and the spring exerts a force which is proportional to the displacement from its equilibrium position. The gas is heated until the volume is doubled, at which point p2 = 600 kPa. Determine the work done by the gas. [VTU-Aug. 2001]"

Download free eBooks at bookboon.com

EES Solution:

"Data:"

p1=200 "kPa" V1 = 0.1 "m3" V2 = 2*V1 "m3" p2=600 "kPa"

"Calculations:"

W_tot=((p1+p2)/2) * (V2-V1) "kJ"

Results:

Unit Settings: SI K kPa kJ molar deg p1 = 200 [kPa] p2 = 600 [kPa] V1 = 0.1 [m³] V2 = 0.2 [m³] W_{tot} = 40 [kJ]

Thus:

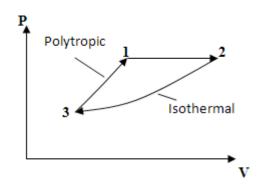
Work done by the gas = 40 kJ Ans.

"Prob.4.16. A fluid is heated reversibly at a constant pressure of 1.03 bar until it has a specific volume of $0.1\text{m}^3/\text{kg}$. It is then compressed reversibly according to the law pv = constant to a pressure of 4.2 bar, then allowed to expand reversibly according to the law: $pv^{1.2} = \text{constant}$ to the initial conditions. The work done in the constant pressure process is 820 J and the mass of the fluid present is 0.2kg. Calculate the net work done on or by the fluid in the process and sketch cycle on a p-v diagram."

EES Solution:

Data:

p1 = 1.03E05 "Pa" p2 = p1"....const. pr." v2 = 0.1"m^3.... sp. volume" w_12 = 820"J" p3 = 4.2E05 "Pa" mass = 0.2"kg"


"Calculations:"

 $p2 * (v2-v1) = w_12 \text{ "gives v1"}$ p3 * v3 = p2 * v2 "gives v3" $w_23 = (p2 * v2) * \ln(v3/v2)\text{"J...work done in isothermal process 2-3"}$ $w_31 = (p3 * v3 - p1* v1)/(1.2 - 1)\text{"J... work done in polytropic process 3-1"}$ $w_net = w_12 + w_23 + w_31\text{"J...net work done in the cycle, per kg"}$ Work_net = w_net * mass"J...net work done in the cycle for mass = 0.2 kg"

Results:

Unit Settings: SI C kPa kJ mass deg

mass = 0.2 [kg]	p1 = 103000 [Pa]	p2=103000 [pA]
p3 = 420000 [Pa]	∨1 = 0.09204 [m ³]	∨2 = 0.1 [m ³]
∨3 = 0.02452 [m ³]	Work _{net} = -1911 [J]	w ₁₂ = 820 [J]
w ₂₃ = -14477 [J]	w ₃₁ = 4100 [J]	w _{net} = -9557 [J]

Thus:

Net work done = -1911 J .. negative sign indicating work done on the system....Ans.

"Prob.4.17. A fluid system undergoes a non flow frictionless process from $V1 = 6 \text{ m}^3$ and $V2 = 2 \text{ m}^3$. The pressure and volume relation during the process is given by following relation, P in N/m2 where V is in m³. Determine the magnitude and direction of work transfer during the process.[VTU-Sept. 2009]"

EES Solution:

"Data:"

P= (15/V) + 2 "...relation between P and V" V1 = 6 "m^3" V2 = 2 "m^3"

"Calculation:"

W = integral (P, V, V1, V2) "J....work done ...using the built-in integral function of EES"

Results:

Unit Settings: SI C kPa kJ mass deg							
P = 9.5 [Pa]	∨ =2 [m ³]	∨1 =6 [m ³]	∨2 =2 [m ³]	W = -24.48 [J]			

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/

> Phone: +61 8 9321 1702 Email: training@idc-online.com Website: www.idc-online.com

OIL & GAS

OIL & GAS

ELECTRONICS

AUTOMATION & PROCESS CONTROL

MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS

ELECTRICAL POWER

Click on the ad to read more

48

Download free eBooks at bookboon.com

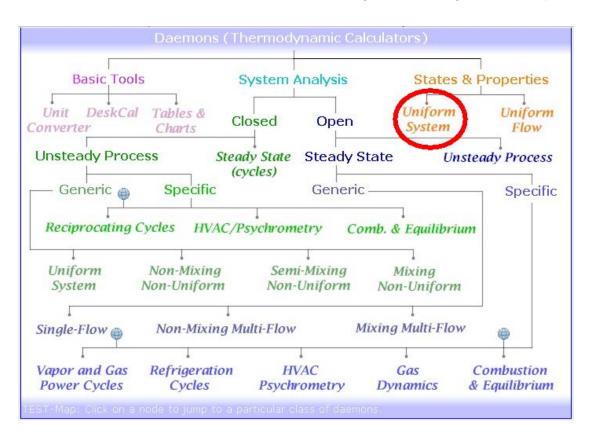
Thus:

Work done = -24.48 J....negative sign indicating work done *on* the system.....Ans.

4.3 Now, let us solve a few problems with TEST:

Prob. 4.18. Nitrogen at an initial state of 300 K, 150 kPa, and 0.2 m³ is compressed slowly in an isothermal process to a final pressure of 800 kPa. Determine the work done during the process. [Ref.1]

TEST Solution:


Let us solve this problem with The Expert System for Thermodynamics (TEST):

Following are the steps:

1. Start TEST after logging in to <u>www.thermofluids.net</u>. We get the following Greeting screen:

Mirror 4		· 이상 사실 사실 · · · · · · · · · · · · · · · · ·	
Video Intro Video Intro Quad Junit Converter	answers), TEST can monitor progress, do the Greetings, Dr. Muliya, "Thermodynamics is a funny subject. I don't understand it at all. The second t understand it, except for one or two sm	e grading, and generate a detailed report. registered user since 2005 The first time you go through it, you time you go through it, you think you hall points. The third time you go	unum, thermosture
Tables & Charts	to it, it doesn't bother you any more." Welcome to TEST - a visual platform to a calculations, pursue what-if scenarios, vi life-long journey to master thermodynami	,	oww.thermofluids.n

				to the latest version	every month (by	going to www.	java.com and	clicking the	Free Java Downl	load button).	Visit the
	Tutorial mo	the for fin h	er informat	tion on daemons					·	No.	×.
0	Home	Daemons	RIAs	Property Tables	Animations	Problems	Tutorial	Forum	MyAccount	Logout	Version:10.505e; C
88 9 -	×	\sim									

2. Click on Daemons at the menu bar at the bottom to get the following Daemons Map:

 We can choose the States and Properties – Uniform system to get the states 1 and 2, and then calculate the work for Isothermal process, OR: go to System Analysis – Closed – Generic – Uniform system to make the direct analysis of the process. Choosing the States & Properties – Uniform System, we get:

4. We choose for the Material model: the PG Model, i.e. cp = const. Clicking on it, we get the following screen. Now, choose State 1, Enter p1, T1, Vol1 in proper units as given in data:

					thermofluid	e of		mons >		Syste	$c_p = c_0$					
j1 = kJ/kg	(Specific flov	w ener	rgy]													
• Mixed	C SI C E	Ingli	sh	< Ca	ase-0 💙 >	F	₹ Help	Messages	s On 📃	Super-I	Iterate	Super-Calculat	e	Load	Super-Initiali	ze
			Stat	te Panel								I/O Pan	el			
< State-1	* >		Calc	ulate	No-Plot	ts 🗸		Initialize		ormatio	on Enthalpy:	No • Yes	5	N2	v	-
🔽 ρ1			7	T1			Г	v1			□ u1	10		🗂 h1		
150	kPa	~	300		К	~			m^3/kg	~		kJ/kg	~		kJ/kg	~
s1			~	Vel1			~	z1			⊏ e1			🗆 j1		
	kJ/kg.K	~	0.0		m/s	~	0.0		m	~		kJ/kg	~	[kJ/kg	~
phi1			psi	11			Г	m1			Vol1			MM1		
	kJ/kg	~			kJ/kg	~			kg	~	0.2	m^3	~		kg/kmol	~
R1			c_]	p1			C_1	1			k1					
	kJ/kg.K	~			kJ/kg.K	~			kJ/kg.K	~		UnitLess	~			

System State Daemon: Perfect Gas (PG) Model

5. Click on Calculate and state 1 is calculated:

• Mixed	C SI C E	Inglis	ih < Case	9-0 💙 >	F	Help Messages	On	Super-	Iterate	Super-Calculate	•	Load	Super-Initiali	ize
			State Panel			· · · · · · · · · · · · · · · · · · ·				I/O Pane	il:			
< OStat	te-1 💙 >		Calculate	No-Plots	~	Initialize				ONO OYes		N2	×	~
⊽ ρ1			▼ T1		Ì	Γ v1		-	□ u1			□ h1		
150.0	kPa	*	300.0	к	*	0.59386	m^3/kg	*	-87.17103	kJ/kg	¥	1.90754	kJ/kg	1
s 1			Vel1			∀ z1			∏ e1			E jt		
6.73127	kJ/kg.K	~	0.0	m/s	~	0.0	m	*	-87.17103	kJ/kg	*	1.90754	kJ/kg	1
phi1			psit			□ m1			Vol1			MM1		
	kJ/kg	*		kJ/kg	*	0.33678	kg	*	0.2	m^3	¥	28.0	kg/kmol	٠
R1			c_p1			c_v1			k1					
0.29693	kJ/kg.K	~	1.0311	kJ/kg.K	~	0.73417	kJ/kg.K	*	1.40444	UnitLess	~			

6. Similarly, choose State 2, enter p2, T2 and m2. Note that we wrote T2 = T1, m2 = m1.

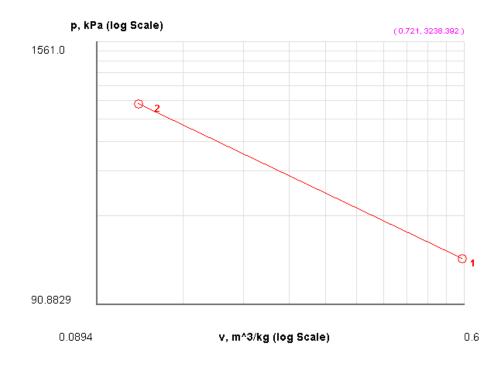
And the second second	Inclusion and and						1 Aug 1							_
• Mixed	C SI C E	ingli	sh < Cas	e-0 💙 >	1	Help Message	s On	Super-	Iterate	Super-Calculate		Load	Super-Initiali	ize
			State Panel							I/O Panel	l.			
< State-	2 💙 >		Calculate	No-Plots	~	Initialize	F	ormati	on Enthalpy:	ONO OYes		N2	~	~
▽ ρ2						Γ v2			□ u2			<u> </u>		
800	kPa	*	=T1	к	*		m^3/kg	*	[kJ/kg	*		kJ/kg	
s 2			I▼ Ve/2			₩ z2			⊏ e2			Г j2		
	kJ/kg.K	~	0.0	m/s	¥	0.0	m	*		kJ/kg	¥	ſ	kJ/kg	1
phi2			psi2			₩ m2			□ Vol2	2		MM2		
	kJ/kg	*		kJ/kg	*	=m1	kg	*	[m^3	*	28.0	kg/kmol	1
R2			c_p2			c_v2			k2					
0.29693	kJ/kg.K	~	1.0311	kJ/kg.K	¥	0.73417	kJ/kg.K	¥	1.40444	UnitLess	¥			

7. Click on Calculate. State2 is calculated:

• Mixed	CSI CE	nglis	sh <mark>< Ca</mark>	se-0 💙 >	I	Help Messages	s On	Super-	Iterate	Super-Calculate	Load	Super-Initializ	ze.
			State Panel							I/O Panel			
< ©State-	2 🗙 >		Calculate	No-Plots	~	Initialize		Formati	on Enthalpy:	⊙No ⊙Yes	N2	~]
₹ p2			✓ T2	10		Γ v2		1	Г u2		Γ h2		
800.0	kPa	~	=T1	К	~	0.11135	m^3/kg	*	-87.17103	kJ/kg	1.90754	kJ/kg	1
s2			Vel2			⊽ z2			Γ e2		□ j2		
6.23422	kJ/kg.K	~	0.0	m/s	~	0.0	m	~	-87.17103	kJ/kg	1.90754	kJ/kg	1
phi2			psi2			🕶 m2			□ Vol2		MM2		
	kJ/kg	~		kJ/kg	*	=m1	kg	~	0.0375	m^3	28.0	kg/kmol	

8. Draw the p-V diagram: Select Plots-p-V diagram:

			State Panel							I/O Pane	ą			
< ©Sta	te-2 💙 >		Calculate	p-v	~	Initialize	Fo	mati	on Enthalpy:	⊙No ⊙Yes	6	N2	Y	1
Γ ρ2	-		₩ T2	No-Plots	^	Γ v2			Γ u2					
800.0	kPa	~	=T1	T-v T-s	111	0.11135	m^3/kg	~	-87.17103	kJ/kg	~	1.90754	kJ/kg	*
r s2			Vel2	h-s		▼ z2			r e2			Г j2		
6.23422	kJ/kg.K	*	0.0	p-v p-h		0.0	m	~	-87.17103	kJ/kg	~	1.90754	kJ/kg	~
phi2			psi2	p-T	*	₩ m2			✓ Vol2			MM2		
	kJ/kg	~		kJ/kg	~	=m1	kg	*	0.0375	m^3	~	28.0	kg/kmol	~
R2			c_p2			c_v2			k2					
0.29693	kJ/kg.K	*	1.0311	kJ/kg.K	*	0.73417	kJ/kg.K	~	1.40444	UnitLess	*			



Click on the ad to read more

And, immediately, following plot with the two states marked, is presented:

You can format it further, connect the states, draw different lines such as p = c, v = c, T = c etc. (see the top line in the above screen shot), and change the axes limits too if required. In the following T = c is executed:

9. Now, that States 1 and 2 are fully known, we can calculate Isothermal work by going to the I/O panel: **Click on Super Calculate** and go to I/O panel:

• Mixed	C SI	C English	< Case-0 V >	🔽 Help Messages On	Super-Iterate	Super-Calculate	Load	Super-Initialize
		Sta	ate Panel			I/O Panel		

Clicking on I/O panel, we get:

#******ANALYST: Dr. Muliya; TEST License: Professional******
Solution logged at: Dec 11, 2013 9:26:29 PM
#Start of TEST-code
States {
State-1: N2;
Given: { p1= 150.0 kPa; T1= 300.0 K; Vel1= 0.0 m/s; z1= 0.0 m; Vol1= 0.2 m^3; }
State-2: N2;
Given: { p2= 800.0 kPa; T2= "T1" K; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; }
}
#End of TEST-code

Evaluated States:

#	State-1: N2 > PG-Model;
#	Given: p1= 150.0 kPa; T1= 300.0 K; Vel1= 0.0 m/s;
#	z1= 0.0 m; Vol1= 0.2 m^3;
#	Calculated: v1= 0.5939 m^3/kg; u1= -87.171 kJ/kg; h1= 1.9075 kJ/kg;
#	s1= 6.7313 kJ/kg.K; e1= -87.171 kJ/kg; j1= 1.9075 kJ/kg;
#	m1= 0.3368 kg; MM1= 28.0 kg/kmol; R1= 0.2969 kJ/kg.K;
#	c_p1= 1.0311 kJ/kg.K; c_v1= 0.7342 kJ/kg.K; k1= 1.4044 UnitLess;
#	State-2: N2 > PG-Model;
#	Given: p2= 800.0 kPa; T2= "T1" K; Vel2= 0.0 m/s;
#	z2= 0.0 m; m2= "m1" kg;
#	Calculated: v2= 0.1114 m^3/kg; u2= -87.171 kJ/kg; h2= 1.9075 kJ/kg;
#	s2= 6.2342 kJ/kg.K; e2= -87.171 kJ/kg; j2= 1.9075 kJ/kg;
#	Vol2= 0.0375 m^3; MM2= 28.0 kg/kmol; R2= 0.2969 kJ/kg.K;
#	c_p2= 1.0311 kJ/kg.K; c_v2= 0.7342 kJ/kg.K; k2= 1.4044 UnitLess;
#	

#----- Property spreadsheet starts: The following property table can be copied onto a spreadsheet (such as Excel) for further analysis or plots. -----

Software Solutions to Problems in Basic Thermodynamics: Part-II

#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	150.0	300.0	0.5939	-87.17	1.91	6.731
#	2	800.0	300.0	0.1113	-87.17	1.91	6.234
#							
#	Prope	rty spreadsheet e	nds				

```
#
```

```
#*****CALCULATE VARIABLES: Type in an expression starting with an '=' sign ('= mdot1*(h2-h1)',
'= sqrt(4*A1/PI)', etc.) and press the Enter key)********
```

#

#Isothermal Work done: W = p1*Vol1 * ln (Vol2/Vol1)

=p1*Vol1 * ln (Vol2/Vol1)

p1*Vol1 * ln (Vol2/Vol1) = -50.21929300715014 kJ = -50.22 kJ Ans.

Alternatively:

=m1*R1*T1*ln(vol2/vol1)

m1*R1*T1*ln(vol2/vol1) = -50.21929300715015.... same as above.

Click on the ad to read more

Alternatively:

Use the System Analysis - Closed - Generic - Uniform System Daemon for the Process analysis.

This is direct method, and is preferable since in addition to work and heat, it calculates exergy and 'lost work' too.

1. Select the appropriate daemon for process analysis as shown below:

Basic Too	ls	System A	nalysis	States	& Properties
Unit DeskCa onverter	l Tables & Charts	Closed	Open	Uniform System	Uniform Flow
Unsteady Proc	cess St	eady State (cycles)	Steady S	tate U	nsteady Process
— Generic 👜	Specific		Generic		Specific
I. T	Cycles HVAC	[/Psychrome		nb. & Equilibri	
I. T		Semi		mb. & Equilibri Mixing	ium
Reciprocating Uniform	Cycles HVAC	Semi	try Co I Mixing	mb. & Equilibri Mixing	ium
Reciprocating Uniform	Cycles HVAC Non-Mixing Non-Uniform	Semi	try Co I Mixing Iniform	mb. & Equilibri Mixing	n
Reciprocating Uniform System	Cycles HVAC Non-Mixing Non-Uniform	Semi- Non-U	try Co I Mixing Iniform	mb. & Equilibri Mixing Non-Uniforn	n

 Clicking on Uniform System, and choosing the Perfect Gas Model with cp = const. gives following window. Fill up the known parameters viz, p1, T1, Vol1 for State 1, and click on Calculate. We get:

G	eneric, Uniform-Sy	stem, Closed	Process D	aemon: PG /	Model		
D Hon	ds.net > Daemons > S ne of ST	ystems > Closed	> Process > $\int_{\delta}^{f} () dt = \langle 0 \rangle$	Generic > Unifo	c _p = cons		
Move mouse over a variable to display its va	Case-0 >	Help Messages O			-Calculate		oer-Initialize
State Panel	Process Pa	inel	E	(ergy Panel		I/O Pane	1
< Calcu	late No-Plots 🗸	Initialize	Formatio	n Enthalpy: 🛛 💭 N	lo 💿 Yes	N2	×
P1 🔽	T1	□ v1	I	1		🗆 h1	
150.0 kPa 💉 300.0	K 🗸	0.59386 n	m^3/kg 💉	-87.17103	kJ/kg 💙	1.90754	kJ/kg 💉
⊑ s1 🔽	Vel1	₩ z1	ſ	e1		□ j1	
6.73127 kJ/kg.K 💙 0,0	m/s 💉	0.0	m 💌	-87.17103	kJ/kg 💉	1.90754	kJ/kg 😽
phi1 psi	1		1	Vol1		MM1	
kJ/kg 💙		0.33678	kg 🗸	0.2	m^3 💉	28.0	kg/kmol 💉
R1 C_P	01	c_v1		k1			
0.29693 kJ/kg.K 💙 1.031	(J/kg.K 🖌	1.40444 [UnitLess 💌		

• Mixed	CSI CE	ngli	sh < ©Ca	se-0 💙 >	1	lelp Messages	On	Super-	Iterate	uper-Calculate		Load	Super-Initial	lize
Si	tate Panel			Process P	ane				Exergy Panel			I/O Pa	inel	
< ©State-	2 💙 >		Calculate	No-Plots 👻		Initialize	1	ormati	on Enthalpy:	⊙No •Yes		N2	1	~
p 2			▼ T2		Г	v2			Γ u2			□ h2		
B00.0	kPa	~	=T1	K 😽	0	11135	m^3/kg	¥	-87.17103	kJ/kg	~	1.90754	kJ/kg	1
s2			Vel2		V	z2			⊏ e2			⊏ j2		
6.23422	kJ/kg.K	*	0.0	m/s 🗸	0	0	m	*	-87.17103	kJ/kg	*	1.90754	kJ/kg	
phi2			psi2		V	m2			✓ Vol2			MM2		
	kJ/kg	~		kJ/kg		n1	kg	*	0.0375	m^3	~	28.0	kg/kmol	

3. Fill up known parameters for State 2, click on Calculate:

4. Go to Process Panel. T_B is already checked there; also check W_O (i.e. other work) as zero. Click on Calculate and get the following results:

Mixed C SI C English	< ©Case-0 v >	✓ Help Messages	On Super-Iterate Super-C	alculate Load	Super-Initialize
State Panel	Process	Panel	Exergy Panel	1/0 F	anel
< Process-A[1-2] >	b-State: State-1	-States	State-2 Calculate	Initialize	T=constant
Q	Г ₩_В	F	₹ W_O	∀ T_B	
50.21929 kJ *	-50.21929	kJ 🔽	0.0 kJ	✓ 298.15	ĸ
S gen	Γ n		Delta_E	Delta_S	

Note that we get: W_B = Boundary work for this Isothermal process as -50.22 kJ;

Also, the Heat rejected $Q = W_B = -50.22$ kJ for Isothermal process, as it should be.

5. To make exergy analysis, we should first choose 'dead state'. This is State '0', take it as p0 = 100 kPa, T_0 = 25 C. Go to States Panel and fill up these parameters for State 0, and click on Calculate:

love mouse ov	er a variable to	displ	ay its value	with more precision	1									
• Mixed	C SI C E	Ingli	sh <	©Case-0 🗸 >	I	Help Messages	On	Super-	Iterate	Super-Calculate	•	Load	Super-Initial	lize
	State Panel			Proces	s Pa	nel	1	1	Exergy Panel	ĺ		1/0	Panel	
< ©Stat	e-0 💙 >		Calculate	No-Plots	¥	Initialize		Formati	on Enthalpy:	No •Yes		N2		~
⊽ ρ0			▼ T0			Γ v0			Г u0			□ h0		
100.0	kPa	*	25.0	deg-C	٧	0.88529	m^3/kg	*	-88.52925	kJ/kg	¥	0.0	kJ/kg	۲
r s0			Vel	0		▼ z0			Г e0			Г j0		
6.84529	kJ/kg.K	~	0.0	m/s	*	0.0	m	*	-88.52925	kJ/kg	~	0.0	kJ/kg	
phi0			psi0			└ m0			Vol0			MMO		
0.0	kJ/kg	*	0.0	kJ/kg	۷		kg	*		m^3	*	28.0	kg/kmol	•
RO			c_p0			c_v0			k0					
0.29693	kJ/kg.K	~	1.0311	kJ/kg.K	*	0.73417	kJ/kg.K	*	1.40444	UnitLess	~			

6. Now, go to Exergy Panel:

Mixed C SI	CEnglish	< ©Case-0	> 🔽	Help Messag	es On	Super	-Iterate Sur	er-Calcula	ite	Load	Super-Initia	alize
State Pa	neī	F	rocess Pane	Î			Exergy Panel			1/O F	anel	
Cal	culate		In	tialize			Exe	gy Analysi:	s for P	rocess - A		
Delta_Phi	W	u		1			S_gen.univ			W_rev		
3.65961 kJ	✓ -33.9	5929 kJ	✓ 0.	30969	kJ	~	0.00104	kJ/K	~	-33.65961	kJ	•
W	W	atm		Q_0			T_0					
50.21929 kJ	✓ -16.25	5 kJ	✓ -5	0.21929	kJ	*	298.15	к	~	0.0	kJ	

Observe that I = T0 * Δ S = 0.30969 is the 'lost work'.

7. Click **on SuperCalculate** to generate the TEST Code and to get a record of all calculations, and go to I/O Panel to get TEST code etc:

#~~~~~OUTPUT OF SUPER-CALCULATE:

Daemon Path: Systems>Closed>Process>Generic>Uniform>PG-Model; v-10.bb05

#-----Start of TEST-code ------

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

58

Download free eBooks at bookboon.com

```
States {
    State-0: N2;
    Given: { p0= 100.0 kPa; T0= 25.0 deg-C; Vel0= 0.0 m/s; z0= 0.0 m; }
    State-1: N2;
    Given: { p1= 150.0 kPa; T1= 300.0 K; Vel1= 0.0 m/s; z1= 0.0 m; Vol1= 0.2 m^3; }
    State-2: N2;
    Given: { p2= 800.0 kPa; T2= "T1" K; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; }
    }
Analysis {
    Process-A: b-State = State-1; f-State = State-2;
    Given: { W_O= 0.0 kJ; T_B= 298.15 K; }
    }
}
```

```
#-----End of TEST-code -----
```

#*****DETAILED OUTPUT: All the computed properties and variables are displayed on this block.**********

Evaluated States:

State-0: N2 > PG-Model;
Given: p0= 100.0 kPa; T0= 25.0 deg-C; Vel0= 0.0 m/s;
z0= 0.0 m;
Calculated: v0= 0.8853 m^3/kg; u0= -88.5292 kJ/kg; h0= 0.0 kJ/kg;
s0= 6.8453 kJ/kg.K; e0= -88.5292 kJ/kg; j0= 0.0 kJ/kg;
phi0= 0.0 kJ/kg; psi0= 0.0 kJ/kg; MM0= 28.0 kg/kmol;
R0= 0.2969 kJ/kg.K; c_p0= 1.0311 kJ/kg.K; c_v0= 0.7342 kJ/kg.K;
k0= 1.4044 UnitLess;
State-1: N2 > PG-Model;
Given: p1= 150.0 kPa; T1= 300.0 K; Vel1= 0.0 m/s;
z1= 0.0 m; Vol1= 0.2 m^3;
Calculated: v1= 0.5939 m^3/kg; u1= -87.171 kJ/kg; h1= 1.9075 kJ/kg;
s1= 6.7313 kJ/kg.K; e1= -87.171 kJ/kg; j1= 1.9075 kJ/kg;
phi1= 6.2086 kJ/kg; psi1= 35.9014 kJ/kg; m1= 0.3368 kg;
MM1= 28.0 kg/kmol; R1= 0.2969 kJ/kg.K; c_p1= 1.0311 kJ/kg.K;

#	c_v1= 0.7342 kJ/kg.K; k1= 1.4044 UnitLess;
#	State-2: N2 > PG-Model;
#	Given: p2= 800.0 kPa; T2= "T1" K; Vel2= 0.0 m/s;
#	z2= 0.0 m; m2= "m1" kg;
#	Calculated: v2= 0.1114 m^3/kg; u2= -87.171 kJ/kg; h2= 1.9075 kJ/kg;
#	s2= 6.2342 kJ/kg.K; e2= -87.171 kJ/kg; j2= 1.9075 kJ/kg;
#	phi2= 106.1536 kJ/kg; psi2= 184.0973 kJ/kg; Vol2= 0.0375 m^3;
#	MM2= 28.0 kg/kmol; R2= 0.2969 kJ/kg.K; c_p2= 1.0311 kJ/kg.K;
#	c_v2= 0.7342 kJ/kg.K; k2= 1.4044 UnitLess;

#-----Property spreadsheet starts: The following property table can be copied onto a spreadsheet (such as Excel) for further analysis or plots. -----

#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	0	100.0	298.2	0.8853	-88.53	0.0	6.845
#	1	150.0	300.0	0.5939	-87.17	1.91	6.731
#	2	800.0	300.0	0.1113	-87.17	1.91	6.234
#							
#	Proper	rty spreadsheet e	nds				

Mass, Energy, and Entropy Analysis Results:

Calculated: Q= -50.21929 kJ; W_B= -50.21929 kJ; S_gen= 0.0010386907 kJ/K; n= 1.0 UnitLess; # Delta_E= -0.0 kJ; Delta_S= -0.16739765 kJ/K;

Exergy Analysis Results:

# Ex	xergy Analysis for Process – A (Dead state: State-0)
#	Given: Q= -50.21929 kJ; T_0= 298.15 K; Q_1= 0.0 kJ;
#	T_1= 298.15 K;
#	Calculated: Delta_Phi= 33.65961 kJ; W_u= -33.96929 kJ; I= 0.30969 kJ ;
#	S_gen.univ= 0.00104 kJ/K; W_rev= -33.65961 kJ; W= -50.21929 kJ;
#	W_atm= -16.25 kJ; Q_0= -50.21929 kJ;

Prob.4.19. A mass of 1.2 kg of Air at 150 kPa and 12 C is contained in a gas-tight friction-less pistoncylinder device. The air is now compressed to a final pressure of 600 kPa. During the process heat is transferred from air such that the temp inside the cylinder remains constant. Calculate the work done during this process. [Ref. 1].

TEST Solution:

Use the System Analysis – Closed – Generic – Uniform System Daemon for the *Process analysis*. Following are the steps:

- States & Properties **Basic Tools** System Analysis Unit DeskCal Uniform Uniform Tables & Closed Open Converter System Flow Charts Unsteady Process Steady State Steady State Unsteady Process (cycles) Generic @ Specific Generic Specific ٦ HVAC/Psychrometry Reciprocating Cycles Comb. & Equilibrium Uniform Non-Mixing Semi-Mixing Mixing System Non-Uniform Non-Uniform Non-Uniform Non-Mixing Multi-Flow Mixing Multi-Flow Single-Flow Т HVAC Vapor and Gas Refrigeration Gas Combustion **Power Cycles** Cycles Psychrometry Dynamics & Equilibrium
- 1. Select the appropriate daemon for process analysis as shown below:

2. Clicking on Uniform System, and choosing the Perfect Gas Model with cp = const. gives following window. Select the gas as N2, Fill up the known parameters viz, p1, T1, Vol1 for State 1, and click on Calculate. We get:

		Percenter of					stem, Close						A-120		
		ther	Home	of	emons	> Sy	stems > Close	d > Proc	ess >) <i>dt</i>	Generic > U		-Mo = cons			
Nove mouse ove	er a variable to	displa		and the second	e precisior			25				•			
• Mixed	C SI C E	inglis	h _	< Case-0	* >	V	Help Messages	On 📋	Super-	Iterate	uper-Calculate		Load	Super-Initiali	ze
	State Panel				Process	Pan	iel		E	Exergy Panel			1/0 P	anel	
< ©State	e-1 💙 >		Calculat	e	No-Plots	~	Initialize	F	ormati	on Enthalpy:	ONO OYes		N2	~	
🔽 ρ1			₩ T 1	1		J	□ v1			□ u1			🗆 h1		
150.0	kPa	~	12.0		deg-C	~	0.56446	m^3/kg	*	-98.0735	kJ/kg	~	-13.40432	kJ/kg	*
Γ s1			Ve Ve	el1		J	✓ z1			Γ e1			Γ j1		
6.67893	kJ/kg.K	~	0.0	r,	n/s	*	0.0	m	~	-98.0735	kJ/kg	~	-13.40432	kJ/kg	*
phi1			psi1			J	√ m1			√ Vol1			MM1		
	kJ/kg	~		ŀ	(J/kg	~	1.2	kg	*	0.67735	m^3	~	28.0	kg/kmol	*
R1			c_p1				c_v1			k1					
0.29693	kJ/kg.K	~	1.0311	k.	l/kg.K	~	0.73417	kJ/kg.K	*	1.40444	UnitLess	~			

MoM MAASTRICHT SCHOOL OF MANAGEMENT

For almost 60 years Maastricht School of Management has been enhancing the management capacity of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open Enrollment Executive Programs offers you a unique interactive, stimulating and multicultural learning experience.

Be prepared for tomorrow's management challenges and apply today.

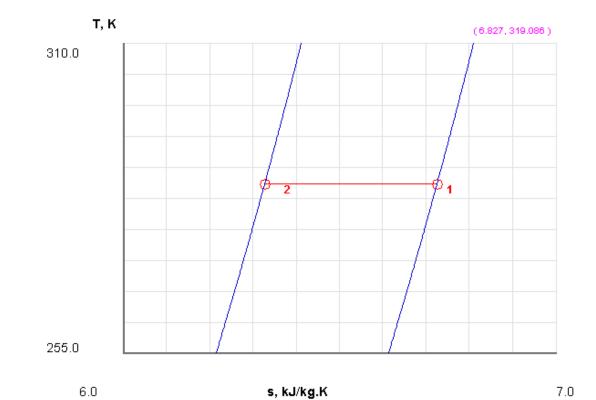
For more information, visit www.msm.nl or contact us at +31 43 38 70 808 or via admissions@msm.nl

the globally networked management school

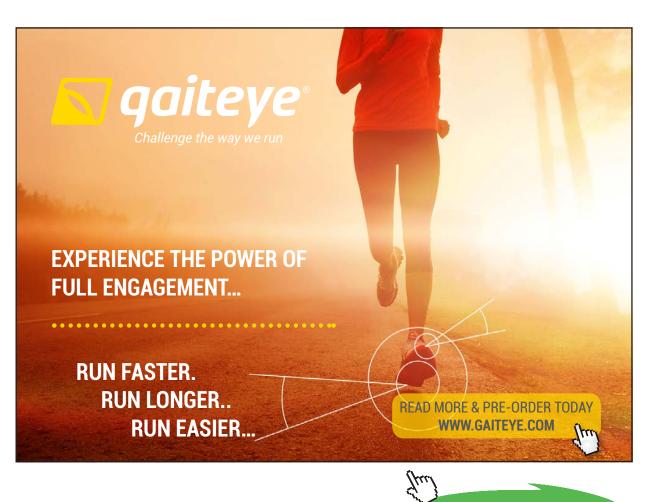
Click on the ad to read more

Download free eBooks at bookboon.com

3. Select State 2, enter the known parameters, i.e. p2, T2, m2. Click on Calculate:


• Mixed	CSI CE	ngli	sh	< Cas	e-0 💙 >	I.	Hel	Messages	On	Super-	Iterate	Super-Calculat	te	Load	Super-Initial	ize
St	ate Panel				Process	s Par	iel			E	Exergy Panel	i l		VO Pa	mel	
< ©State-	2 🗙 >		Calcu	llate	No-Plots	~		Initialize	ļ.	Formati	on Enthalpy:	⊙No ⊙Ye	s	N2	•	v
p 2			•	T2			Г	v2			Γ u2			Γ h2		
600.0	kPa	*	=T1		deg-C	~	0.14	112	m^3/kg	~	-98.0735	kJ/kg	~	-13.40432	kJ/kg	
s2			•	Vel2			~	z2			Γ e2			Γ j2		
6.2673	kJ/kg.K	~	0.0		m/s	~	0.0		m	~	-98.0735	kJ/kg	×	-13.40432	kJ/kg	1
phi2			psi	2			•	m2			Vol2	?		MM2		
	kJ/kg	~			kJ/kg	~	=m1		kg	~	0.16934	m^3	~	28.0	kg/kmol	

4. Go to Process Panel, enter W_O (i.e. works other than boundary works) as zero, click on Calculate:


• Mixed C SI C English	< Case-0 V >	✓ Help Messages (On Super-Iterate Supe	r-Calculate Load	Super-Initialize
State Panel	Process F	Panel	Exergy Panel		I/O Panel
< Process-A [1-2] V >	b-State: State-1	✓ f-Sibter	State-2 V Calculate	e Initialize	T=constant
0	□ W B				reconstant
40.85168 kJ N	_	kJ 🕑 🚺		✓ 298.15	к
S gen	Г n		Delta E	Delta S	
	1.0 U	InitLess 🗸	-	✓ -0.49396	kJ/K

Note that for this Isothermal process, Boundary work, W_O is calculated as -140.85 kJ. (Ans.)

Negative work indicates **work done** *on* **the system**. Obviously, heat transfer Q is equal to W_B and is negative, i.e. heat is leaving the system in this Isothermal process.

5. Plot below shows the States 1 and 2 on a T-s diagram:

64

Click on the ad to read more

Download free eBooks at bookboon.com

6. Click on SuperCalculate to produce the TEST code, (with which we can regenerate these calculations later by loading this TEST code in the I/O Panel and clicking SuperCalculate). Now, go to I/O panel to view the TEST code and other calculated States. Only part of the I/O output is shown below:

#~~~~~ OUTPUT OF SUPER-CALCULATE: (

Daemon Path: Systems>Closed>Process>Generic>Uniform>PG-Model; v-10.bb05

#-----Start of TEST-code -----

States {

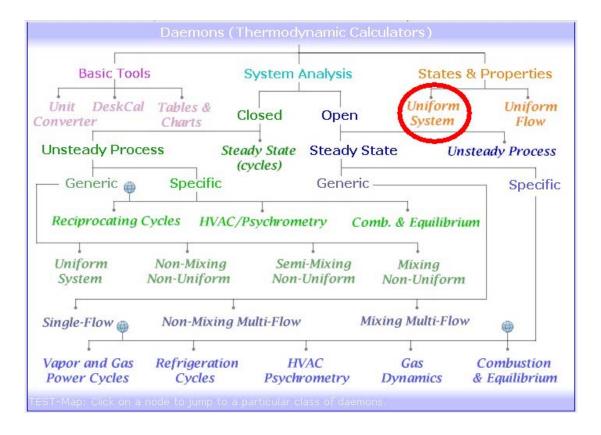
State-1: N2; Given: { p1= 150.0 kPa; T1= 12.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 1.2 kg; } State-2: N2; Given: { p2= 600.0 kPa; T2= "T1" deg-C; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; }

Analysis {

Process-A: b-State = State-1; f-State = State-2; Given: { W_O= 0.0 kJ; T_B= 298.15 K; }

#End of TEST-code	-
#Property spreadsheet starts:	

#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	150.0	285.2	0.5645	-98.07	-13.4	6.679
#	2	600.0	285.2	0.1411	-98.07	-13.4	6.267


Prob. 4.20. A vessel having a volume of 5 m³ contains 0.05 m³ of sat. liquid water and 4.95 m³ of sat. water vapour at 0.1 MPa. Heat is transferred until the vessel is filled with sat. vapour. Determine the heat transfer for this process. [Ref:2]

TEST Solution:

We shall use the States & Properties – Uniform System, with PC (i.e. Phase Change) Material model for Water, and then calculate the heat transferred in the I/O panel, using it as a calculator:

Following are the steps:

1. Select the System State daemon:

 Choose the PC model for Material model. Following daemon presents itself. We shall call the sat. liq. As State 1, sat. vapour as State 2, and the combined liq + vapour as State 3. So, Fill up the known parameters p1, x1 and Vol1for State 1:

x1 = fraction [Quality of saturated	thermofluids.n TEST	e Daemon: Phase-Cl et > Daemons > States :		
Mixed C SI C English	< Case-0 >	₩ Help Messages On	Super-Iterate Super-Calculate	
		ots 🗸 Initialize	Unknown Phase	H20
✓ p1 100 kPa	T1 deg-C 🗸	x1 fraction	y1 fraction	✓ v1 m*3/kg ✓
🗆 ut 🔽	h1	□ s1	Vel1	∀ z1
kJ/kg 💌	kJ/kg 💙	kJ/kg.K	✓ 0.0 m/s	♥ 0.0 m ♥
E ef E	jt	phi1	psi1	🗖 m1
kJ/kg 💌	kJ/kg 💙	kJ/kg	✓ kJ/kg	✓ kg ✓
✓ Vol1 M 0.05 m^3 ✓	M1 kg/kmol 🗸			

Note that in the above dryness fraction x1 is zero since it is sat. liq. state. Now, click on Calculate and we get:

Mixed OSI OI	English < Ca	se-0 💙 >	✓ Help Messages On	Super-Iterate	Super-Calculate	Load Super-Initialize
	State Panel				I/O Panel	
< OState-1 V >	Calculate	No-Plo	ts 👻 Initializ	e Saturate	d Liquid	H20 💌
p1	Γ T1		₩ x1	Γ y1		□ v1
00.0 kPa	♥ 99.61999	deg-C 🛛 👻	0.0 frac	ion 😽 0.0	fraction 👻	0.00104 m^3/kg
u1	🗆 h1		□ s1	Ve Ve	el1	∀ z1
17.3357 kJ/kg	₩ 417.44	kJ/kg 💉	1.3025 kJ/kg.	K 🖌 0.0	m/s 😽	0.0 m
e1	🗖 j1		phi1	psi1		□ m1
17.3357 kJ/kg	₩ 417.44	kJ/kg 💙	kJ/k	g 💉	kJ/kg 💙	47.93864 kg

CLIVER WYMAN

Oliver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk overprinteering with specialized experies in starting, operations, its management, organizational transformation, and leadership development. With offices in 50-cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

Click on the ad to read more

67 Download free eBooks at bookboon.com

Observe that m1, T1 etc are immediately calculated for Sat. water at 100 kPa.

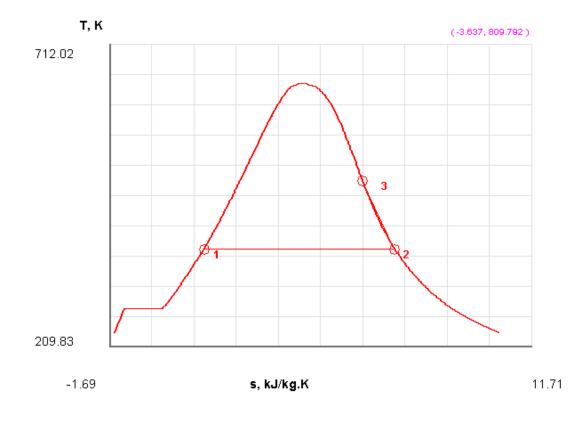
3. Now, enter known parameters, i.e. p2, x2 and Vol2 for State 2:

•	Mixed	C SI CI	Engl	sh < Ca	se-0 🗙 >		Help Messa	ges On	Super	-Iterate	Super-Calcula	ate	Load	Super-In	nitialize
				State Panel							I/O Pa	nel			
	< State-2	v >		Calculate	N	o-Plots	•	Initialize		Unknown	Phase		H2O		~
ť.	p2			T2		F	✓ x2			Γ y2			🗖 v2		
00		kPa	*		deg-C	*	1	fraction	*	1	fraction	*		m^3/	kg
	u2			h2		ſ	s2			Vel	2		✓ z2	2	
		kJ/kg	~		kJ/kg	~		kJ/kg.K	~	0.0	m/s	*	0.0	m	
	e2			j 2			phi2			psi2			Г m	2	
		kJ/kg	*		kJ/kg	*		kJ/kg	*	[kJ/kg	*		kg	
	Vol2			MM2											
.95		m^3	~		kg/kmol	~									

Here, x2 = 1 since we are dealing with sat. vapour. Click on Calculate, and we get:

• N	lixed	C SI C	Engl	ish <mark>< Ca</mark>	se-0 🗸	>	Help Mess	ages On	Super	-Iterate	Super-Calcula	te	Load	Super-Initial	lize
				State Panel							I/O Par	iel			
	< ©State	-2 💙 >		Calculate	1	lo-Plot	s 💌	Initialize		Saturated	l Vapor		H20	¥	
~	p2			Γ T2			✓ x2			Γ y2			⊏ v2		
100.0		kPa	~	99.61999	deg-C	*	1.0	fraction	~	1.0	fraction	~	1.694	m^3/kg	1
	u2			Γ h2			s2			I Ve	2		₩ z2		
2506.	06	kJ/kg	~	2675.46	kJ/kg	~	7.3593	kJ/kg.K	*	0.0	m/s	~	0.0	m	1
	e2			Γ j2			phi2			psi2			□ m2		
2506.	06	kJ/kg	~	2675.46	kJ/kg	*		kJ/kg	~		kJ/kg	~	2.92208	kg	1
7	Vol2			MM2											
4.95		m^3	v	18.0	kg/kmol	~									

Note that m2, u2, h2 etc. are immediately calculated for sat. water vap at 100 kPa.


4. Now, enter State 3. This is when the entire tank is filled with sat. water vap. i.e. $x_3 = 1$, and of course, Vol₃ = Vol₁ + Vol₂, and total mass m₃ = m₁+m₂. Enter these parameters for State 3:

• 1	Nixed (C SI C	Engli	sh <mark>< Ca</mark>	se-0 🗸	>	▼ Help Mes	sages On	Super	-Iterate S	uper-Calcula	ate	Load	Super-Initial	lize
				State Panel							1/0 Pa	inel			
	< State-3	* >		Calculate		No-Plots	6 *	Initialize		Unknown Pha	ise		H20	×	
Γ	p3			T 3		F	✓ x3			Г уЗ			Г v3		
		kPa	~		deg-C	~	1	fraction	~	J	fraction	~	J	m^3/kg	~
	u3			h3		ſ	s3			Vel3			▼ z3		
		kJ/kg	*		kJ/kg	× [kJ/kg.K	*	0.0	m/s	~	0.0	m	×
	e3			j3			phi3			psi3			₩ m3		
		kJ/kg	~		kJ/kg	~ [kJ/kg	~		kJ/kg	~	=m1+m2	kg	~
•	Vol3			ММЗ											
=vol1	+vol2	m^3 :	~		kg/kmol	~									

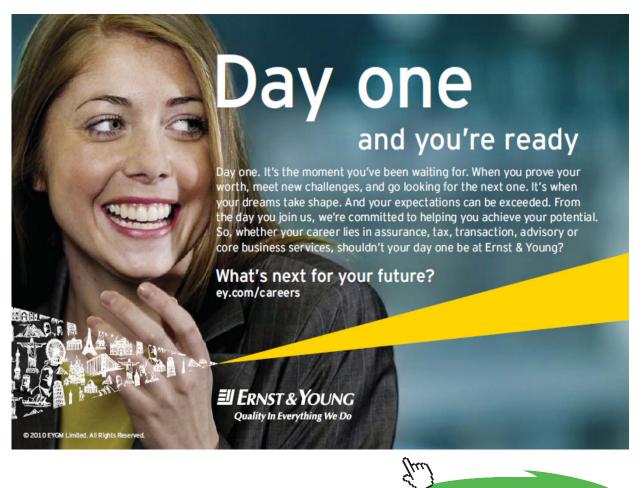
5. Click on Calculate and we get:

• Mixed C SI	C Eng	lish < Cas	e-0 🔻 >	F Help Messa	ges On	Super-Ite	erate Supe	r-Calculate	Load	Super-Initializ	e
		State Panel						I/O Panel			
< OState-3	/ >	Calculate	No-Plo	ots 💌	Initialize	ſ	Saturated Vapor		H2O	~	
— p3		Γ T3		₩ x3		٢	y3		⊏ v3		
2026.1324 kP	a 👻	213.09286	deg-C 😽	1.0	fraction	× 1	.0	fraction 💉	0.09831	m^3/kg	*
U3		Г h3		□ s3		F	Vel3		√ z3		
2600.468 kJ/kj	9 💉	2799.7368	kJ/kg 😽	6.33598	kJ/kg.K	~	0.0	m/s 💙	0.0	m	1
e3		Γ j3		phi3			psi3		₩ m3		
2600.468 kJ/k	• •	2799.7368	kJ/kg 😽		kJ/kg	¥ [kJ/kg 😽	=m1+m2	kg	*

6. Get the T-s plot where States 1, 2 and 3 are shown:

7. Click on SuperCalculate to produce the TEST code and other calculated results. Go to I/O panel to see them. Part of the output is shown below:

#~~~~OUTPUT OF SUPER-CALCULATE:


Daemon Path: States>System>PC-Model; v-10.bb06

#------ Start of TEST-code ------

States {

State-1: H2O; Given: { p1= 100.0 kPa; x1= 0.0 fraction; Vel1= 0.0 m/s; z1= 0.0 m; Vol1= 0.05 m^3; } State-2: H2O; Given: { p2= 100.0 kPa; x2= 1.0 fraction; Vel2= 0.0 m/s; z2= 0.0 m; Vol2= 4.95 m^3; } State-3: H2O; Given: { x3= 1.0 fraction; Vel3= 0.0 m/s; z3= 0.0 m; m3= "m1+m2" kg; Vol3= "vol1+vol2" m^3; } }

#-----End of TEST-code -----

70

Click on the ad to read more

Download free eBooks at bookboon.com

#-----Property spreadsheet :

# State	p(kPa)	T(K)	х	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	100.0	372.8	0.0	0.001	417.34	417.44	1.303
# 02	100.0	372.8	1.0	1.694	2506.06	2675.46	7.359
# 03	2026.13	486.2	1.0	0.0983	2600.47	2799.74	6.336
#							

#*****CALCULATE VARIABLES: Type in an expression starting with an '=' sign ('= mdot1*(h2-h1)', '= sqrt(4*A1/PI)', etc.) and press the Enter key)********

Calculate the heat transferred in the I/O panel, using it as a calculator:

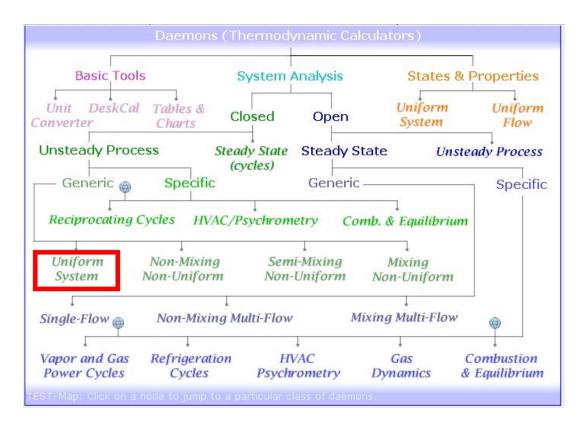
 $\label{eq:Q} Q = [(m3 * u3) - (m1 * u1 + m2 * u2)] \dots heat transferred, since it is at constant volume m1*u1 + m2*u2 = 27329.407721629643 kJ m3*u3 = 132261.66395801632 kJ #Therefore:$

$Q = m3^{*}u3 - (m1^{*}u1 + m2^{*}u2) = 104932.25623638667 kJ = 104932.26 kJ \dots$ Ans.

In addition, note that the masses of sat. liq. and vapour are: $m1 = 47.938637362598115 = 47.94 \text{ kg} \dots \text{ Mass of sat. liq.}$ $m2 = 2.922078117838602 \text{ kg} = 2.92 \text{ kg} \dots \text{ Mass of sat. vap.}$

And, total mass m3 is:

m3 = 50.86071548043672 = 50.86 kg Total mass


Prob.4.21. A cylinder fitted with a piston has a volume of 0.1 m³ and contains 0.5 kg of steam at 0.4 MPa. Heat is transferred to the steam until the temp is 300 C, while the pressure remains constant. Determine the heat transfer and work for this process. [Ref: 2]

TEST Solution:

We use the System Analysis - Closed - Generic - Uniform System Daemon for the Process analysis.

Following are the steps:

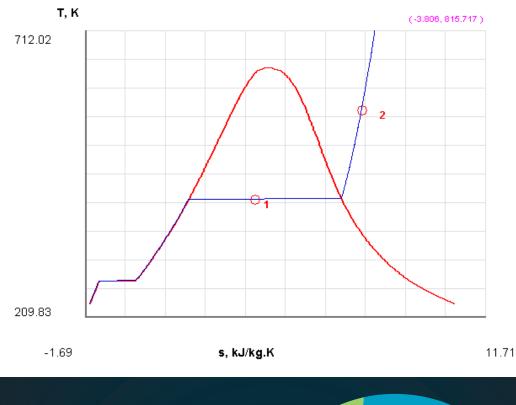
1. Select the appropriate daemon for process analysis as shown below:

2. Clicking on Uniform System, choose the PhaseChange (PC) Model for Material Model since we are dealing with Steam/Water.

3. Fill up the known parameters viz, p1, m1, Vol1 for State 1. Click on Calculate. We get:

1	ofluids.net > Daemons > Home of TEST		cess Daemon: <i>PC Mod</i> cess > Generic > Uniform : .)dl		
Move mouse over a variable to display i Mixed CSI CEnglish	ts value with more precision.	₩ Help Messages On	Super-Iterate Super-Calc	culate Load Su	iper-Initialize
State Panel	Process	Panel	Exergy Panel	I/O Pane	ai .
< ©State-1 V >	Calculate T-s	v Initialize	Saturated Mixture	H2O	~
I⊽ p1 Г	T1	□ x1	□ y1	□ v1	
400.0 kPa 💉 143	3.61063 deg-C 🛩	0.43075 fraction	V 0.99692 fraction	n 👻 0.2	m^3/kg 💉
🗆 ut 🗖	h1	∏ s1	Vel1	∀ z1	
1443.905 kJ/kg 🜱 152	23.833 kJ/kg 😽	3.98181 kJ/kg.K	💉 0.0 m/s	∞ 0.0	m 🗸
Γ ef Γ	j1	phi1	psi1	₩ m1	
1443.905 kJ/kg 🛩 152	23.833 kJ/kg 🛩	kJ/kg	✓ kJ/kg	✓ 0.5	kg 💌
Vol1	MM1				
0.1 m^3 💉 18.	0 kg/kmol 🗸				

4. Select State 2, enter known parameters, i.e. p2, T2, m2, and click on Calculate:


• Mixed OSI OI	English	< ©Case-0 V	> F	Help Messages	on Supe	r-Iterate Sup	er-Calculate	Load	uper-Initialize
State Panel		Pr	ocess Par	nel		Exergy Panel	1	I/O Pan	əl
< <mark>©State-2</mark> v >	Ca	lculate	T-s	v In	itialize	Superheated Va	por	H20	~
ρ2	N	T2	Г	x2		Г у2		Γ v2	
ep 1 KPa	≤ 300.0	deg-C	× [traction 💌		fraction 💉	0.65483	m^3/kg
u2	Γ /	h2	Г	s2		Ivel2		▼ z2	
2804.7983 kJ/kg	≤ 3066.7	295 kJ/kg	~ 7	.56606	ul/kg_K 👻	0.0	m/s 💌	0.0	m
c2	Γ /	2		phi2		pei2		₩ m2	
2804.7983 kJ/kg	₩ 3066.7	295 kJ/kg	~		kJ/kg 💙		kJ/kg 💙	=m1	kg 💦

5. Go to Process Panel, enter b-state and f-state, enter W_O = 0 (i.e. works other than pdV work), and click on Calculate. We get:

Mixed C SI C English	< ©Case-0 > F Help Mess	ages On Super-Iterate Super-Calcula	te Load Super-Initialize
State Panel	Process Panel	Exergy Panel	I/O Panel
< Process-A [1-2] V >	b-State: State-1 💌 🍋	State-2 Calculate	Initialize p=constant
Q	Г W B	V WO	T B
71.41223 kJ *	✓ 90.9656 kJ	✓ 0.0 kJ ✓ 21	Lawrence (1977)
1.41223			
S_gen	Delta_E	Delta_S	

Thus: Boundary work, $W_B = 90.9656$ kJ and the heat transferred Q = 771.41 kJ....Ans. Note that Work is positive, i.e. work done *by* the system.

Heat transfer q is positive, i.e. Heat transferred *into* the system.

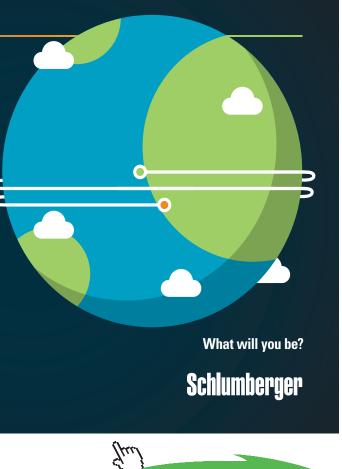
6. On a T-s diagram, the State points are shown as follows:

In the past four years we have drilled

81,000 km

That's more than twice around the world.

Who are we?


We are the world's leading oilfield services company. Working globally—often in remote and challenging locations—we invent, design, engineer, manufacture, apply, and maintain technology to help customers find and produce oil and gas safely.

Who are we looking for?

- We offer countless opportunities in the following domains:
- Engineering, Research, and Operations
- Geoscience and Petrotechnical
- Commercial and Business

If you are a self-motivated graduate looking for a dynamic career, apply to join our team.

careers.slb.com

Click on the ad to read more

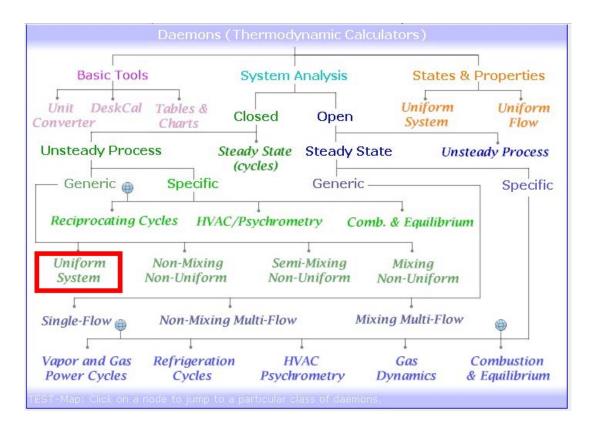
Download free eBooks at bookboon.com

74

 Click on SuperCalculate to produce the TEST code, calculated State properties etc. Go to I/O panel to see the code. Part of I/O output is shown below:

```
#
      #
           Daemon Path: Systems>Closed>Process>Generic>Uniform>PC-Model; v-10.bb06
      #
      #-----Start of TEST-code -----
      States {
           State-1: H2O;
           Given: { p1= 400.0 kPa; Vel1= 0.0 m/s; z1= 0.0 m; m1= 0.5 kg; Vol1= 0.1 m^3; }
           State-2: H2O;
           Given: { p2= "p1" kPa; T2= 300.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; }
           ļ
      Analysis {
           Process-A: b-State = State-1; f-State = State-2;
           Given: { W_O= 0.0 kJ; T_B= 298.15 K; }
           ł
      #-----End of TEST-code ------
      # Mass, Energy, and Entropy Analysis Results:
           Process-A: b-State = State-1; f-State = State-2;
      #
                  Given: W_O= 0.0 kJ; T_B= 298.15 K;
      #
      # Calculated: Q= 771.41223 kJ; W_B= 90.9656 kJ; S_gen= -0.7952037 kJ/K;
      # Delta_E= 680.44666 kJ; Delta_S= 1.7921257 kJ/K;
```

Prob.4.22. Air at 1.02 bar, 22 C, initially occupying a cylinder volume of 0.015 m3, is compressed reversibly and adiabatically to a pressure of 6.8 bar. Calculate: (i) Final volume (ii) Final temp, and (iii) Work done. [Ref: 4]


(b) In addition: If State 2 is reached by a polytropic process (n = 1.3) instead of by isentropic process, find out the values of Work and Heat transfers and their direction.

TEST Solution:

We use the System Analysis – Closed – Generic – Uniform System Daemon for the *Process analysis*.

Following are the steps:

1. Select the appropriate daemon for process analysis as shown below:

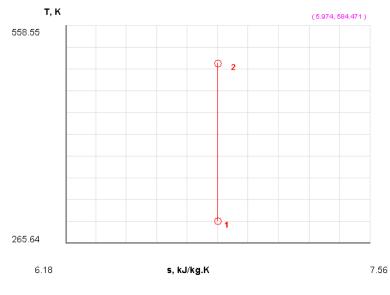
2. Clicking on Uniform System, choose the Permanent Gas (PG) Model for Material Model since we are dealing with Air. Enter parameters p1, T1 and Vol1for State 1, click on Calculate. We get:

			(Generic,	Uniform	-Sy	ster	n, Close	ed Proc	cess [Daemon:	PG Model				
ove mouse ove	ar a variable tr	Ø	Ho	me <i>of</i> E S T			/stem	is > Close	d > Pro $\int_{\delta}^{\delta} (-$) dt	Generic >	Uniform > Po	G-Mo = cons			
• Mixed				1	e-0 💙 >		₹ Helj	o Messages	s On	Super-	Iterate	Super-Calculat	e	Load	Super-Initial	ize
	State Panel				Proces	s Pa	nel			E	Exergy Panel			1/0 F	anel	
< ©State	8-1 💙 >		Calc	ulate	No-Plots	~		Initialize]	Formati	on Enthalpy:	ONO OYes	в	Air		~
▽ p1			~	T1			Г	v1			□ u1			□ h1		
102.0	kPa	~	22.0		deg-C	*	0.830)43	m^3/kg	*	-87.71456	kJ/kg	~	-3.01048	kJ/kg	Y
s1			~	Vel1			•	z1			□ e1			□ j1		
6.87086	kJ/kg.K	~	0.0		m/s	*	0.0		m	*	-87.71456	kJ/kg	~	-3.01048	kJ/kg	1
phi1			ps	a1			Г	<i>m1</i>			Vol1			MM1		
	kJ/kg	~			kJ/kg	~	0.018	306	kg	¥	0.015	m^3	~	28.97	kg/kmol	1
R1			c_	.p1			c_	v1			k1					
0.28699	kJ/kg.K	*	1.00	349	kJ/kg.K	¥	0.716	651	kJ/kg.K	*	1.40054	UnitLess	*			

3. Select State 2, enter p2, m2 = m1, and s2 = s1 since it is an isentropic (i.e. reversible, adiabatic) process. Click on Calculate. We get:

Mixed C SI C Englisi	h < Case-0 >	✓ Help Messages On	Super-Iterate Super-Calco	ulate Load Super-Initialize
State Panel	Process	Panel	Exergy Panel	I/O Panel
< <mark>©State-2 v</mark> >	Calculate No-Plots	v Initialize	Formation Enthalpy: 🔘 No 💿	Yes <mark>Air </mark>
Г р2 Г	- T2	Γ v2	Γ u2	Г h2
80:0 kPa 💉	234.62372 deg-C	✓ 0.2143 m ³ /	kg 💉 64.63193 kJ/kg	✓ 210.35616 kJ/kg *
s2 5	✓ Vel2	₩ z2	Г ө2	□ j2
s1 kJ/kg.K 🔽	0.0 m/s	✓ 0.0 m	✓ 64.63193 kJ/kg	✓ 210.35616 kJ/kg
phi2	psi2	₩ m2	□ Vol2	MM2
KJ/Kg 💉	kJ/kg	💉 =m1 kg	✓ 0.00387 m^3	✓ 28.97 kg/kmol

4. Now, go to Process Panel, enter b_state = State 1, f-state = State 2, and Q = 0 since it is adiabatic process; click on Calculate. We get:


• Mixed • SI • English	< Case-0 v >	Help Messages O	n Super-Iterate Su	per-Calcula	te Load	Super-Initialize
State Panel	Process	Panel	Exergy Panel			I/O Panel
	and the second statement of th					
< Process-A [1-2] >	b-State: State-1	▼ 1-State:	State-2 Calcu	late	Initialize	s=constant
0	Γ W_B	Г	W_O		T_B	
¥.						
4	-2.75182	kJ 💙 🛛	0 kJ	* 2	98.15	K

Thus:

Final volume, Vol2 = 0.00387 m³, Final temp, T2 = 234.62 C.... Ans.

W_B = boundary work = -2.752 kJ Ans. Negative sign means that work is done on the system.

1. Plot the States 1 and 2 on the T-s diagram:

Download free eBooks at bookboon.com

(b) If State 2 is reached by a polytropic process (n = 1.3), what are the values of Q and W_B?

Let the state after the polytropic process be designated as State 3. Note that State 2 and State 3 are identical:

1. Select State 3 and enter p3, T3 and m1. These are essentially the same as for State 2. Click on Calculate. We get:

• Mixed	C SI C E	inglis	sh	< ©Cas	se-0 💙 >	F	Help Messages	on	Super-	Iterate	Super-Calculate		Load	Super-Initial	ize
5	State Panel				Process	s Par	nel		į	Exergy Panel			1/0 P	anel	
< ©State	-3 🗙 >		Calcu	late	No-Plots	~	Initialize]	Formati	on Enthalpy:	⊙No ⊙Yes		Air	1	*
⊽ p3			•	T3			Γ v3			Γ u3			Γ h3		
=p2	kPa	~	=T2		к	*	0.2143	m^3/kg	~	64.63193	kJ/kg	~	210.35616	kJ/kg	1
s 3			•	Vel3			▼ z3			Г e3			Γ <i>j</i> 3		
6.87086	kJ/kg.K	*	0.0		m/s	*	0.0	m	*	64.63193	kJ/kg	*	210.35616	kJ/kg	1
phi3			psi	3			₩ m3			□ Vol3			ММЗ		
	kJ/kg	~			kJ/kg	~	=m1	kg	~	0.00387	m^3	~	28.97	kg/kmol	1
R3			c_p	53			c_v3			k3					
0.28699	kJ/kg.K	~	1.003	49	kJ/kg.K	*	0.71651	kJ/kg.K	¥	1.40054	UnitLess	~			

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Dove

Click on the ad to read more

 Now, go to Process Panel. Enter b-state = State 1, f-state = State 3, n = 1.3 and Other Works, W_O = 0. Click on Calculate. We get:

• Mixed C SI C English	< Case-0 > F He	Ip Messages On Super-Iterate S	uper-Calculate Load Super-Initia
State Panel	Process Panel	Exergy Panel	I/O Panel
< Process-A [1-3] >	b-State: State-1 💌	I-State-3 Y	Initialize polytropic
Q	Γ W_B	<i>▼ w</i> _o	✓ T_B
	✓ -3.674 kJ	✓ 0.0 kJ	✓ 298.15 K

Note that Q = -0.922 kJ, W_B = -3.674 kJ..... Ans. Negative sign means: Q leaving the system, W_B done on the system.

3. Click on **SuperCalculate** to generate TEST code and get all calculated results. See them on the I/O panel. Part of the output is given below:

```
_____
```

Daemon Path: Systems>Closed>Process>Generic>Uniform>PG-Model; v-10.bb05

```
#------Start of TEST-code ------
States {
    State-1: Air;
    Given: { p1= 102.0 kPa; T1= 22.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; Vol1= 0.015 m^3; }
    State-2: Air;
    Given: { p2= 680.0 kPa; s2= "s1" kJ/kg.K; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; }
    State-3: Air;
    Given: { p3= "p2" kPa; T3= "T2" K; Vel3= 0.0 m/s; z3= 0.0 m; m3= "m1" kg; }
    }
Analysis {
    Process-A: b-State = State-1; f-State = State-3;
}
```

```
Given: { W_O= 0.0 kJ; T_B= 298.15 K; n= 1.3 UnitLess; }
```

#-----End of TEST-code -----

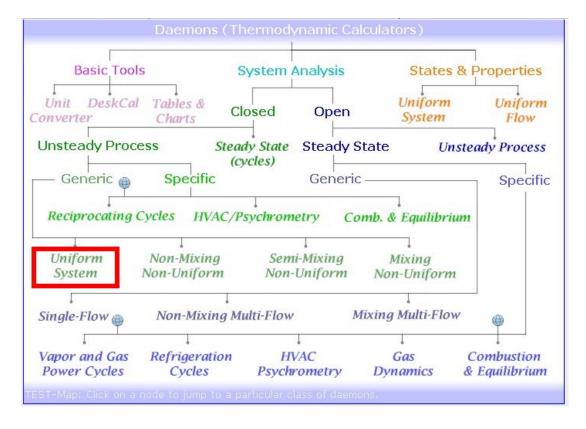
#

#DETAILED OUTPUT:

	iated Sta	ates:					
# 13 vare		1: Air > P0	G-Model·				
#	otute			T1 = 22.0 deg	C; Vel1= 0.0 m/	/s:	
#		-	$z_1 = 0.0 \text{ m; Vol}$	e		.,	
#					-87.7146 kI/kg:	h1= -3.0105 kJ/	kø:
#				e	146 kJ/kg; j1= -		8,
#				-	kg/kmol; R1= (-	
#			-		-	$k_1 = 1.4005$ Uni	tLess;
#	State-	2: Air > P0	G-Model;	-	-		
#		Given: p	o2= 680.0 kPa;	s2= "s1" kJ/kg	.K; Vel2= 0.0 m	/s;	
#		2	z2= 0.0 m; m2=	= "m1" kg;			
#		Calculat	ted: T2= 507.7	737 K; v2= 0.2	143 m^3/kg; u2	= 64.6319 kJ/kg;	
#]	n2= 210.3562 k	cJ/kg; e2= 64.6	319 kJ/kg; j2= 2	210.3562 kJ/kg;	
#			Vol2= 0.0039 n	n^3; MM2= 28	.97 kg/kmol; R	2= 0.287 kJ/kg.K	•
#			c_p2= 1.0035 k	xJ/kg.K; c_v2=	0.7165 kJ/kg.K;	k2= 1.4005 Uni	tLess;
#	State-	3: Air > P0	G-Model;				
#		Given: p	o3= "p2" kPa; 7	Г3= "Т2" К; Ve	el3= 0.0 m/s;		
#		2	z3= 0.0 m; m3=	= "m1" kg;			
#		Calculat	ted: v3= 0.2143	3 m^3/kg; u3=	64.6319 kJ/kg;	h3= 210.3562 kJ	′kg;
#		5	s3= 6.8709 kJ/ł	kg.K; e3= 64.63	19 kJ/kg; j3= 2	10.3562 kJ/kg;	
#			Vol3= 0.0039 n	n^3; MM3= 28	8.97 kg/kmol; R	3= 0.287 kJ/kg.K	•
#		(c_p3= 1.0035 k	xJ/kg.K; c_v3=	0.7165 kJ/kg.K;	k3= 1.4005 Uni	tLess;
#							
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	102.0	295.2	0.8304	-87.71	-3.01	6.871
#	2	680.0	507.8	0.2143	64.63	210.36	6.871
#	3	680.0	507.8	0.2143	64.63	210.36	6.871
#							
#	Proper	rty spreads	heet ends				
# Mass	s, Energ	y, and Ent	ropy Analysis	Results:			
#	Proce	ss-A: b-Sta	te = State-1; f-	State = State-3	;		
#		Given: V	<i>N</i> _O= 0.0 kJ; 7	Г_В= 298.15 К	; n= 1.3 UnitLe	ss;	
#		Calcula	ted: Q= -0.92	218256 kJ; W_	_B= -3.673999	5 kJ; S_gen= 0.0	030930154 kJ/K;
Delta_	E= 2.75	1817 kJ;					
#]	Delta_S= -0.0 l	κJ/K;			
			=======================================	===========	=========	=============	

"**Prob.4.23.** 5 kg of Nitrogen at 100 C is heated in a reversible, non-flow, constant volume process till the pressure becomes three times the initial pressure. Determine: (i) final temp (ii) change in internal energy (iii) change in enthalpy, and (iv) heat transfer. Take R = 0.297 kJ/kg.K, cv = 0.7435 kJ/kg.K. [VTU-Jan. 2004]"

Note that this is the same as Prob. 4.8 which was solved with EES.


Now, let us solve it with TEST:

TEST Solution:

We use the System Analysis - Closed - Generic - Uniform System Daemon for the Process analysis.

Following are the steps:

1. Select the appropriate daemon for process analysis as shown below:

 Clicking on Uniform System, choose the Permanent Gas (PG) Model for Material Model since we are dealing with Air. Enter parameters m1, T1 and Vol1 (= 1 m^3...assumed) for State 1, click on Calculate. We get:

	Generic	Uniform-Sy	stem, Close	d Process [Daemon: PG	Model		
the	Home of TEST	Daemons > S	ystems > Close	d > Process : $\int_{\delta}^{J} () dt$	> Generic > Unit	form > PG-Mc		
• Mixed C SI C Engl	ish < Cas	e-0 🗸 >	✓ Help Messages	On Super-	Iterate Supe	er-Calculate	Load	uper-Initialize
State Panel		Process Pa	nel		Exergy Panel	1	I/O Par	iel
< CState-1 >	Calculate	T-s 💌	Initialize	Formati	on Enthalpy: 🛛 😁	No 💽 Yes	N2	~
🗖 p1	₩ T1		⊏ v1	-	□ u1		□ h1	
553.9945 kPa 🗸	100.0	deg-C 💉	0.2	m^3/kg 😽 😽	-33.46627	kJ/kg 🗸 🗸	77.33263	kJ/kg
🗆 s1	Vel1		▼ z1		□ e1		⊏ jt	
6.56831 kJ/kg.K 🗸	0.0	m/s 💉	0.0	m 🗸	-33.46627	kJ/kg 😽	77.33263	kJ/kg
phi1	psi1		₩ m1		Vol1		MM1	
kJ/kg 💙		kJ/kg 😽	5.0	kg 😽	1.0	m^3 🗸	28.0	kg/kmol
R1	c_p1		c_v1		k1			
0.29693 kJ/kg.K 🗸	1.0311	kJ/kg.K 💉	0.73417	kJ/kg.K 😽	1.40444	UnitLess 😽		

Note that, in calculations, we will be using the built-in properties for R, cp and cv, as seen in the above screenshot.

3. Select State 2, enter p2 = 3 * p1, Vol2 = Vol1, m2 = m1. Click on Calculate. We get:

Mixed C SI C Engli	sh < Case	-0 💙 >	✓ Help Messages	On Super-	Iterate Super-	Calculate	Load Sup	er-Initialize
State Panel		Process F	Panel	1	Exergy Panel		I/O Panel	
< <mark>©State-2 v</mark> >	Calculate	T-s	Initialize	Formati	on Enthalpy: 🛛 🔭 N	o 💿 Yes	N2	~
7 р2	□ 72		Γ v2		Г u2	Г	h2	
-3*p1 kPa 💌	846.3	deg-C 💉	0.2	m^3/kg 💉	514.44714	kJ/kg 🛛 🛃	846.8438	kJ/kg
s2	Vel2		▼ z2		Г e2	Г	- j2	
7.37488 kJ/kg.K. ❤	0.0	m/s 🚿	0.0	m 💉	514.44714	kJ/kg 💉	846.8438	kJ/kg
phi2	psi2		₩ m2		Vol2		MM2	
kJ/kg 💙		kJ/kg	 =m1 	kg 🗸	=Vol1	m^3 💉	28.0	kg/kmol

4. Go to Process Panel, enter W_B = 0 since it is const. vol. process, W_O = 0, since there is no other work interaction. Click on Calculate. We get:

• Mixed C SI C English	Case-0 > F Help	Messages On Super-	Iterate Super-Calcul	ate Load	Super-Initialize
State Panel	Process Panel	E	Exergy Panel	1/0) Panel
< Process-A [1-2] V >	b-State: State-1 💌	State-2	Calculate	Initialize	User Defined
Q	₩_B	₩_O	Ţ	▼ T_B	
	₩_B	₩_0			к
-					К

5. States 1 and 2 are shown in the p-V diagram:

Thus:

Final temp, T2 = 846.3 C = 1119.4 K Ans.,

Heat transfer, Q = 2739.57 kJ Ans. Work is done by the system.

6. Click on **SuperCalculate** to get TEST code and calculated results. Also, calculate the change in internal energy and enthalpy in the I/O panel. Go to I/O panel. Part of the output is::

#~~~~~OUTPUT OF SUPER-CALCULATE:

Daemon Path: Systems>Closed>Process>Generic>Uniform>PG-Model; v-10.bb05

#-----Start of TEST-code -----

States {

State-1: N2; Given: { T1= 100.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 5.0 kg; Vol1= 1.0 m^3; } State-2: N2; Given: { p2= "3*p1" kPa; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; Vol2= "Vol1" m^3; } }

Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

Download free eBooks at bookboon.com

84

Analysis {

Process-A: b-State = State-1; f-State = State-2; Given: { W_B= 0.0 kJ; W_O= 0.0 kJ; T_B= 298.15 K; } }

#-----End of TEST-code -----

#-----Property spreadsheet starts:

#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg) s(kJ/kg)
#	1	553.99	373.2	0.2	-33.47	77.33 6.568
#	2	1661.98	1119.4	0.2	514.45	846.84 7.375

#-----Property spreadsheet ends-----

Mass, Energy, and Entropy Analysis Results:

#	Process-A: b-State = State-1; f-State = State-2;
#	Given: W_B= 0.0 kJ; W_O= 0.0 kJ; T_B= 298.15 K;
# Calcu	ulated: Q= 2739.57 kJ; S_gen= -5.155695 kJ/K; Delta_E= 2739.5671 kJ; Delta_S= 4.0328584 kJ/K;

#*****CALCULATE VARIABLES: Type in an expression starting with an '=' sign ('= mdot1*(h2-h1)', '= sqrt(4*A1/PI)', etc.) and press the Enter key)********

Change in Internal Energy: ΔU = m1 * (u2 - u1)
i.e. ΔU = m1 * (u2 - u1) = 2739.5670715475585 = 2739.57 kJ... Ans.
Change in Enthalpy: ΔH = m1 * (h2 - h1)
i.e. ΔH = m1 * (h2 - h1) = 3847.5560358332727 = 3847.56 kJ Ans.

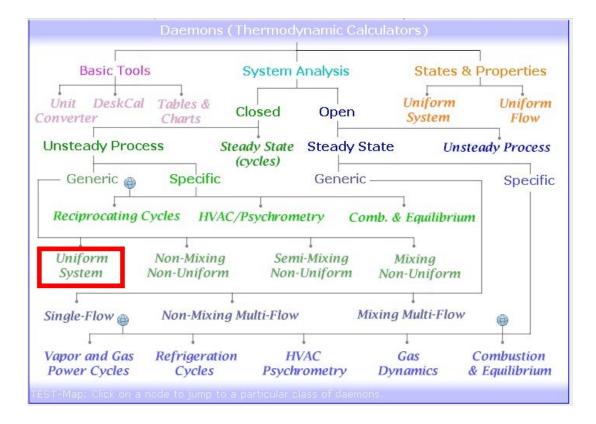
Compare the above results with those obtained with EES:

Unit Settings: SI K kPa kJ molar deg

ср = 1041	[J/kg-K]
∆U = 2.77	3E+06 [J]
Q = 2.773	E+06 [J]
T2 = 1119	3 [K]

cv = 743.5 [J/kg-K] m = 5 [kg] R = 297 [J/kg-K] W = 0 [J] <u>∆H = 3.881E+06 [J]</u> PressureRatio = 3 T1 = 373 [K]

It is observed that results match very well.


Prob.4.24. A piston-cylinder device contains 0.8 kg of Nitrogen initially at 100 kPa and 27 C. The nitrogen is now compressed slowly in a polytropic process ($P.V^{1.3} = const.$) until the volume is reduced by one-half. Determine the work done and the heat transfer.[Ref: 1]

TEST Solution:

We use: System Analysis - Closed - Generic - Uniform System Daemon for the Process analysis.

Following are the steps:

1. Select the appropriate daemon for process analysis as shown below:

2. Clicking on Uniform System, choose the Permanent Gas (PG) Model for Material Model since we are dealing with N2. Enter parameters p1, T1, m1 for State 1, click on Calculate. We get:

			3	Generic,	Uniform	I-Sy	ster	n, Close	ed Proc	cess [)aemon:	: PG I	Model				
		ther	Ho	uids.net > ome of EST	Daemons	> Sy	/stem	is > Close	d > Pro)dt	Generic	> Unifc	orm > PG				
• Mixed	C SI C	Englis	sh	< Case	e-0 🗸 >	F	🗸 Helj	Message	s On	Super-	Iterate	Super	-Calculate	ſ	Load	Super-Initia	lize
5	State Panel				Proces	s Pa	nel			E	Exergy Pane	4			I/O I	Panel	
< ©State	9-1 ♥ >		Calo	culate	No-Plots	~	1	Initialize		Formati	on Enthalpy:	0	lo 💽 Yes		N2		~
⊽ ρ1			•	T1			Г	v1			🗆 ut						
100.0	kPa	~	27.0		deg-C	~	0.89	123	m^3/kg	*	-87.06091		kJ/kg	۷	2.0622	kJ/kg	~
s 1			•	Vel1			•	z1			□ e1				F j1		
6.85218	kJ/kg.K	~	0.0		m/s	~	0.0		m	~	-87.06091		kJ/kg	~	2.0622	kJ/kg	~
phi1			p	si1			•	m1			□ Vol:	1			MM1		
	kJ/kg	~			kJ/kg	~	0.8		kg	~	0.71298		m^3	*	28.0	kg/kmol	~
R1				c_p1				c_v1			k1						
0.29693	kJ/kg.K	~	1.03	11	kJ/kg.K	~	0.734	117	kJ/kg.K	~	1.40444	1	UnitLess	~			

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**

Download free eBooks at bookboon.com

87

 Enter known quantities for State 2. We have: m2 = m1 and Vol2 = 0.5 * Vol1. Click on Calculate, but the entered data is not sufficient to make all calculations:

• Mixed C SI C E	ingli	sh <mark>< Case</mark>	9-0 🗸 >	F	Help Messages	On	Super-	Iterate	Super-Calcula	te	Load	uper-Initiali	ize
State Panel			Process	Par	nel		E	Exergy Pa	nel		I/O Pai	nel	
< OState-2 V >		Calculate	No-Plots	~	Initialize	Ĺ	Formatio	on Enthal	py: 🔍 No 🔍 Ye	s	N2		*
p2		□ 72			Γ v2			Γ u	2		🗖 h2		
kPa	~		deg-C	*	0.44562	m^3/kg	*		kJ/kg	*		kJ/kg	1
s2		Vel2			√ z2			Г e	2		<u> </u>		
kJ/kg.K	*	0.0	m/s	¥	0.0	m	*		kJ/kg	*		kJ/kg	1
phi2		psi2			₩ m2			<u>ا م</u>	/ol2		MM2		
kJ/kg	~		kJ/kg	*	=m1	kg	¥	=0.5*Vo	11 m^3	*	28.0	kg/kmol	
R2		c_p2			c_v2			k	2				
0.29693 kJ/kg.K	*	1.0311	kJ/kg.K	v		kJ/kg.K	*	1.40444	UnitLess	~	and the second se		

4. Let us proceed to the Process Panel and enter n = 1.3 (i.e, polytropic index), Other Works, $W_O = 0$. Click on Calculate. We get:

Mixed C SI C Englis	h < Case-0 ¥ >	Help Messages On	Super-Iterate Super-Calcu	late Load Super-Initialize			
State Panel	Proces	ss Panel	Exergy Panel	I/O Panel			
< Process-A 🗸 >	b-State: State-1	V I-States S	State-2 Calculate	Initialize Process Type			
				▼ TR			
Q	WB	I V	WO	• I D			
Q	₩_B	kJ 🗸 0	m_0	✓ T_B 298.15 K			

 Since iteration has to be done with reference to other states, we have to click on SuperCalculate to complete the calculations. Then, we get:

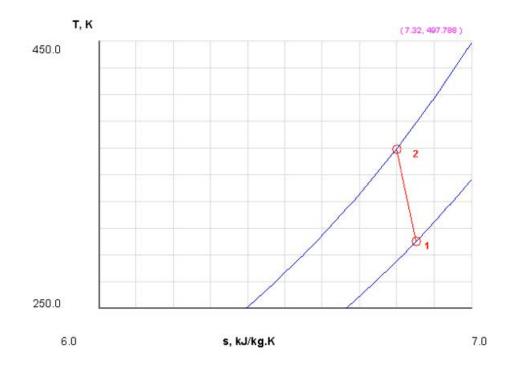
Mixed C SI C Englis	sh < ©Case-0 ¥	> 🔽 Help Messag	ges On Super-Iterate	Super-Calculate	e Load Super-Ini	itialize		
State Panel	Pro	cess Panel	Exergy P	anel	I/O Panel			
< Process-A [1-2]	b-State: State	e-1 💌 f-Stat	State-2 💌	Calculate	Initialize polytropic			
		e-1 💌 f-Stat		Calculate				
	b-State: State <i>W_B</i> ✓ -54.93416			V	Т_В			

Thus:

Work done, W_B = -54.93 kJ.... Ans. (Negative sign means work done on the system)

Heat transfer, Q = -14.19 kJAns. (Negative sign means heat rejected by the system).

6. Now, go back to State Panel and examine State 2:


Mixed C SI C Engl	ish <mark><</mark> ©Cas	se-0 💙 >	✓ Help Messages	On Super-	Iterate	uper-Calculate	Load	Super-Initialize
State Panel		Process P	anel		Exergy Panel		I/O Pa	nel
< OState-2 V >	Calculate	No-Plots 💌	Initialize	Formati	on Enthalpy:	⊙No ⊙Yes	N2	~
p2	□ 72		∏ v2		Γ u2		□ h2	
46.22888 kPa 💉	96.378	deg-C 🗸	0.44562	m^3/kg 💉	-36.12545	kJ/kg 🗠	73.59797	kJ/kg
s2	Ve/2		₩ z2		⊏ e2		Γ j2	
.79903 kJ/kg.K 🗸	0.0	m/s 🗸	0.0	m 💌	-36.12545	kJ/kg 🗸	73.59797	kJ/kg
phi2	psi2		₩ m2		I▼ Vol2		MM2	
kJ/kg 🗸		kJ/kg 🗸	=m1	kg 😽	=0.5*Vol1	m^3 🗸	28.0	kg/kmol

We see that values of p2 and T2 are now posted for State 2.

Thus:

P2 = 246.23 kPa, T2 = 96.38 C Ans.

7. T-s diagram showing States 1 and 2 is easily obtained:

8. Go to I/O panel to see the TEST Code and the calculated values:

#~~~~~~ OUTPUT OF SUPER-CALCULATE (starts from your inputs)

Daemon Path: Systems>Closed>Process>Generic>Uniform>PG-Model; v-10.bb05

#-----Start of TEST-code -----

States {

State-1: N2; Given: { p1= 100.0 kPa; T1= 27.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 0.8 kg; } State-2: N2; Given: { Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; Vol2= "0.5*Vol1" m^3; } } Analysis { Process-A: b-State = State-1; f-State = State-2; Given: { W_O= 0.0 kJ; T_B= 298.15 K; n= 1.3 UnitLess; } } #------End of TEST-code -----

#

X≰ **RBS** Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

Click on the ad to read more

90

#-----Property spreadsheet starts: The following property table can be copied onto a spreadsheet (such as Excel) for further analysis or plots. -----# # State p(kPa) T(K) $v(m^3/kg)$ u(kJ/kg) h(kJ/kg) s(kJ/kg) # 1 100.0 300.2 0.8912 -87.06 2.06 6.852 2 246.23 369.5 0.4456 -36.13 73.6 6.799 # #-----Property spreadsheet ends-----# Mass, Energy, and Entropy Analysis Results: Dw ass A. b. State - State 1. f. State - State 2

#	Process-A: b-State = State-1; f-State = State-2;
#	Given: W_O= 0.0 kJ; T_B= 298.15 K; n= 1.3 UnitLess;
#	Calculated: Q= -14.185789 kJ; W_B= -54.93416 kJ ;
#	S_gen= 0.0050608176 kJ/K; Delta_E= 40.748367 kJ;
#	Delta_S= -0.042518552 kJ/K;

Prob.4.25. A quantity of air at a pressure of 100 kPa, 27 C occupying a volume of 0.5 m³ is compressed to a pressure of 500 kPa and volume of 0.12 m³ according to the law $pv^n = const$. Find: (i) the value of index n (ii) the mass of air (iii) work transfer (iv) heat transferred during the process, and (v) change in entropy. [VTU-BTD-July 2007]

TEST Solution:

Following are the steps:

1. Select System Analysis-Generic-Uniform System:

Basic Too	ls	System	Analysis	States	s & Properties
Unit DeskCa onverter	l Tables & Charts	Closed	Open	Uniform System	Uniform Flow
Unsteady Proc	ess S	Steady State (cycles)	Steady S	state U	nsteady Process
— Generic <i>Reciprocating</i>	Specific Cycles HVA	C/Psychrom	Generic	mb. & Equilibr	Specifi
		Sem			ium
Reciprocating Uniform	Cycles HVA	Sem	netry Co I ni-Mixing	mb. & Equilibr Mixing	ium
Reciprocating Uniform System	Cycles HVA Non-Mixing Non-Uniforn	Sem	netry Co i-Mixing -Uniform	mb. & Equilibr Mixing	ium n
Reciprocating Uniform	Cycles HVA Non-Mixing Non-Uniforn	Sem Non-	netry Co i-Mixing -Uniform	mb. & Equilibr Mixing Non-Uniforr	ium n

2. For Material Model, select 'Perfect Gas' (PG) Model:

D = 0 SL Model	 solid/liquid (<i>SL</i>) model. Beside a wide selection to choose from, a new solid or liquid can be created by assigning custom material properties. Working substances such as steel, iron, copper, aluminum, wood, water, oil, etc., which can be assumed to maintain their condensed (solid or liquid) phase when a system undergoes other changes, can be analyzed with the SL model. Examples: A block of copper is heated from a <i>beginning-state</i> to a <i>final-state</i>. To find the heat transfer necessary for the process. For specific examples, click on the help icon at the bottom margin of the daemon.
RIA: SL Process Simulator	Process Simulation by RIAs: These rich internet applications (RIAs) can be used to interactively explore a process where a system goes from a beginning state to a final state under some given constrain (say, the temperature remains constant) Unlike the daemons, the RIAs do not require a thorough thermodynamic background and can be used to to gain practical insight alongside learning the underlying theory. Examples: Watch the temperature rise as a block of copper is heated from a beginning-state to a final-state. For specific examples, click on the help icon at the bottom margin of the daemon.
c, = cons Lau PG Model	Pure Gas: A pure gas has a fixed chemical composition across space and time. Oxygen, nitrogen, and air are examples of a pure gas. The PG (perfect gas) model is as model which obeyes the ideal gas equation (pv = RT) and assumes be constant. In the IG (ideal gas) model, specific heats are assumed to be function of temperature only. The RG (real gas) model uses generalized composition of temperature only. The RG (real gas) model uses generalized composition of temperature only. The RG (real gas) model uses generalized composition of temperature only.

3. State 1: Enter p1, T1, Vol1. Hit Enter (or click Calculate).

			Gene	eric, Uniforn	n-Syst	em, Close	ed Proce	ess D	aemon:	PG Model				
			Home		2	ems > Clos	1 24	cess >) <i>dt</i>	Generic >		G-Mo = cons			
love mouse				with more precisi	1	elp Message	s On	Super-l	terate	Super-Calcula	e	Load	Super-Initiali	ze
	State Panel	-		Proce	ss Panel			E	xergy Panel			1/0 F	anel	
< ©St	ate-1 👻 >		Calculate	No-Plot	s 💌	Initialize	F	ormatic	on Enthalpy:	ONo ●Ye	s	Air		•
₩ p1		1	✓ T1		Г	v1			□ u1			□ h1		
100.0	kPa	*	27.0	deg-C	× 0.	36139	m^3/kg	*	-84.13202	kJ/kg	~	2.00699	kJ/kg	*
s 1		1	Vel:		~	z1			F e1			□ j1		
6.8934	kJ/kg.K	~	0.0	m/s	× 0.0)	m	*	-84.13202	kJ/kg	*	2.00699	kJ/kg	*
phi1			psi1		Г	m1			Vol1			MM1		
	kJ/kg	*		kJ/kg	× 0.	58046	kg	*	0.5	m^3	~	28.97	kg/kmol	~
R1			c_p	1		c_v1			k1					
0.28699	kJ/kg.K	~	1.00349	kJ/kg.K	₩ 0.1	71651	kJ/kg.K	*	1.40054	UnitLess	*			

4. State 2: Enter p2, Vol2, and m2 = m1. Hit Enter (or click Calculate).

• Mixed	C SI CI	Engli	sh	< Case-0) ~ >	V	Help Messages	On	Super-	Iterate	Super-Calculat	e	Load	Super-Initiali	ze
9	State Panel				Process	Pan	el		E	Exergy Pane	el l		I/O Pa	anel	
< ©State	-2 🗙 >		Calcula	ite	No-Plots	*	Initialize		Formati	on Enthalpy	No • Yes	i (Air	×	•
✓ p2				2		1	v2			Γ u2					
500.0	kPa	~	87.03		deg-C	~	0.20673	m^3/kg	*	-41.12008	kJ/kg	~	62.24673	kJ/kg	1
s2			v v	el2		1	₹ z2			□ e2			Γ j2		
6.61447	kJ/kg.K	*	0.0		m/s	*	0.0	m	~	-41.12008	kJ/kg	~	62.24673	kJ/kg	•
phi2			psi2			1	✓ m2			Vol	2		MM2		
	kJ/kg	~			kJ/kg	~	=m1	kg	~	0.12	m^3	~	28.97	kg/kmol	1
R2			c	_p2			c_v2			k2					
0.28699	kJ/kg.K	×	1.00349	i k	J/kg.K	~	0.71651	kJ/kg.K	~	1.40054	UnitLess	~			

5. Go to Process Panel. Enter b-state and f-state. Click W_O and enter W_O=0. Click on Calculate:

Mixed C SI C English	< Case-0 ✓ > ✓ He	p Messages On Super-Iterate	Super-Calculate Load Super-Initia
State Panel	Process Panel	Exergy Panel	I I/O Panel
< Process-A [1-2] >	b-State: State-1 😽	-State: State-2 👻	alculate Initialize Polytropic
Q	□ W_B	₩_o	✓ T_B
	✓ -78.27469 kJ	✓ 0.0 kJ	298.15 K
3.3081 kJ	-10.27403		
3.3081 kJ Sigen	Г n	Delta E	Delta S

6. Now, click on SuperCalculate. Go to States Panel and see:

• Mixed C SI C I	English	< ©Case-0	> ▼ +	leip Messages (On Super-	Iterate Supe	r-Calculate	Load Su	per-Initialize
State Panel		1	Process Panel		E	Exergy Panel		I/O Pane	el
< OState-1 V >	Calc	ulate N	o-Plots 💌	Initialize	Formati	on Enthalpy: 🛛 🔘	No 💿 Yes	Air	~
p1	1	T1	Г	v1		⊏ u1		🗆 h1	
00.0 kPa	✓ 27.0	de	FC 💉 0.	86139	m^3/kg 💉	-84.13202	kJ/kg 💉	2.00699	kJ/kg
- s1	1	Vel1	v	z1		⊏ e1		□ j1	
i.8934 kJ/kg.K	✓ 0.0	m/s	❤ 0.	õ	m 🛩	-84.13202	kJ/kg 😽	2.00699	kJ/kg
phi1	ps	ei1	Г	m1		Vol1		MM1	
kJ/kg	~	KJ/I	g 💉 0.	58046	kg 💉	0.5	m^3 💉	28.97	kg/kmoi

ORACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

Click on the ad to read more

Download free eBooks at bookboon.com

94

And State 2:

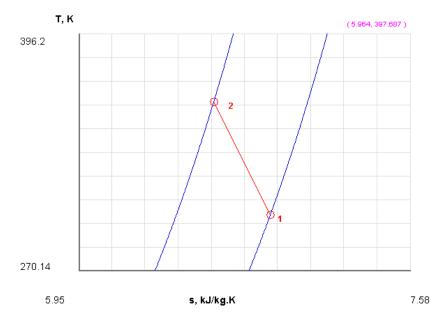
Mixed C SI C Englis	sh < ©Case-0 🗸	> 🔽 Help Messages On	Super-Iterate Super-Calcu	late Load Super-Initialize
State Panel	Pro	cess Panel	Exergy Panel	I/O Panel
< <mark>©State-2 v ></mark>	Calculate No-F	lots 🗸 Initialize	Formation Enthalpy: 🔍 No 💽	Yes Air 🗸
р2	□ 72	□ v2	Γ u2	□ h2
600.0 kPa 💉	87.03 deg-C	✓ 0.20673 m ⁴	3/kg 🖌 -41.12008 kJ/kg	✓ 62.24673 kJ/kg
s2	Vel2	₩ z2	r e2	⊑ j2
6.61447 kJ/kg.K 💙	0.0 m/s	✓ 0.0	m 💉 <mark>-41.12008 kJ/kg</mark>	✓ 62.24673 kJ/kg ×
phi2	psi2	₩ m2	Vol2	MM2
kJ/kg 💉	kJ/kg	💌 =m1 kg	0.12 m^3	28.97 kg/kmol

Thus:

Index, n = 1.12776

Mass of air = m1 = m2 =0.58046 kg

Work transfer = W_B = -78.27 kJ (Work done on the system, therefore negative)


Heat transfer = -53.3081 kJ

Entropy change = (s2 - s1) = -0.2789284256081599 = -0.2789 kJ/kg.K

Total change in entropy of system = Delta_S = -0.16191 kJ/K Ans.

T_s diagram:

And the I/O panel shows:

# States		Start of T	TEST-code				
States	ſ						
States	State Give State	-2: Air;		-		= 0.0 m; Vol1= 0. 1" kg; Vol2= 0.12	
Analys	sis {						
		ess-A: b-State n: { W_O= 0.		f-State = State-2 298.15 K;	2;		
	}						
#		End of	TEST-code				
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	100.0	300.2	0.8614	-84.13	2.01	6.893
#	2	500.0	360.2	0.2067	-41.12	62.25	6.614
#	-Prope	rty spreadshe	et ends				
# Mass,	, Energ	y, and Entroj	py Analysis	Results:			
#	Proce	ss-A: b-State	= State-1; f-	-State = State-2	;		
#		Given: W_	O= 0.0 kJ; '	Г_В= 298.15 К	;		
#		Calculated	: Q= -53.30	81 kJ; W_B= -7	78.27469 kJ; S_	gen= 0.01689026	57 kJ/K;
		n= 1.12775	552 UnitLe	ss;		-	
#		Del	ta_E= 24.9	66587 kJ; Delta	_S= -0.1619059	99 kJ/K;	

Prob.4.26. Determine the amount of heat which should be supplied to 2 kg of water at 25 C to convert it in to steam at 5 bar and 0.9 dry. [VTU-BTD-Dec. 2007–Jan.2008]

TEST Solution:

Following are the steps:

1. Select System analysis – Generic – Uniform System from the Daemon tree:

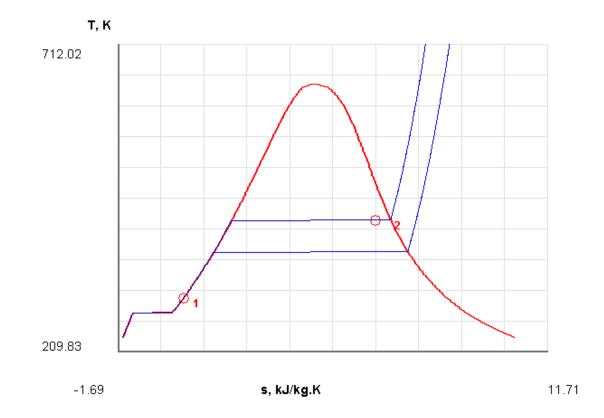
Basic Tool	ls	System	Analysis	States	& Properties
Unit DeskCa onverter	l Tables & Charts	Closed	Open	Uniform System	Uniform Flow
Unsteady Proc	ess S	Steady State (cycles)	Steady S	State Un	steady Process
					and the second sec
— Generic Reciprocating	Specific Cycles HVA	C/Psychron	Generic	emb. & Equilibriu	Specific
Ļ		Sen		1	um
Reciprocating Uniform	Cycles HVA	Sen	netry Co I ni-Mixing	omb. & Equilibriu I Mixing	um
Reciprocating Uniform System	Cycles HVA Non-Mixing Non-Uniforn	Sen	netry Co I ni-Mixing -Uniform	omb. & Equilibriu I Mixing	um
Reciprocating	Cycles HVA Non-Mixing Non-Uniforn	Sen Non g Multi-Flow	netry Co I ni-Mixing -Uniform	omb. & Equilibriu Mixing Non-Uniform	um

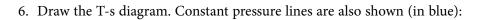
2. Select Phase Change (PC) for Material model, since we are dealing with Water:

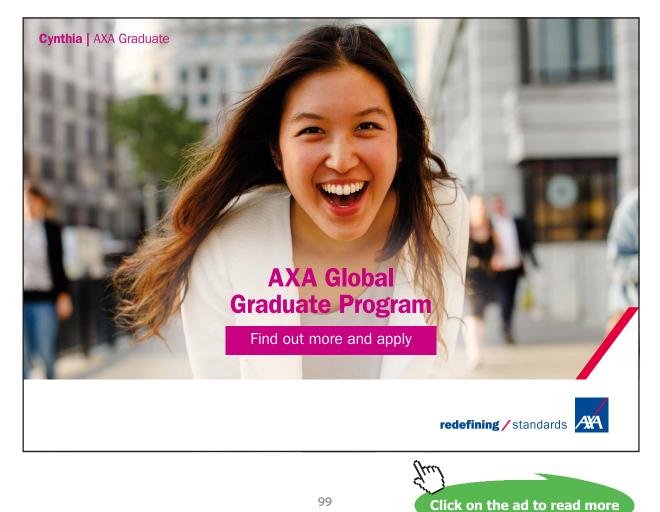
Launches	Pure Phase-Transition Fluid: The phase-change (PC) model can be used to determine states of sub-cooled (compressed) liquid, super-heated vapor, and saturated mixture of liquid and vapor phases. Based on the saturation and super-heated tables, the model is quite accurate. Sub-cooled liquid is modeled with the compressed-liquid sub-model, except for species with an asterisk (H2O* as opposed to H2O), which uses compressed liquid table for hetter accuracy.
PC Model	Juniform System, Closed Process Daemon 12, NH3, R-134a, N2, CO2, etc., should be treated as PC fluids if there is any possibility of a phase transition. Examples: R-134a vapor is compressed in a piston-cylinder device from a <i>beginning-state</i> to a <i>final-state</i> . To find the work transfer if compression is assumed isentropic. For specific examples, click on the help icon at the bottom margin of the daemon.
	Pure Solid and Pure Liquid: Constant density and constant specific heats ($c_p = c_v = c$) characterize the solid/liquid (<i>SL</i>) model. Beside a wide selection to choose from, a new solid or liquid can be created by assigning custom material properties.
p = c	Working substances such as steel, iron, copper, aluminum, wood, water, oil, etc., which can be assumed to maintain their condensed (solid or liquid) phase when a system undergoes other changes, can be analyzed with the SL model.

3. Enter parameters p1, T1, m1 for State 1; click on Calculate. We get:

			Gener	ic, Unifori	m-S	System, Clos	ed Proc	ess	Daemon: P	C Mode	1				
love mouse over	r a variable to	F	Home of TEST			Systems > Clos	sed > Pro	cess) <i>dt</i>	> Generic > Ui	niform >	PC-M	odel			
Mixed	C SI C E	Engli	ish <mark><©</mark>	Case-0 💌 >	1	🔽 Help Message	es On	Supe	r-Iterate Su	per-Calcul	ate	L	ad	Super-Initial	ize
S	tate Panel			Proce	ess P	anel			Exergy Panel				.1/0	Panel	
< ©State	9-1 ¥ >		Calculate	N	o-Plo	ots 💌	Initialize		Subcooled Liq	uid		H2	Ó.	×	
Γ ρ1			▼ T1			□ x1			🗖 y1			Г	v1		
100.0	kPa	~	25.0	deg-C	~		fraction	~		fraction	~	0.00	1	m^3/kg	~
u1			□ h1			⊏ s1			Vel1			•	z1		
104.87847	kJ/kg	~	104.97879	kJ/kg	~	0.36732	kJ/kg.K	~	0.0	m/s	~	0.0		m	~
E e1			□ j1			phit			psi1			~	m1		
104.87847	kJ/kg	*	104.97879	kJ/kg	*		kJ/kg	~		kJ/kg	~	2.0		kg	~
Vol1			MM1												
0.00201	m^3	~		kg/kmol	~										


4. Similarly for State 2: enter p2, x2, m2 = m1, and click on Calculate. We get:


• Mixed	SI CEng	glish <	©Case-0 🗸	>	Help Mess	ages On	Supe	r-Iterate Si	uper-Calculate	•	Load	Super-Initial	ize
St	ate Panel		Pro	cess Pa	inel			Exergy Panel			I/O P	anel	
< ©State-	2 💙 >	Calcu	ate	No-Plot	s 💌	Initialize		Saturated Mix	ture		H20	~	
p 2		Γ T2		F	x2			Г y2			r v2		
500.0	kPa 💉	151.81055	deg-C	~	0.9	fraction	*	0.99968	fraction	~	0.3385	m^3/kg	1
- u2				Г	s2			Vel2		j,	▼ z2		
2369.0273	kJ/kg 💊	2537.751	kJ/kg	~	6.32578	kJ/kg.K	~	0.0	m/s	~	0.0	m	1
e2		Г j2			phi2			psi2			√ m2		
2369.0273	kJ/kg 💽	2537.751	kJ/kg	~		kJ/kg	*		kJ/kg	~	=m1	kg	1


5. Go o Process Panel. Enter b-state and f-state, and W_B = 0 and W_O = 0; click on Calculate. We get:

State Panel Process Panel Exergy Panel I/O Panel < Process - A [1-2] > > > Initialize User Define Q V W_B V W_O V T_B	• Mixed C SI C English	< ©Case-0 v >	Help Messages C	On Super-Iterate	Super-Calculate	Load S	Super-Initialize
	State Panel	Process P	anel	Exergy P	anel	I/O Par	nel
Q	Process A 14 21	h State 1	E Chatage	State 2	Calculate	Initializa	cor Dofined
				(<u> </u>			ser Denned
528.298 kJ ✓ 0.0 kJ ✓ 0.0 KJ ✓ 298.15 K				20 - 200			
	S gen	Delta_E		Delta_S			
S_gen Delta_E Delta_S							

Note that: Delta_E = 4528.298 kJ Ans.

Download free eBooks at bookboon.com

7. Click on Super Calculate. TEST code is produced, and see it in I/O panel:

Daemon Path: Systems>Closed>Process>Generic>Uniform>PC-Model; v-10.bb06

```
#-----Start of TEST-code -----
```

States {

State-1: H2O; Given: { p1= 100.0 kPa; T1= 25.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 2.0 kg; } State-2: H2O; Given: { p2= 500.0 kPa; x2= 0.9 fraction; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; } }

Analysis {

Process-A: b-State = State-1; f-State = State-2; Given: { W_B= 0.0 kJ; W_O= 0.0 kJ; T_B= 298.15 K; } }

# State	p(kPa)	T(K)	х	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	100.0	298.2		0.001	104.88	104.98	0.367
# 02	500.0	425.0	0.9	0.3385	2369.03	2537.75	6.326

Mass, Energy, and Entropy Analysis Results:

Process-A: b-State = State-1; f-State = State-2;

Given: W_B= 0.0 kJ; W_O= 0.0 kJ; T_B= 298.15 K;

Calculated: Q= 4528.298 kJ; S_gen= -3.2710671 kJ/K; Delta_E= 4528.298 kJ;

Delta_S= 11.916918 kJ/K;

Verify:

#

m1*(u2-u1) = 4528.298 kJ.

4.4 References:

- 1. *Yunus A. Cengel & Michael A. Boles*, Thermodynamics, An Engineering Approach, 7th Ed. McGraw Hill, 2011.
- 2. *Sonntag, Borgnakke & Van Wylen*, Fundamentals of Thermodynamics, 6th Ed. John Wiley & Sons, 2005.
- 3. *Michel J. Moran & Howard N. Shapiro*, Fundamentals of Engineering Thermodynamics, 4th Ed. John Wiley & Sons, 2000.
- 4. P.K. Nag, Engineering Thermodynamics, 2nd Ed. Tata McGraw Hill Publishing Co., 1995.
- 5. *R.K. Rajput*, A Text Book of Engineering Thermodynamics, Laxmi Publications, New Delhi, 1998.

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or give us a call on +44 (0)20 7000 7573.

* Figures taken from London Business School's Masters in Management 2010 employment report

Download free eBooks at bookboon.com

101

5 I Law of Thermodynamics applied to Flow Processes

Learning objectives:

- 1. In this chapter, we consider 'Steady Flow Energy Equation (SFEE)' and 'conservation of mass' for a control volume.
- These two principles, viz. Conservation of mass (i.e. continuity equation) and the conservation of energy (i.e. First Law) are applied to a number of practically important devices such as Nozzles and Diffusers, Turbines and Compressors, Throttling devices, Heat Exchangers and Mixing chambers etc.
- 3. Transient processes such as filling a tank with a fluid or discharging from a tank are also considered. These are known as **Uniform State**, **Uniform Flow (USUF) processes**.

5.1 Formulas used:

5.1.1 Steady Flow Energy Equation (SFEE) for a control volume:

For unit mass flow, i.e. m = 1 kg/s:

```
Let: 1 - inlets, 2 - exits

h = enthalpy kJ/kg V = velocity m/s

z = height_above_datum M A = area_of_flow m^2

q = heat_transfer kJ w = work_transfer kJ
```

Heat going *in to* the system is positive, work done *by* the system is positive.

Easier way is to remember: Energy going in = Energy going out, in steady state:

$$\begin{aligned} \mathbf{q}_{1} + \mathbf{h}_{1} + \frac{\mathbf{v}_{1}^{2}}{2} + \mathbf{g} \cdot \mathbf{z}_{1} &= \mathbf{w}_{1} + \mathbf{h}_{2} + \frac{\mathbf{v}_{2}^{2}}{2} + \mathbf{g} \cdot \mathbf{z}_{2} & \dots \text{eqn. (5.1)} \\ \text{i.e.} \quad \mathbf{q}_{1} - \mathbf{w}_{1} &= \left(\mathbf{h}_{2} - \mathbf{h}_{1}\right) + \left(\frac{\mathbf{v}_{2}^{2} - \mathbf{v}_{1}^{2}}{2}\right) + \mathbf{g} \cdot \left(\mathbf{z}_{2} - \mathbf{z}_{1}\right) & \dots \text{eqn. (5.2)} \end{aligned}$$

i.e. $q_1 - w_1 = \Delta h + \Delta k e + \Delta p e$... where all terms are for unit mass flow rate....eqn. (5.3)

When mass flow rate of stream is m_1 kg/s:

$$Q + m_1 \cdot \left(h_1 + \frac{v_1^2}{2} + g \cdot z_1 \right) = W + m_1 \cdot \left(h_2 + \frac{v_2^2}{2} + g \cdot z_2 \right) \qquad \dots \text{if there is one stream only} \dots \text{if there is one stream only}$$

Note: If there are more than one stream, add additional terms for each stream to take in to account respective enthalpies, K.E. and P.E.

5.1.2 Mass balance:

$$\rho_1 \cdot A_1 \cdot V_1 = \rho_2 \cdot A_2 \cdot V_2 \dots kg/s \dots eqn.(5.4)$$

or:
$$\frac{A_1 \cdot v_1}{v_1} = \frac{A_2 \cdot v_2}{v_2}$$
kg/s/... where v = sp. volume eqn.(5.5)

5.1.3 Examples of Steady flow processes:

1. Nozzle and Diffuser:

From eqn. (5.1), we have:

$$q_1 + h_1 + \frac{V_1^2}{2} + g \cdot z_1 = w_1 + h_2 + \frac{V_2^2}{2} + g \cdot z_2$$
eqn. (5.1)

Here, q1 = 0, w1 = 0.

Therefore: If change in P.E. is zero and velocity of approach V1 = 0, we get:

$$h_1 = h_2 + \frac{V_2^2}{2}$$
 ...eqn.(5.6)

Or: $V_2 = \sqrt{2 \cdot (h_1 - h_2)}$ m/s...exit velocity

Basic Thermodynamics: Software Solutions Part II

2. Turbines and compressors:

For Turbine, it can be taken as insulated, flow velocities small, and K.E. and P.E. terms neglected:

Then, SFEE for a turbine becomes:

$$h_1 = h_2 + w$$
for unit mass flow

i.e. $w = \frac{W}{m} = h_1 - h_2$.for unit mass flow rate...eqn.(5.7)

Similarly, SFEE for an adiabatic pump or compressor:

$$\mathbf{h}_1 = \mathbf{h}_2 - \mathbf{w} = \mathbf{h}_2 - \frac{\mathbf{W}}{\mathbf{m}}$$

i.e. w = h₂ - h₁ ...for unit maas flow rate...eqn.(5.8)

Download free eBooks at bookboon.com

Basic Thermodynamics: Software Solutions Part II

3. For Throttling device:

Here,q = 0, w = 0, and changes in P.E. can be neglected.

Then SFEE reduces to:

 $h_1 + \frac{{v_1}^2}{2} = h_2 + \frac{{v_2}^2}{2}$...eqn.(5.9)

Often, pipe velocities are small. If we neglect changes in K.E. we get:

$$h_1 = h_2$$
eqn. (5.10)

4. Heat Exchangers:

When the two streams do not mix, as in a normal HX or condenser:

Let: c --- cold stream, h --- hot stream; 1 - inlets, 2 - exits

Here, Q = 0, W = 0, and SFEE becomes:

 $\mathbf{m}_{c} \cdot \mathbf{h}_{c1} + \mathbf{m}_{h} \cdot \mathbf{h}_{h1} = \mathbf{m}_{c} \cdot \mathbf{h}_{c2} + \mathbf{m}_{h} \cdot \mathbf{h}_{h2} \qquad \dots \text{eqn.} (5.11)$

When the two streams mix, as in a de-super-heater or cooling tower, or mixing chambers:

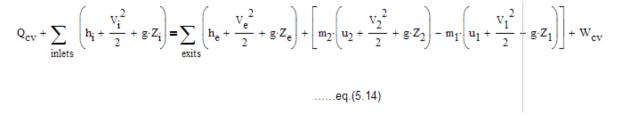
Here, q = 0, w = 0.

Mass balance:

 $m_1 + m_2 = m_3$ eqn.(5.12)

SFEE:

 $m_1 \cdot h_1 + m_2 \cdot h_2 = m_3 \cdot h_3$ neglecting changes in P.E. and K.E....eqn.(5.13)


5.1.4 Uniform State, Uniform Flow (USUF) process:

ex: filling closed tanks with a gas or liquid, discharge from closed vessels etc.:

Let: Q_{ov} = heat entering the control volume W_{ov} = Work leaving the control volume i = inlets to control volume $m_1 = initial$ mass in control volume $m_2 = final$ mass in control volume (m2-m1) = net mass that enters or leaves the control volume h = enthalpyV = velocity of fluid u = internal energyz = height from datum 1 - initial conditions

2 - final conditions

Then, for a time period t, the First Law for USUF process is:

As an example of applying the equation (5.14), consider the following:

Variable flow process: Filling or emptying a tank:

1. Filling a tank:

We assume that changes in P.E. and K.E. are negligible.

Then, we get:

```
Let:

m1 = initial mass in tank

m2 = final mass in tank

(m2-m1) = mass that enters the tank from the pipe

Q = heat transfer = 0

W = Work transfer = 0

h_p = enthalpy of fluid in pipe

V_p = velocity of fluid in pipe

u = internal energy

1 - initial conditions

2 - final conditions
```

Basic Thermodynamics: Software Solutions Part II

I Law of Thermodynamics applied to Flow Processes

Making an energy balance:

$$m_1 \cdot u_1 + (m_2 - m_1) \cdot \left(h_p + \frac{V_p^2}{2}\right) = m_2 \cdot u_2$$
 ...eqn.(5.15)

If, initially, the tank is empty, then m1 = 0

Then,

$$h_p + \frac{V_p^2}{2} = u_2$$
eqn.(5.16).... if m1 = 0

Also, if pipe velocity (i.e. KE) is negligible, then:

 $h_p = u_2$ eqn. (5.17) ... if K.E. is negligible

Note: For an Ideal gas, h = cp. T, u = cv.T

Download free eBooks at bookboon.com

Basic Thermodynamics: Software Solutions Part II

2. For emptying the tank:

$$(\mathbf{m}_1 - \mathbf{m}_2) \cdot \left(\mathbf{h}_{\text{prime}} + \frac{\mathbf{V}_{\text{prime}}^2}{2}\right) - \mathbf{Q} = \mathbf{m}_1 \cdot \mathbf{u}_1 - \mathbf{m}_2 \cdot \mathbf{u}_2 \quad \dots \text{eqn.}(5.18)$$

where:

h_prime = sp.enthalpy of leaving fluid

V_prime = velocity of leaving fluid

5.2 Problems solved with EES:

"**Prob.5.1.** A Nozzle is a device for increasing the velocity of a steadily flowing stream. At the inlet to a certain nozzle, the enthalpy of the fluid is 3000 kJ/kg and the velocity is 60 m/s. At the discharge end, the enthalpy is 2762 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (i) Find the velocity at the exit of the nozzle (ii) If the inlet area is 0.1 m² and the sp. volume at inlet is 0.187 m³/kg, find the mass flow rate (iii) If the sp.vol. at the exit of nozzle is 0.498 m³/kg, find the diameter of exit section. [VTU-July 2004]"

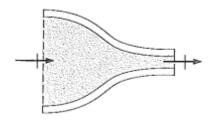


Fig.Prob.5.1

EES Solution:

"Data:"

h_1=3000E03 [J/kg]"...enthalpy at inlet" C_1=60 [m/s]"...inlet velocity" h_2=2762E03[J/kg] "...enthalpy at exit"

A_1=0.1 [m^2]"...area at inlet" v_1=0.187 [m3/kg]"...sp. volume at inlet" v_2=0.498 [m3/kg]"...sp. volume at exit"

I Law of Thermodynamics applied to Flow Processes

"Calculations:"

 $m_{1} = A_{1} * C_{1} v_{1} "kg/s...finds mass flow rate"$ $m_{1} = m_{2} "...continuity eqn"$ $m_{2} = A_{2} * C_{2} v_{2} "...finds finds area at exit"$ $A_{2} = pi * D_{2}^{2/4} "....finds diameter at exit"$ Q-W = DELTAh + DELTAKE + DELTAPE "...First Law for Open system" Q=0 "...by data, for nozzle" W=0 "...by data, for nozzle" $DELTAh = h_{2}-h_{1}"[J/kg]"$ $DELTAKE=(C_{2}^{2/2})-(C_{1}^{2/2})"[J/kg]"$ DELTAPE=0"...by data"

Results:

Unit Settings: SI K kPa kJ molar deg

A ₁ = 0.1 [m ²]	A ₂ = 0.02307 [m ²]	C ₁ = 60 [m/s]
C ₂ = 692.5 [m/s]	∆h =-238000 [J/kg]	∆KE = 238000 [J/kg]
∆PE = 0 [J/kg]	$D_2 = 0.1714 \text{ [m]}$	h ₁ = 3.000E+06 [J/kg]
h ₂ = 2.762E+06 [J/kg]	m ₁ = 32.09 [kg/s]	m ₂ = 32.09 [kg/s]
Q =0 [J/kg]	∨ ₁ = 0.187 [m3/kg]	∨ ₂ = 0.498 [<mark>m3/kg</mark>]
W = 0 [J/kg]		

Thus:

Velocity at exit = $C2 = 692.5 \text{ m/s} \dots \text{Ans.}$

Mass flow rate = $m1 = 32.09 \text{ kg/s} \dots \text{ Ans.}$

Dia at exit = D2 = 0.1714 m ... Ans.

"Prob.5.2. 12 kg of air per min. is delivered by a centrifugal air compressor. The inlet and outlet conditions of air are: V1 = 12 m/s, p1 = 1 bar, v1 = 0.5 m³/kg, and V2 = 90 m/s, p2 = 8 bar, v2 = 0.14 m³/kg. The increase in enthalpy of air passing through the compressor is 150 kJ/kg and heat loss to surroundings is 700 kJ/min. Calculate: (i) Power required to drive the compressor, (ii) ratio of inlet to outlet pipe diameters. [VTU-Jan. 2003]"

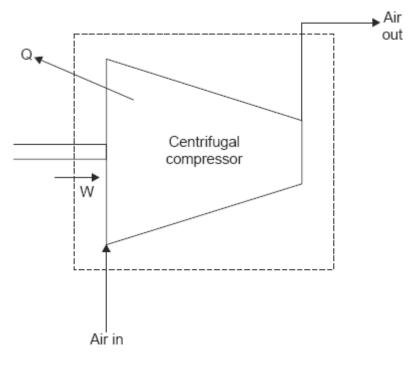


Fig.Prob.5.2

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

I Law of Thermodynamics applied to Flow Processes

EES Solution:

"Data:"

m=12 * convert(kg/min, kg/s) "[kg/s]" $C_1=12 [m/s]"...inlet velocity"$ $p1 = 10^{5} "Pa ... inlet pressure"$ $v_1=0.5"m^{3}/kg ... sp. volume at inlet"$ $C_2 = 90[m/s] "...exit velocity"$ p2 = 8E05"Pa exit pressure" $v_2 = 0.14"..m^{3}/kg ... sp. vol. at exit"$ Q= - (700E03)/(m * 60)"...J/kg" DELTAh=150E03" J/kg.... change in enthalpy" $DELTAKE=(C_2^{2}2/2)-(C_1^{2}2)"J/kg....change in K.E."$

"Calculations:"

Q - W = DELTAh + DELTAKE + DELTAPE "...First Law for open system" A_1= m * v_1/C_1"..finds area at inlet, m^2" A_2= m * v_2/C_2"...finds area at exit, m^2" D1byD2= sqrt(A_1/A_2)"...finds dia ratio" W_act = W * m "...finds Work required, W"

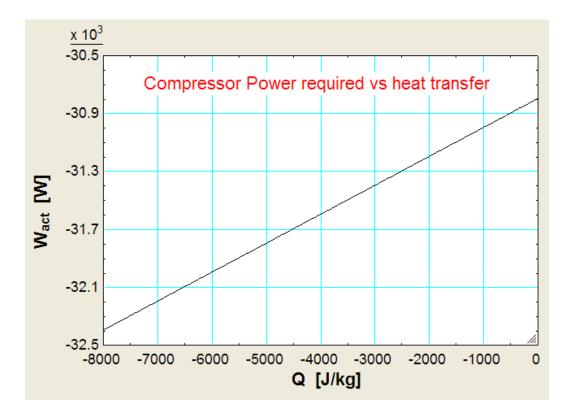
Results:

Unit Settings: SI K kPa kJ molar deg			
A ₁ = 0.008333 [m ²]	A ₂ = 0.0003111 [m ²]	C ₁ =12 [m/s]	C ₂ = 90 [m/s]
D1byD2 = 5.175	∆h =150000 [J/kg]	∆KE = 3978 [J/kg]	∆PE = 0 [J/kg]
m = 0.2 [m/s]	p1=100000 [Pa]	p2=800000 [Pa]	Q =-58333 [J/kg]
∨ ₁ = 0.5 [m3/kg]	∨ ₂ = 0.14 [<mark>m3/kg]</mark>	W = -212311 [J/kg]	W _{act} = -42462 [W]

Thus:

Power required for compressor = -42462 W ... Ans. (negative sign indicates power input to system)

Ratio of inlet to exit diameters = 5.175 Ans.


(b) Plot the variation of Power required as the heat loss varies from 0 to -8000 J/kg:

First, compute the Parametric Table:

Table 1		
19	1	² ₩ _{act} [W]
Run 1	0	-30796
Run 2	-1000	-30996
Run 3	-2000	-31196
Run 4	-3000	-31396
Run 5	-4000	-31596
Run 6	-5000	-31796
Run 7	-6000	-31996
Run 8	-7000	-32196
Run 9	-8000	-32396

Now, plot the results:

======

Note that as the heat transfer increases, compressor power required also increases.

==============

"Prob.5.3. Air flows steadily through a rotary compressor. At entry, the air is at 20 C and 101 kPa. At the exit, the air is at 200 C and 600 kPa. Assuming the flow to be adiabatic, (i) evaluate the work done per unit mass of air if the velocities at inlet and exit are negligible (ii) what would be the increase in work input if the velocities at inlet and exit are 50 m/s and 110 m/s? [VTU-Jan. 2005]"

EES Solution:

"Data:"

DELTAKE=0 DELTAPE=0 Q=0 "...since adiabatic" T1=20 "C" T2=200 "C" p1=101E03 "Pa" p2=600E03 "Pa" R=287 "J/kg.K for air" gamma=1.4 "for air"

"Calculations:"

"Case 1: Inlet and exit velocities are negligible:"

cp = R * gamma/(gamma - 1) "... sp. heat at const. pressure, J/kg.K" DELTAh = cp * (T2-T1) "J/kg ... change in enthalpy" Q - W = DELTAh + DELTAKE + DELTAPE "...by First Law to Open systems"

"Case 2: Inlet and exit vel. not negligible:"

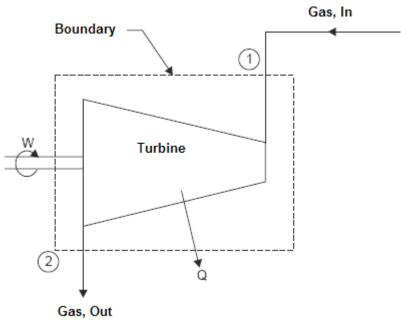
Q1=0 "...since adiabatic" Q1- W1= cp * (T2-T1) + (V2^2-V1^2)/2 "...First Law for Open system, including the change in K.E." V2=110 "m/s ... exit velocity" V1=50 "m/s ... inlet velocity"

Results:

Unit Settings: SI K kPa kJ molar deg

cp = 1005 [J/kg-C]	∆h =180810 [J/kg]	∆KE = 0 [J/kg]
∆PE = 0 [J/kg]	γ = 1.4	p1=101000 [Pa]
p2=600000 [Pa]	Q =0 [J/kg]	Q1 =0 [J/kg]
R = 287 [J/kg-C]	T1 = 20 [C]	T2 = 200 [C]
∨1 =50 [m/s]	∨2 =110 [m/s]	W = -180810 [J/kg]
W1 = -185610 [J/kg]		

Thus:


W = -180.81 kJ/kg when K.E. and P.E. are neglected...Ans.

W1 = -185.61 kJ/kg when K.E. is not negligible ...i.e. an increase of about 5 kJ/kg... Ans.

(Note: negative sign indicates work input in to the system.)

"Prob.5.4. In a gas turbine unit, the gases flow through the turbine at 15 kg/s and the power developed by the turbine is 12000 kW. The enthalpies of the gases at the inlet and outlet are 1260 kJ/kg and 400 kJ/kg respectively, and the velocities of gases at the inlet and outlet are 50 m/s and 110 m/s respectively. Calculate (i) rate at which heat is rejected by the turbine (ii) the area of inlet pipe, given the sp. vol. of gases at inlet is 0.45 m^3/kg. [VTU-Jan. 2005]"

EES Solution:

"Data:"

h_1=1260E03 "J/kg ... enthalpy at inlet" h_2=400E03 "J/kg ... enthalpy at outlet" C_1=50 [m/s] "...velocity at inlet" C_2=110 [m/s] "...velocity at outlet" v_1=0.45 [m^3/kg]"..sp. vol. at inlet" m_1=15 [kg/s]"...mass flow rate"

"Calculations:"

 $m_1=A_1 * C_1 / v_1$ "...finds area at inlet, m^2" Q - W = DELTAh + DELTAKE + DELTAPE"...First Law for Open System finds Q" W = 12E06[J/s]/15 [kg/s]"J/kg....work output of turbine, by data" $DELTAh = (h_2-h_1)$ "J/kg...enthalpy change" $DELTAKE=(C_2^2/2)-(C_1^2/2)$ "J/kg ... change in K.E." DELTAPE=0"...change in P.E."

Results:

Unit Settings: SI K kPa kJ molar deg

A ₁ = 0.135 [m ²]	C ₁ = 50 [m/s]	C ₂ =110 [m/s]
∆h =-860000 [J/kg]	∆KE = 4800 [J/kg]	∆PE = 0 [J/kg]
h ₁ = 1.260E+06 [J/kg]	h ₂ = 400000 [J/kg]	m ₁ = 15 [kg/s]
Q =-55200 [J/kg]	v ₁ = 0.45 [m ³ /kg]	W = 800000 [J/kg]

Thus:

Heat rejected by turbine = Q = 55200 J/kg....negative sign indicates heat going out of the system....Ans.

Area of inlet pipe = $A1 = 0.135 \text{ m}^2 \dots \text{ Ans.}$

"Prob. 5.5. In a steady flow system, 50 kJ of work is done per kg of fluid; values of sp. vol., pressure and velocity at inlet and exit sections are: 0.4 m³/kg, 600 kPa, 15 m/s and 0.6 m³/kg, 100 kPa, and 250 m/s, respectively. The inlet is 30 m above the exit. The heat loss from the system is 8 kJ/kg. Calculate the change in internal energy per kg of fluid. [VTU-July 2003]"

EES Solution:

"Data:"

Q = - 8E03 "J/kg ... heat rej." W=50E03 "J/kg ... work done by fluid" p1=600E03 "Pa ...inlet pressure" v1=0.4 "m3/kg... inlet sp. vol." C1=15 "m/s .. inlet velocity" p2=100E03 "Pa ... exit pressure" v2=0.6 "m3/kg ... exit sp. vol." C2=250 "m/s ... exit velocity" Z2=0 "m ... exit datum level"

"Calculations:"

Q – W = DELTAH + DELTAKE + DELTAPE "...First Law for Open System finds DELTAH" DELTAKE=(C2^2-C1^2)/2 "J/kg ..., change in K.E."

I Law of Thermodynamics applied to Flow Processes

$$\begin{split} DELTAPE = g * (Z2 - Z1) "J/kg ..., change in P.E." \\ g = 9.81 "m/s2 ... accn. due to gravity" \\ DELTAh = DELTAu + (p2 * v2 - p1 * v1) "....from h = u + pV finds DELTAu" \end{split}$$

Results:

Unit Settings: SI K kPa kJ molar deg

C1 = 15 [m/s]	C2 = 250 [m/s]	∆h =-88843 [J/kg]
∆KE = 31138 [J/kg]	∆PE = -294.3 [J/kg]	∆u = 91157 [J/kg]
g = 9.81 [m/s ²]	p1 = 600000 [Pa]	p2=100000 [Pa]
Q =-8000 [J/kg]	∨1 = 0.4 [m ³ /kg]	∨2 = 0.6 [m ³ /kg]
W = 50000 [J/kg]	Z1 = 30 [m]	Z2=0 [m]

Thus:

Change in Internal energy = DELTAu = 91157 J/kg Ans.

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/

> Phone: +61 8 9321 1702 Email: training@idc-online.com Website: www.idc-online.com

OIL & GAS ENGINEERING

ELECTRONICS

AUTOMATION & PROCESS CONTROL

> MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS

ELECTRICAL POWER

117

Download free eBooks at bookboon.com

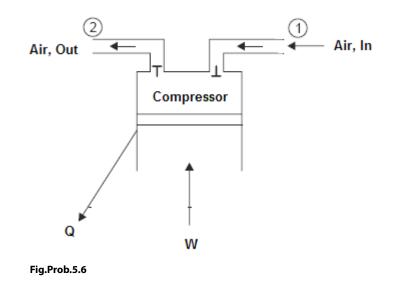
Click on the ad to read more


(b) Plot the variation of DELTAu as heat rejected Q varies from 0 to -10 kJ/kg:

First, calculate the Parametric Table:

Table 1			
▶ 111	1 Q [J/kg]	2 ⊻ ∆u [J/kg]	
Run 1	0	99157	
Run 2	-1000	98157	
Run 3	-2000	97157	
Run 4	-3000	96157	
Run 5	-4000	95157	
Run 6	-5000	94157	
Run 7	-6000	93157	
Run 8	-7000	92157	
Run 9	-8000	91157	
Run 10	-9000	90157	
Run 11	-10000	89157	

Now, plot the results:


==

Note: Negative sign for Q only indicates that heat is being rejected.

======

"Prob.5.6. Air flows steadily at a rate of 0.5 kg/s through a compressor, entering at 7 m/s velocity, 100 kPa pressure and 0.95 m^3/kg sp. volume, and leaves at 700 kPa, 5 m/s, and 0.19 m^3/kg. The internal energy of air leaving is 90 kJ/kg greater than that of air entering. Cooling water in the compressor jacket absorbs heat at a rate of 58 kW. Compute the shaft work input and the ratio of inlet to exit pipe diameters. [VTU-July 2002]"

EES Solution:

"Data:"

m=0.5 "kg/s mass flow rate" Q= - 58E03"J/s ...heat rejection rate" p1=100E03 "Pa ... inlet pressure" p2=700E03 "Pa exit pressure" C1=7.0 "m/s ... inlet velocity" C2=5.0 "m/s exit velocity" DELTAu=90E03 "J/kg change in internal energy" v1=0.95 "m^3/kg ... sp. vol. at inlet"

v2=0.19 "m^3/kg sp. vol. at exit"

"Calculations:"

 $Q - W = m * (DELTAu+(p2 * v2 - p1 * v1)) + m * (C2^2-C1^2)/2 "...by First Law for Open system... finds W"$ $A1=m * v1/C1 "m^2 ... inlet pipe area"$ $A2=m * v2/C2 "m^2 ... exit pipe area"$ D1byD2=sqrt(A1/A2) "...diameter ratio"

Results:

Unit Settings: SI K kPa kJ molar deg

A1 = 0.06786 [m ²]	A2 = 0.019 [m ²]	C1 = 7 [m/s]
C2 =5 [m/s]	D1byD2 = 1.89	∆u = 90000 [J/kg]
m = 0.5 [kg/s]	p1 = 100000 [Pa]	p2 = 700000 [Pa]
Q =-58000 [W]	∨1 = 0.95 [m ³ /kg]	v2 = 0.19 [m ³ /kg]
W = -121994 [W]		

Thus:

Work *input* to compressor, W = -121.994 kW Ans.

Diameter ratio = D1/D2 = 1.89 ... Ans.

120

Click on the ad to read more

"Prob.5.7. A centrifugal air compressor compresses 5.7 m³/min of air from 85 kPa to 650 kPa. The initial sp. vol. is 0.35 m³/kg and final sp. vol. is 0.1 m³/kg. If the suction line dia is 10 cm and the discharge line dia is 6.25 cm, determine: (i) the change in flow work (ii) the mass rate of flow, and (iii) the velocity change. [VTU-Aug. 2000]"

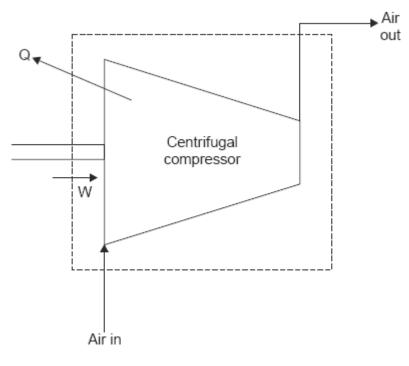


Fig.Prob.5.7

EES Solution:

"Data:"

V1=5.7/60"m3/s volume flow rate" p1=85E03"Pa ... inlet pressure" p2=650E03 "Pa exit pressure" rho1=1/0.35"kg/m3 ... inlet density" rho2=1/0.1"kg/m3 ... exit density" d1=0.1"m .. inlet dia" d2=0.0625"m .. exit dia"

"Calculations:"

m = V1 * rho1"kg/s mass flow rate" A1=pi*d1^2/4 "m2 ... inlet area" A2=pi*d2^2/4 "m2 exit area"

"Change in Flow work:"

DELTAPV= m * (p2/rho2 – p1/rho1) "J/s change in flow work"

"Velocity change:"

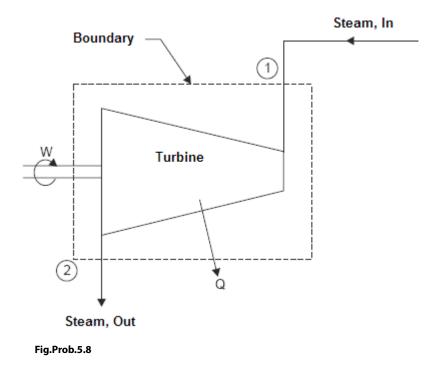
m = A1 * C1 * rho1 "... finds inlet velocity, C1, m/s"m = A2 * C2 * rho2 "... finds exit velocity, C2, m/s"

Results:

Unit Settings: SI K kPa kJ molar deg

A1 = 0.007854 [m ²]	A2 = 0.003068 [m ²]	C1 = 12.1 [m/s]	C2 = 8.847 [m/s]
d1 = 0.1 [m]	d2 = 0.0625 [m]	∆PV = 9568 [J/s]	m = 0.2714 [kg/s]
p1 = 85000 [Pa]	p2 = 650000 [Pa]	rho1 = 2.857 [kg/m ³]	rho2 = 10 [kg/m ³]
∨1 = 0.095 [m3/s]			

Thus:


Change in flow work = DELTApv = 9568 W ... Ans.

Mass flow rate = $m = 0.2714 \text{ kg/s} \dots \text{ Ans.}$

Velocities: C1 = 12.1 m/s, C2 = 8.847 m/s Ans.

"Prob.5.8. A steam turbine receives steam with a flow rate of 900 kg/min. and experiences a heat loss of 840 kJ/min. The exit pipe is 3 m below the level of inlet pipe. Find the power developed by the turbine if the pressure decreases from 62 bar to 9.8 kPa, velocity increases from 30.5 m/s to 274.3 m/s, internal energy decreases by 938.5 kJ/kg, and sp. vol. increases from 0.058 m^3/kg to 13.36 m^3/kg. [VTU-Feb. 2002]"

123

EES Solution:

"Data:"

m = 900/60 "kg/s" Q = - 840E03/60"J/s" Z1= 3 "m" Z2 = 0 "m" p1= 62E05 "Pa" p2 = 9.86E03 "Pa" C1= 30.5 "m/s" C2 = 274.3 "m/s" DELTAu = - 938.5E03 "J/kg" v1= 0.058 "m3/kg" v2=13.36 "m3/kg" g=9.81"m/s2"

"Calculations:"

 $Q - W = m * (DELTAu + (p2 * v2 - p1 * v1)) + m * (C2^2-C1^2)/2 + m * g * (Z2-Z1) "...First Law for Open system"$

Results:

Unit Settings: SI K kPa kJ molar deg

C1 = 30.5 [m/s]	C2 = 274.3 [m/s]	∆u =-938500 [W]	g = 9.81 [m/s ²]
m =15 [kg/s]	p1 = 6.200E+06 [Pa]	p2=9860 [Pa]	Q =-14000 [W]
∨1 = 0.058 [m ³ /kg]	v2 = 13.36 [m ³ /kg]	W = 1.692E+07 [W]	Z1 = 3 [m]
Z2=0 [m]			

Thus:

Power developed by turbine = W = 1.692E07 W Ans.

"Prob. 5.9. A fluid flows through a steady flow system at the rate of 3 kg/s. The inlet and outlet conditions are: $p_1 = 5$ bar, $C_1 = 150$ m/s, $u_1 = 2000$ kJ/kg, and $p_2 = 1.2$ bar, $C_2 = 80$ m/s, and $u_2 = 1300$ kJ/kg. The change in sp. vol. is from 0.4 m^3/kg to 1.1 m^3/kg. The fluid loses 25 kJ/kg heat during the process.

Neglecting potential energy, determine the power output of the system. [VTU-Dec. 2006–Jan. 2007]:"

EES Solution:

"Data:"

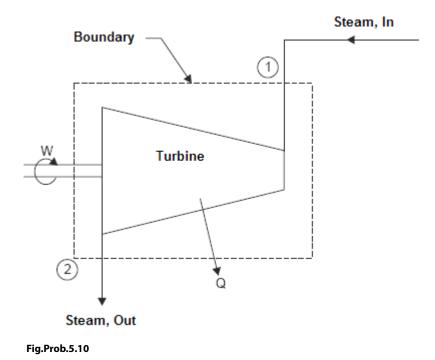
m = 3 "kg/s" P1 = 500 "kPa" C1 = 150 "m/s" u1 = 2000 "kJ/kg" P2 = 120 "kPa" C2 = 80 "m/s" u2 = 1300 "kJ/kg" v1 = 0.4 "m3/kg" v2 = 1.1 "m3/kg" q = -25 "kJ/kg....heat loss" "Neglecting Potential energy, determine the Power output:"

"Write SFEE for 1 kg:"

 $\begin{aligned} q - w &= (h2 - h1) + ((C2^2 - C1^2)/2)^* 10^{(-3)} \text{ "...First Law for Open system...all quantities in kJ/kg"} \\ h1 &= u1 + P1 * v1\text{ "kJ/kg ... inlet enthalpy"} \\ h2 &= u2 + P2 * v2 \text{ "kJ/kg ... exit enthalpy"} \end{aligned}$

"Power output:"

Work = w * m "kJ/s"


Results:

Unit Settings: SI C kPa kJ mass deg

C1 = 150 [m/s]	C2 = 80 [m/s]	h1 = 2200 [kJ/kg]	h2 = 1432 [kJ/kg]
m = 3 [kg/s]	P1 =500 [kPa]	P2 =120 [kPa]	q=-25 [kJ/kg]
u1 = 2000 [kJ/kg]	u2 = 1300 [kJ/kg]	∨1 = 0.4 [m ³ /kg]	∨2 = 1.1 [m ³ /kg]
w = 751.1 [kJ/kg]	Work = 2253 [kW]		

Thus: Work done by the system = Work = 2253 kW ... Ans.

"Prob.5.10. A fluid flows through a steam turbine at a steady rate of 5000 kg/h, while energy is transferred as heat at a rate of 6279 kJ/h from the turbine. The condition of the fluid at the turbine inlet and exit are: h1 = 3153 kJ/kg, C1 = 60 m/s, Z1 = 6 m, and h2 = 2713 kJ/kg, C2 = 185 m/s, Z2 = 4 m. Find the power output from the turbine. Comment on K.E. and P.E. changes. [VTU-Dec. 08–Jan. 09]"

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

126

EES Solution:

"Data:"

mass_flow = 5000/3600 "kg/s" q = (-6279/3600) / mass_flow "kJ/kg....heat transf. from turbine" h1 = 3153 "kJ/kg" h2 = 2713 "kJ/kg" C1 = 60 "m/s" C2 = 185 "m/s" Z1 = 6 "m" Z2 = 4 "m" g = 9.81"m/s2"

"Find the Power output from Turbine and comment on K.E. and P.E. changes:"

q - w = DELTAh + DELTAke + DELTApe "..First Law for a turbine....all terms are in kJ/kg"DELTAh = (h2 - h1) "kJ/kg" $DELTAke = ((C2^2 - C1^2)/2) * 10^(-3) "kJ/kg"$ $DELTApe = g * (Z2 - Z1) * 10^(-3) "kJ/kg"$ $Work = mass_flow * w "kJ/s"$

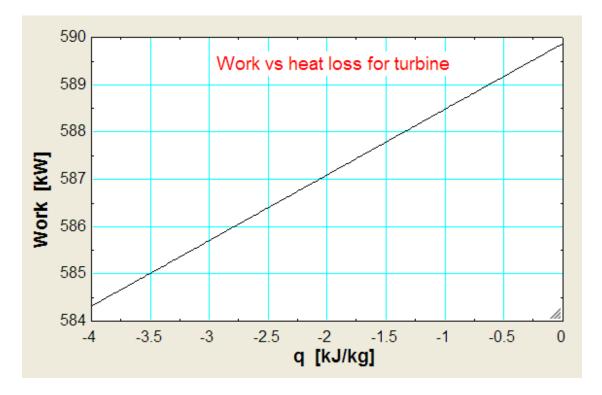
Results:

Unit Settings: SI C kPa kJ mass deg

C1 = 60 [m/s]	C2 =185 [m/s]
∆h =-440 [kJ/kg]	∆ke =15.31 [kJ/kg]
∆pe = -0.01962 [kJ/kg]	g=9.81 [m/s ²]
h1 = 3153 [kJ/kg]	h2 = 2713 [kJ/kg]
mass _{flow} = 1.389 [kg/s]	q=-1.256 [kJ/kg]
w = 423.5 [kJ/kg]	Work = 588.1 [kW]
Z1 = 6 [m]	Z2=4 [m]

Thus:

Work done by turbine = 588.1 kW Ans.


DELTAke = 15.31 kJ/kg, DELTApe = -0.01962 kJ/kg ... *both are negligible* compared to the enthalpy difference DELTAh = -440 kJ/kg Ans.

(b) Plot the variation of Work as heat loss q varies from 0 to -4 kJ/kg:

First, compute the Parametric Table:

Table 1		
1.9	1	Work [kW]
Run 1	0	589.9
Run 2	-0.5	589.2
Run 3	-1	588.5
Run 4	-1.5	587.8
Run 5	-2	587.1
Run 6	-2.5	586.4
Run 7	-3	585.7
Run 8	-3.5	585
Run 9	-4	584.3

Now, plot the results:

Note: Negative sign for q only indicates that heat is being rejected from turbine. As the heat rejected increases, work output from the turbine decreases.

"Prob.5.11. The working fluid in a steady flow process flows at a rate of 220 kg/min. The fluid rejects 100 kJ/s of heat passing through the system. The conditions of fluid at inlet and outlet are: C1 = 220 m/s, p1 = 6 bar, u1 = 2000 kJ/kg, $v1 = 0.36 \text{ m}^3/\text{kg}$, and C2 = 140 m/s, p2 = 1.2 bar, u2 = 1400 kJ/kg, $v2 = 1.3 \text{ m}^3/\text{kg}$. Suffix 1 indicates inlet, and 2 the outlet. Determine the power capacity of the system in MW. [VTU-BTD-June–July 2009:]"

EES Solution:

"Data:"

mass_flow = 220/60 "kg/s" q = -100/mass_flow "kJ/kg" C1 = 220 "m/s" P1 = 600 "kPa" u1 = 2000 "kJ/kg" v1 = 0.36 "m3/kg" C2 = 140 "m/s" P2 = 120 "kPa" u2 = 1400 "kJ/kg" v2 = 1.3 "m3/kg"

For almost 60 years Maastricht School of Management has been enhancing the management capacity of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open Enrollment Executive Programs offers you a unique interactive, stimulating and multicultural learning experience.

Be prepared for tomorrow's management challenges and apply today.

For more information, visit www.msm.nl or contact us at +31 43 38 70 808 or via admissions@msm.nl

the globally networked management school

Click on the ad to read more

"Determine the Power capacity of the system in MW:"

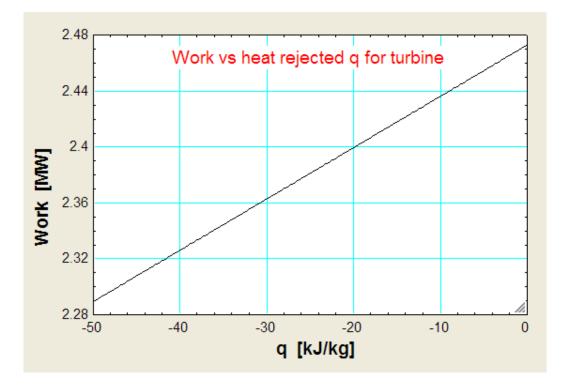
"Apply I Law to Open System: Energy going In = Energy going Out:" $(u1+P1 * v1) + (C1^2/2)/1000 + q = (u2 + P2 * v2) + (C2^2/2)/1000 + w$ "...where w is work done in kJ/kg" Work = w * mass_flow /1000 "MW"

Results:

Unit Settings: SI C kPa kJ mass deg

C1 = 220 [m/s]	C2 =140 [m/s]	mass _{flow} = 3.667 [kg/s]
P1 =600 [kPa]	P2 =120 [kPa]	q=-27.27 [kJ/kg]
u1 = 2000 [kJ/kg]	u2 = 1400 [kJ/kg]	∨1 = 0.36 [m ³ /kg]
∨2 = 1.3 [m ³ /kg]	w = 647.1 [kJ/kg]	Work = 2.373 [MW]

Thus:


Work done by turbine = 2.373 MW ... Ans.

(b) Plot the variation of Work as heat rejected q varies from 0 to -50 kJ/kg:

First, compute the Parametric Table:

😰 Parametric Table 📃 🗖 🔀			
Table 1			
111	1 ▼2 q [kJ/kg]	Work [MW]	
Run 1	0	2.473	
Run 2	-5	2.454	
Run 3	-10	2.436	
Run 4	-15	2.418	
Run 5	-20	2.399	
Run 6	-25	2.381	
Run 7	-30	2.363	
Run 8	-35	2.344	
Run 9	-40	2.326	
Run 10	-45	2.308	
Run 11	-50	2.289	

Now, plot the results:

Note: Negative sign for q only indicates that heat is being rejected from turbine. As the heat rejected increases, work output from the turbine decreases.

"Prob.5.12. A turbine operating under steady flow conditions receives steam at the following state: Pressure = 13.8 bar, sp. vol. = $0.143 \text{ m}^3/\text{kg}$, sp. int. energy = 2590 kJ/kg, Velocity = 30 m/s. The state of steam leaving the turbine is: pressure = 0.35 bar, sp. vol. = $4.37 \text{ m}^3/\text{kg}$, sp. int. energy = 2360 kJ/kg, velocity = 90 m/s. Heat is rejected to surroundings at the rate of 0.25 kW and the rate of steam flow through the turbine is 0.38 kg/s. Calculate the power developed by the turbine. [VTU-BTD-June–July 2008:]"

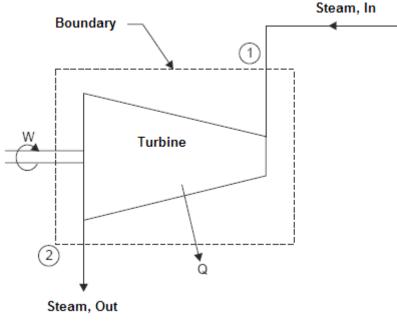
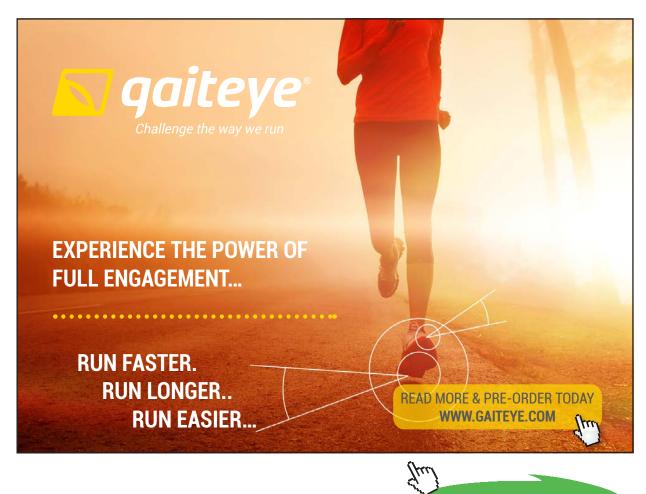



Fig.Prob.5.12

132

Click on the ad to read more

I Law of Thermodynamics applied to Flow Processes

EES Solution:

"Data:"

mass_flow = 0.38 "kg/s" q = - 0.25[kJ/s] / mass_flow "kJ/kg" C1 = 30 "m/s" P1 = 1380 "kPa" u1 = 2590 "kJ/kg" v1 = 0.143 "m3/kg" C2 = 90 "m/s" P2 = 35 "kPa" u2 = 2360 "kJ/kg" v2 = 4.37 "m3/kg"

"Determine the Power capacity of the Turbine:"

"Apply I Law to Open System: Energy going In = Energy going Out:"

 $(u_1+P_1 * v_1) + (C_1^2/2)/1000 + q = (u_2 + P_2 * v_2) + (C_2^2/2)/1000 + w$ "..finds w, where w is work done in kJ/kg" Work = w * mass_flow "kW"

Results:

Unit Settings: SI C kPa kJ mass deg

C1 = 30 [m/s]	C2 = 90 [m/s]	mass _{flow} = 0.38 [kg/s]
P1 =1380 [kPa]	P2 =35 [kPa]	q=-0.6579 [kJ/kg]
u1 = 2590 [kJ/kg]	u2 = 2360 [kJ/kg]	∨1 = 0.143 [m ³ /kg]
∨2 = 4.37 [m ³ /kg]	w = 270.1 [kJ/kg]	Work = 102.7 [kW]

Thus: Power developed by the turbine = $102.7 \text{ kW} \dots \text{Ans.}$

"Prob.5.13. Air enters an adiabatic horizontal nozzle at 400 C with a velocity of 50 m/s. The inlet area is 240 cm². Temp of air at exit is 80 C. Given that the sp. vol. of air at the inlet and exit are respectively 0.2 m³/kg and 1.02 m³/kg, find the area of cross-section of the nozzle at the exit. Assume that enthalpy of air is a function of temp only and that cp = 1.005 kJ/kg.K. [VTU-BTD-July 2006:]"

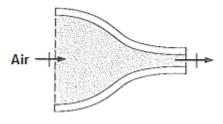


Fig.Prob.5.13

EES Solution:

"Data:"

T1 = 400+273 "K" C1 = 50 "m/s ... velocity at inlet" A1 = 240*10^(-4) "m2 ... area at inlet" T2 = 80+273 "K" v1 = 0.2 "m3/kg" v2 = 1.02 "m3/kg" cp = 1.005 "kJ/kg.K" q = 0 "...since adiabatic" w = 0 "...since there is no work output in nozzle"

"Calculations:"

DELTAh = cp * (T2 – T1) "kJ/kg... change in enthalpy" q – w = DELTAh + ((C2^2 – C1^2)/2) * 10^(-3) "... First Law for Nozzle ...Finds Velocity at exit" A1 * C1/ v1 = A2 * C2 / v2 "Finds A2, area at exit"

Results:

Unit Settings: SI C kPa kJ mass deg

A1 = 0.024 [m ²]	A2 = 0.007616 [m ²]	C1 = 50 [m/s]
C2 = 803.6 [m/s]	cp = 1.005 [kJ/kg-K]	∆h =-321.6 [kJ/kg]
q=0 [kJ/kg]	T1 =673 [K]	T2 = 353 [K]
∨1 = 0.2 [m ³ /kg]	v2 = 1.02 [m ³ /kg]	w =0 [kJ/kg]

Thus: Area of cross-section of nozzle at exit = A2= 76.16 cm² ... Ans.

"Prob.5.14. At the inlet to a certain nozzle, the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit of the nozzle, the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is a heat loss of 100 kJ/kg from it. Calculate the velocity of fluid at nozzle exit. Also find the mass flow rate of fluid if inlet area is 0.1 m² and sp. vol. at inlet is 0.19 m³/kg. [VTU-BTD-July-2007:]"

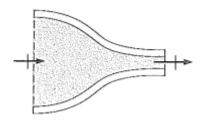


Fig.Prob.5.14

EES Solution:

"Data:"

h1 = 3025 ``kJ/kg''C1 = 60 m/sh2 = 2790 ``kJ/kg''q = -100 "kJ/kg....heat loss from Nozzle"

NOLIVER WYMAN

Oliver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk usep inclusity knowledge with specialized expertise in startegy, operatoris, tak management, organizational transformation, and leadership development. With folices in 50-i cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

Click on the ad to read more

Download free eBooks at bookboon.com

135

"Calculations:"

A1 = 0.1 "m2" v1 = 0.19 "m3/kg....sp. vol. at inlet" $q - w = (h2 - h1) + ((C2^2 - C1^2)/2) * 10^{-3}$ "First Law for nozzle, neglecting PE finds C2" w = 0 "No work done in Nozzle"

"Mass flow rate:"

mass_flow = A1 * C1/ v1 "kg/s"

Results:

Unit Settings: SI C kPa kJ mass deg				
A1 = 0.1 [m ²]	C1 = 60 [m/s]	C2 = 523.1 [m/s]	h1 = 3025 [kJ/kg]	
h2 = 2790 [kJ/kg]	mass _{flow} = 31.58 [kg/s]	q=-100 [kJ/kg]	∨1 = 0.19 [m ³ /kg]	
w =0 [kJ/kg]				
Thus:				

Exit velocity, $C2 = 523.1 \text{ m/s} \dots \text{Ans}.$

Mass flow rate = 31.58 kg/s ... Ans.

"Prob.5.15. An air receiver of volume 6 m 3 contains air at 15 bar and 40.5 C. A valve is opened and some air is allowed to blow out to atmosphere. The pressure of air in the receiver drops rapidly to 12 bar and then the valve is closed. Calculate the mass of air blown out. [Ref. 4]"

EES Solution:

"Data:"

Vol1 = 6[m^3] P1 = 15E05[Pa] T1 = 40.5 + 273 [K] P2 = 12E05[Pa]

R_air = 287[J/kg-K]"...Gas const. for air"

gamma = 1.4 "...ratio of sp. heats for air"

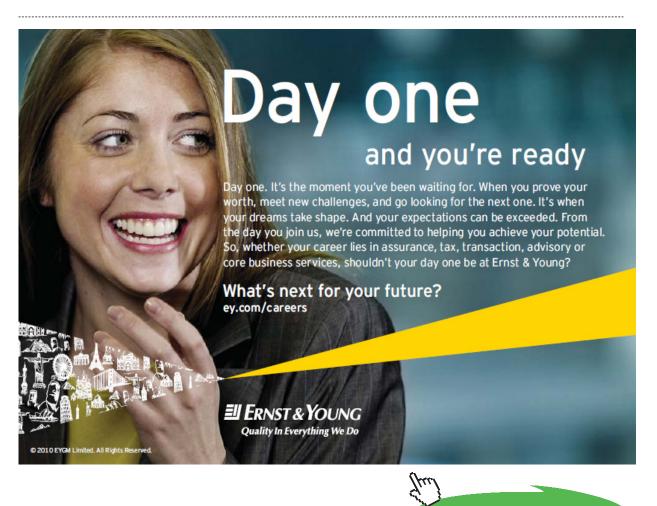
"Calculations:"

 $T2/T1 = (P2/P1)^{((gamma - 1) / gamma) "..for isentropic expn.... finds T2 (K)"}$ m_1 = (P1 * Vol1) / (R_air * T1) " kg ... initial mass of air in the receiver" m_2 = (P2 * Vol1) / (R_air * T2) " kg ... final mass of air in the receiver" mass_blown = (m_1 - m_2) "kg ... mass blown out"

Results:

Unit Settings: SI C kPa kJ mass deg

γ = 1.4 m₂ = 85.29 [kg] R_{air} = 287 [J/kg-K] Vol1 = 6 [m³] mass_{blown} = 14.74 [kg] P1 = 1.500E+06 [Pa] T1 = 313.5 [K]

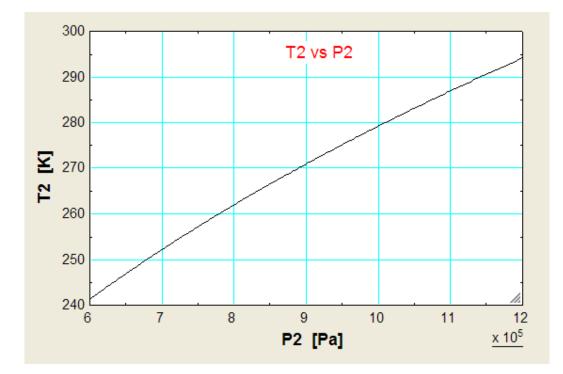

m₁ = 100 [kg] P2 = 1.200E+06 [Pa] T2 = 294.1 [K]

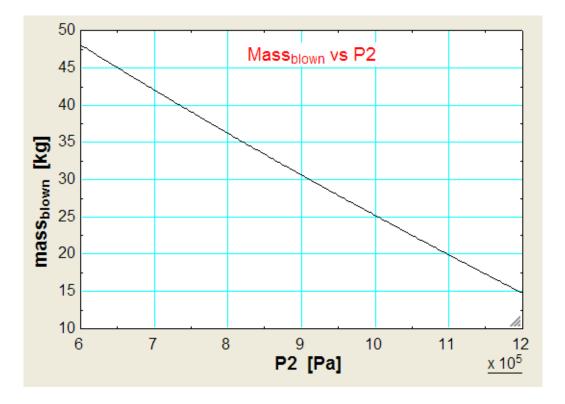
Click on the ad to read more

Thus:

Final temp of air in the receiver = T2 = 294.1 K ... Ans.

Mass of air blown out = 14.74 kg ... Ans.




(b) Plot the final temp and mass blown out as the P2 varies from 6 bar to 12 bar:

First, compute the Parametric Table:

Table 1			
113	1 P2 [Pa] 2	T2 [K]	3 mass _{blown} [kg]
Run 1	600000	241.3	48.04
Run 2	650000	246.9	44.98
Run 3	700000	252.2	41.99
Run 4	750000	257.2	39.06
Run 5	800000	262	36.18
Run 6	850000	266.5	33.36
Run 7	900000	270.9	30.58
Run 8	950000	275.1	27.85
Run 9	1000000	279.2	25.15
Run 10	1.050E+06	283.1	22.5
Run 11	1.100E+06	286.9	19.88
Run 12	1.150E+06	290.6	17.29
Run 13	1.200E+06	294.1	14.74

Now, plot the results:

"Prob.5.16. A tank has a volume of 0.4 m³ and is evacuated. Steam at a pressure of 1.4 MPa, 300 C is flowing in a pipe and is connected to this tank. The valve is opened and the tank is filled with steam until the pressure is 1.4 MPa, and then the valve is closed. If the process takes place adiabatically and K.E. and P.E. are negligible, determine the final temp of steam in the tank, and the amount filled in. [Ref.2]"

EES Solution:

"Data:"

Vol1 = 0.4 [m^3] m1 = 0 "...initial mass, since the tank is evacuated" P_pipe = 1400[kPa] T_pipe = 300[C] h_pipe = Enthalpy(Steam_NBS,T=T_pipe,P=P_pipe)"kJ/kg note the use of built-in Function for enthalpy of Steam in EES"

"Let the final temp of fluid after filling in in the tank be T2 deg.C"

"Then: h_pipe = u2 by First Law;"

u2 = IntEnergy(Steam_NBS,T=T2,P=P_pipe) "kJ/kg ... since tank is filled to a pressure of the steam in the pipe"

"Note the use of built-in Function for Int. energy of Steam in EES"

h_pipe = u2 "...finds T2"

v2 = Volume(Steam_NBS,T=T2,P=P_pipe)^{m^3/kg} sp. vol. of steam in tank^{*}

mass = Vol1/v2 "kg ... mass filled in the tank"

Results:

Unit Settings: SI C kPa kJ mass deg

h_{pipe} = 3040 [kJ/kg] T2 = 452 [C] Vol1 = 0.4 [m³]

m1 =0 [kg] T_{pipe}=300 [C] mass = 1.697 [kg] u2 = 3040 [kJ/kg] P_{pipe} = 1400 [kPa] ∨2 = 0.2357

Thus:

Final temp of steam in tank = T2 = 452 deg.C.... Ans.

Amount of steam filled in the tank = 1.697 kg ... Ans.

"Prob.5.17. Let the tank in the previous example contain initially sat. vapour at 350 kPa. Now the valve is opened and the tank is filled with steam until the pressure is 1.4 MPa, and then the valve is closed. If the process takes place adiabatically and K.E. and P.E. are negligible, determine the final temp of steam in the tank, and the amount filled in. [Ref.2]"

EES Solution:

"Data:"

Vol1 = 0.4 [m^3] "..volume of tank" P1 = 350[kPa] "...Initial pressure of steam in tank" x1 = 1 "...sat. vapour" P_pipe = 1400[kPa] "...pressure of steam in pipe" T_pipe = 300[C] "...temp of steam in pipe"

"Calculations:"

u1 = IntEnergy(Steam_NBS,x=x1,P=P1) "kJ/kg ...Int. energy of steam in the beginning"

v1 = Volume(Steam_NBS,x=x1,P=P1) "m^3/kg sp. vol. of steam present initially in tank"

m1 = Vol1 / v1 "...initial mass of steam in the tank "

h_pipe = Enthalpy(Steam_NBS,T=T_pipe,P=P_pipe) "kJ/kgenthalpy of steam in the pipe"

"Let the final mass in tank be m2, temp of fluid after filling in the tank be T2 deg.C"

"Then: (m2-m1)* h_pipe = (m2 * u2 - m1 * u1) ... by First Law;"

u2 = IntEnergy(Steam_NBS,T=T2,P=P_pipe) "kJ/kg ..int. energy of steam after the tank is filled to a pressure of the steam in the pipe"

v2 = Volume(Steam_NBS,T=T2,P=P_pipe)"m^3/kg sp. vol. of steam in tank, after filling up"

m2 = Vol1 / v2 "kg..mass of steam in tank after filling"

 $(m2 - m1) * h_{pipe} = (m2 * u2 - m1 * u1) "....By First Law for filling process"$

"Mass of steam flowing in to the tank:"

 $mass_to_tank = (m2 - m1)$ "kg"

Results:

Unit Settings: SI C kPa kJ mass deg

h _{pipe} = 3040 [kJ/kg]	m1 = 0.763 [kg]	m2 = 2.027 [kg]
mass _{to,tank} = 1.264 [kg]	P1 = 350 [kPa]	P _{pipe} =1400 [kPa]
T2 = 341.8 [C]	Т _{ріре} = 300 [С]	u1 = 2549 [kJ/kg]
u2 = 2855 [kJ/kg]	v1 = 0.5243 [m ³ /kg]	v2 = 0.1973 [m ³ /kg]
Vol1 = 0.4 [m ³]	x1 = 1	

Thus:

Final temp of steam in tank = 341.8 deg. C ... Ans.

Mass of steam entering the tank = 1.264 kg ... Ans.

Prob.5.18. A balloon initially contains 65 m³ of helium gas at atmospheric conditions of 100 kPa and 22 C. The balloon is connected by a valve to a large reservoir that supplies helium gas at 150 kPa and 25 C. Now the valve is opened, and helium is allowed to enter the balloon until pressure equilibrium with the supply line is reached. The material of the balloon is such that its volume increases linearly with pressure. If no heat transfer takes place during this process, determine the final temp in the balloon. [Ref:1]

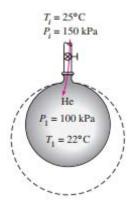


Fig. Prob.5.18

We use eqn. (5.14):

$$Q_{cv} + \sum_{inlets} \left(h_i + \frac{v_i^2}{2} + g \cdot Z_i \right) = \sum_{exits} \left(h_e + \frac{v_e^2}{2} + g \cdot Z_e \right) + \left[m_2 \cdot \left(u_2 + \frac{v_2^2}{2} + g \cdot Z_2 \right) - m_1 \cdot \left(u_1 + \frac{v_1^2}{2} + g \cdot Z_1 \right) \right] + W_{cv}$$

$$\dots eq.(5.14)$$

Here, we have: all K.E. and P.E. changes are negligible, $Q_{cv} = 0$, use 'h' for gas flowing, and 'u' for gas confined to the control volume. Work done is positive since the boundary of balloon is expanding.

EES Solution:

"Data:"

P1 = 100 "kPa" T1 = 22+273 "K" Vol1 = 65 "m^3"

P2 = 150 "kPa" Vol2 = Vol1 * (p2/p1)"m^3 ... since volume is proprional to pressure"

P3 = 150 "kPa" T3 = 25+273 "K"

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Dove

Click on the ad to read more

"Calculations:"

 $Q + m_i * h3 = W + (m2*u2 - m1*u1)$ "First Law for this case of filling a control volume, see Eqn. 5.14"

h3=Enthalpy(Helium,T=T3,P=P3)"kJ/kg"

u1=IntEnergy(Helium,T=T1,P=P1)"kJ/kg"

u2=IntEnergy(Helium,T=T2,P=P2)"kJ/kg"

 $m_i = m2 - m1$ "kg.... mass entering the c.v."

v1=Volume(Helium,T=T1,P=P1)"...m^3/kg ... sp. vol. in state 1"

v2=Volume(Helium,T=T2,P=P2)"...m^3/kg ... sp. vol. in state 2"

m2 = Vol2/v2 "kg...mass in state 2"

m1 = Vol1/v1 "kg...mass in state 1"

 $W = ((P1 + P2)/2)^*(Vol2-Vol1)^*kJ...work done by the c.v., since Vol is proportional to pressure"$

Q=0 "...heat going into the c.v. is zero"

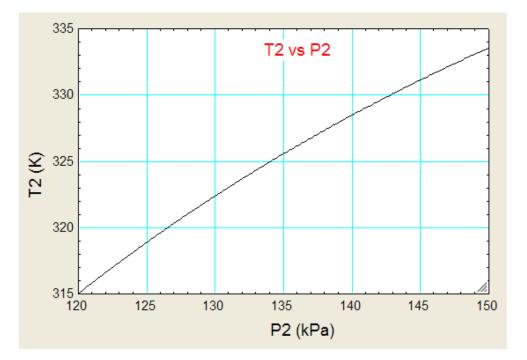
Solution:

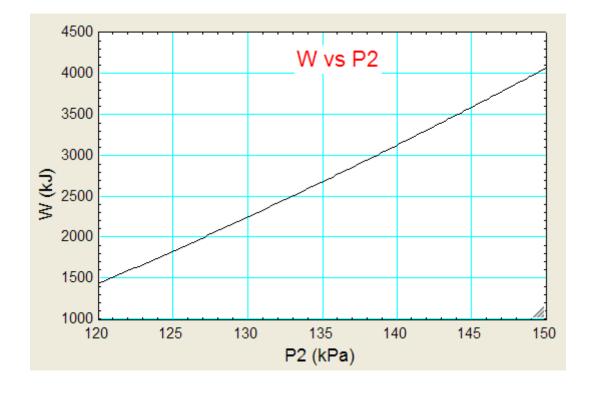
Unit Settings: SI K kPa kJ mass deg

h3 = -0.2942 [kJ/kg]	m1 = 10.6 [kg]	m2 = 21.09 [kg]
m _i = 10.49	P1 =100 [kPa]	P2 =150 [kPa]
P3 =150 [kPa]	Q = 0 [kJ]	T1 = 295 [K]
T2 = 333.6 [K]	T3 = 298 [K]	u1 = -629.1 [kJ/kg]
u2 = -508.9 [kJ/kg]	∨1 = 6.131 [m ³ /kg]	v2 = 4.622 [m ³ /kg]
Vol1 = 65 [m ³]	Vol2 = 97.5 [m ³]	W = 4063 [kJ]

Thus:

Final temp, T2 = 333.6 K ... Ans.


Work done, W = 4063 kJ ... Ans.


(b) If the final pressure P2 varies from 120 to 150 kPa, plot the variation of T2 and W against P2:

First, compute the Parametric Table:

Table 1			
17	1 ₽2 [kPa]	T2 [K] 3	W [kJ]
Run 1	120	315	1430
Run 2	125	318.9	1828
Run 3	130	322.4	2243
Run 4	135	325.6	2673
Run 5	140	328.5	3120
Run 6	145	331.1	3583
Run 7	150	333.6	4063

Now, plot the results:

146

"Prob.5.19. A 100-L rigid tank contains carbon dioxide gas at 1 MPa, 300 K. A valve is cracked open, and carbon dioxide escapes slowly until the tank pressure has dropped to 500 kPa. At this point, the valve is closed. The gas remaining inside the tank may be assumed to have undergone a polytropic expansion, with polytropic exponent n =1.15. Find the final mass inside and the heat transferred to the tank during the process. [Ref:2]"

EES Solution:

"Data:"

P1 = 1000 "kPa" T1 = 300 "K" Vol1 = 0.1 "m^3" n = 1.15 "...polytropic index"

P2 = 500 "kPa" Vol2 = Vol1"m^3"

 $T2/T1 = (P2/P1)^{((n - 1)/n)^{(K]}}$...finds temp after polytropic expansion, state 2"

"Calculations:"

"Note: Enthalpy of CO2 exiting goes on varying from state 1 to state 2. So, we take the average value of enthalpy:"

h1=Enthalpy(CarbonDioxide,T=T1,P=P1)"kJ/kg enthalpy in state 1"

h2=Enthalpy(CarbonDioxide,T=T2,P=P2)"kJ/kg enthalpy in state 2"

h_avg = (h1 + h2) / 2"kJ/kg ... average enthalpy of exiting CO2"

 $Q = m_e * h_avg + (m_2 * u_2 - m_1* u_1) + W$ "...First Law for this case of filling a control volume, see Eqn. 5.14"

W = 0 "...no work done, since volume is const."

u1=IntEnergy(CarbonDioxide,T=T1,P=P1)"kJ/kg....internal energy"

u2=IntEnergy(CarbonDioxide,T=T2,P=P2)"kJ/kg ... internal energy"

 $m_e = (m1 - m2)$ "kg.... mass exiting the c.v."

v1=Volume(CarbonDioxide,T=T1,P=P1)"..m^3/kg ... sp. vol. in state 1"

v2=Volume(CarbonDioxide,T=T2,P=P2)"..m^3/kg ... sp. vol. in state 2"

m2 = Vol2/v2 "kg...mass in state 2"

m1 = Vol1/v1 "kg...mass in state 1"

Results:

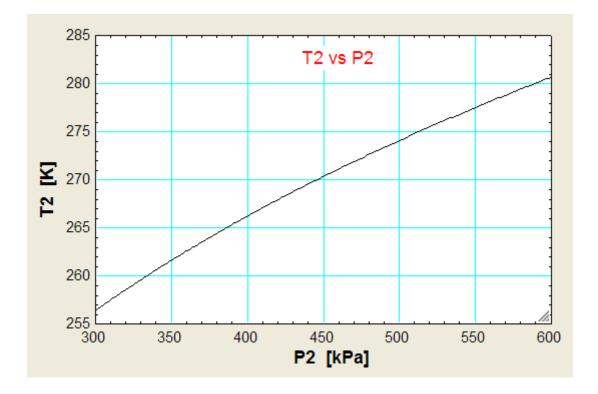
Unit Settings: SI K kPa kJ mass deg

h1 = -7.942 [kJ/kg]	h2 = -25.75 [kJ/kg]	h _{avg} = -16.85 [kJ/kg]
m1 = 1.858 [kg]	m2 = 0.9993 [kg]	m _e = 0.8587
n = 1.15	P1 =1000 [kPa]	P2 = 500 [kPa]
Q = 24.56 [kJ]	T1 = 300 [K]	T2 = 274.1 [K]
u1 = -61.76 [kJ/kg]	u2 = -75.79 [kJ/kg]	√1 = 0.05382 [m ³ /kg]
∨2 = 0.1001 [m ³ /kg]	Vol1 = 0.1 [m ³]	Vol2 = 0.1 [m ³]
W = 0 [kJ]		

Thus:

Q = 24.56 kJ Heat transferred Ans.

m2 = 0.9993 kg Final mass inside the tank ... Ans.


T2 = 274.1 K ... Final temp of gas inside the tank.... Ans.

(b) As the final pressure (P2) varies from 300 kPa to 600 kPa, plot the variation of T2, m2, and Q with P2:

First, compute the Parametric Table:

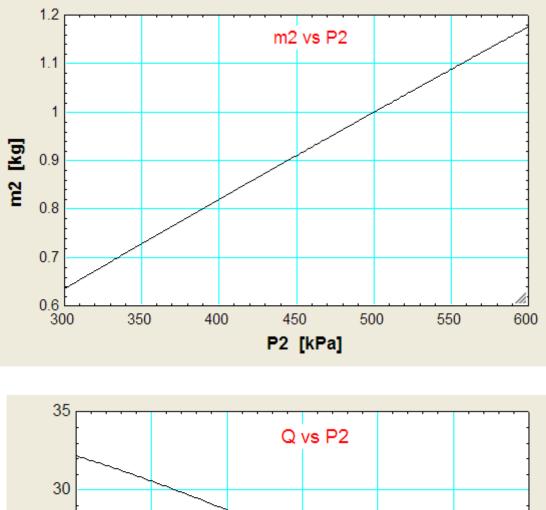
able 1				
▶ 17	1 P2 [kPa] ■2	T2 [K]	m2 [kg] ▲	Q [kJ]
Run 1	300	256.4	0.6352	32.18
Run 2	350	261.6	0.728	30.57
Run 3	400	266.2	0.8195	28.72
Run 4	450	270.3	0.9099	26.71
Run 5	500	274.1	0.9993	24.56
Run 6	550	277.5	1.088	22.31
Run 7	600	280.7	1.176	19.98

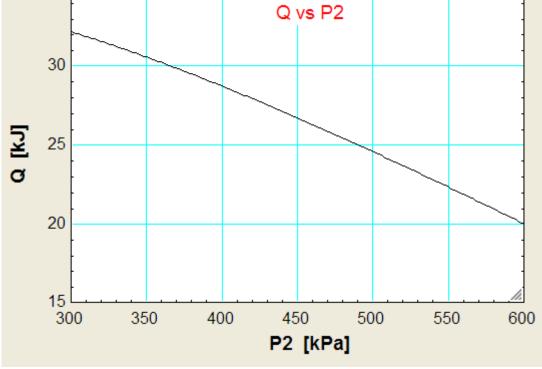
Now, plot the results:

Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager




Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

5.3 Problems solved with The Expert System for Thermodynamics (TEST):

Nozzles and Diffusers:

Prob.5.20. Superheated vapour Ammonia enters an insulated nozzle at 20 C, 800 kPa, shown in Fig. below, with a low velocity and at a steady rate of 0.01 kg/s. The Ammonia exits at 300 kPa with a velocity of 450 m/s. Determine the temperature (or quality, if saturated) and the exit area of the nozzle. [Ref. 2]

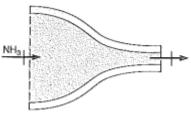
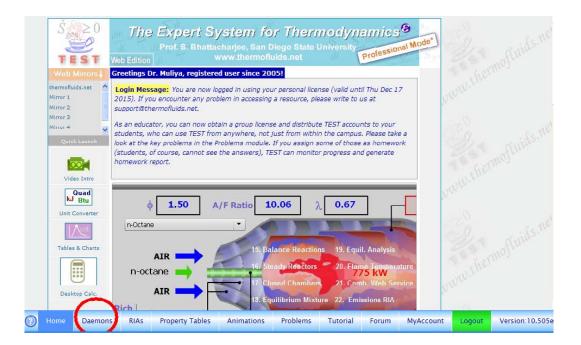
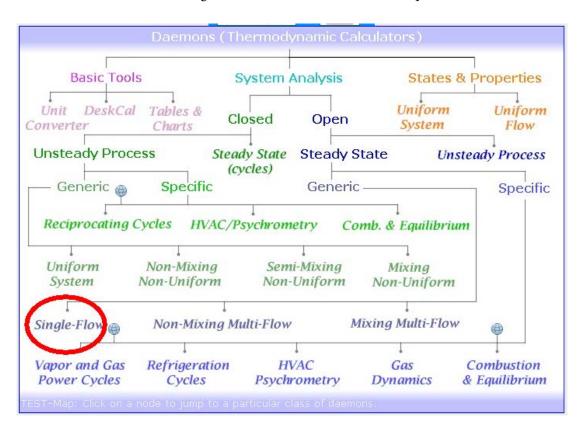
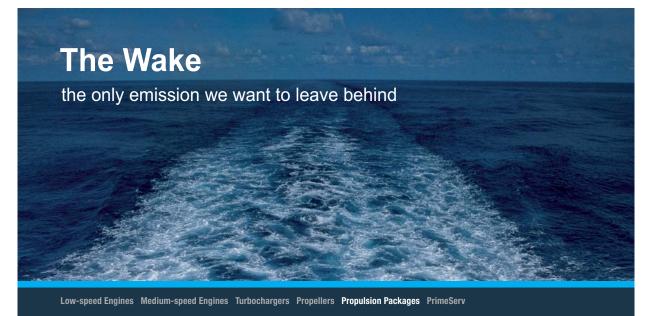




Fig.Prob.5.20

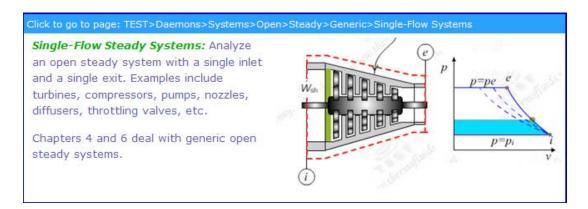

TEST Solution:

1. Start TEST by going to <u>www.thermofluids.net</u>, enter the required e-mail address and password and, we get the greeting screen. Locate the Daemons tab at the bottom of screen:

2. Click on **Daemons** tab to get the Daemon tree to select the required Daemon:

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**



Download free eBooks at bookboon.com

152

3. Hover the mouse pointer over System Analysis – Open – Generic – Single Flow shown above. We get the following description screen:

We see from the description that this is the daemon to be used for calculations regarding turbines, compressors, pumps, nozzles, diffusers, throttling valves etc. **i.e. for most of this chapter, we will be using this daemon.**

4. Now, click on Single-Flow. A window appears where we have to choose the required Material model. In the present case, we deal with vapour/liquid Ammonia; so, we choose PC (i.e. Phase Change) model as shown below:

5. On clicking PC model, we get the following screen, where we have chosen Ammonia as the fluid. We have also filled up the data for State 1 as p1 = 800 kPa, T1 = 20 C and mdot1 = 0.01 kg/s. Vel1 = 0 by default. Click on Calculate and rest of the calculations for state 1 are completed in the screen shot shown below:

• Mixed C SI C Eng	glish <mark>< Ca</mark>	se-0 🔽 > 🔽 Help Mess	ages On Super-Ite	rate Super-Calculate	Load Super-Initialize
State Panel		Device Panel	Exe	rgy Panel	I/O Panel
< OState-1 V >	Calculate	No-Plots 💌	Initialize	uperheated Vapor	Ammonia(NH3) 🗸 🗸
p1	I T 1	□ x1	F	yt.	E v1
00.0 kPa	20.0	deg-C 💉	fraction 😽	fraction 👻	r 0.16142 m^3/kg
u1	□ h1	□ s1	v	Vel1	₩ z1
335.6714 kJ/kg *	✓ 1464.7263	kJ/kg 💉 5.1321	kJ/kg.K 💉 0.	0 m/s 🗸	• 0.0 m
e1	□ jt	phi1		psit	₩ mdot1
335.6714 kJ/kg *	₩ 1464.7263	kJ/kg 💉	kJ/kg 💉	kJ/kg 💉	• 0.01 kg/s

6. Similarly, choose State 2 and fill in the given data, i.e. p2 = 300 kPa, Vel2 = 450 m/s and mdot2 = mdot1. Click on Calculate:

• Mixed O	SI CE	Inglis	h < Cas	se-0 💙 >	F Help Mess	ages On	Super-	Iterate Su	per-Calculate		Load	Super-Initiali	ze
State Panel				Device Panel			E	xergy Panel	-		I/O Pa	nel	
< ©State-2	v >		Calculate	No-P	lots 💌	Initialize		Unknown Phas	se	A	mmonia(NH3	3) 🗸	
₹ p2	10	Г	T2		⊏ x2			Г у2		Г	v2		
300.0	kPa	× [deg-C	2	fraction	~		fraction	~		m^3/kg	~
- u2		Г	h2		□ s2			Vel2		~	z2		
	kJ/kg	~		kJ/kg	2	kJ/kg.K	~	450.0	m/s	✓ 0.0	0	m	~
e2		Г	j2		phi2			psi2		V	mdot2		
	kJ/kg	~ [kJ/kg		kJ/kg	~		kJ/kg	✓ =n	ndot1	kg/s	

Note that no new calculations are made since data is not enough; however, we will return to this State after entering other data:

 Go to Device Panel and fill in the known data, i.e. Q = 0, Wdot_ext = 0 for a Nozzle, and click on Calculate. We get:

I/O Panel
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Initialize
i
KW/K
١î I

8. Now, the important step: click on SuperCalculate to update all related States calculations. We get:

۹N	Aixed C SI	C Engli	sh	< ©Case-0 🗸	> 🔽 H	elp Message	s On S	uper-Iterate	Super-Calculat	e Load	Super-Initia	alize
	State F	anel		Dev	vice Panel			Exergy Panel			I/O Panel	
	< Device-A [1-2] 🗸	>	i-State:	State-1	~	e-State:	State-2 👻	Ca	lculate	Initialize	j
•	Qdot			₩dot_ext			▼ T_B		Г	Sdot_gen		
0.0		kW	*	0.0	kW	~	298.15	К	✓ 6.6E	-4	kW/K	~
Jd	ot_net			Sdot_net								
0.0		kW	v	-6.6E-4	kW/K	×						

X KBS Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

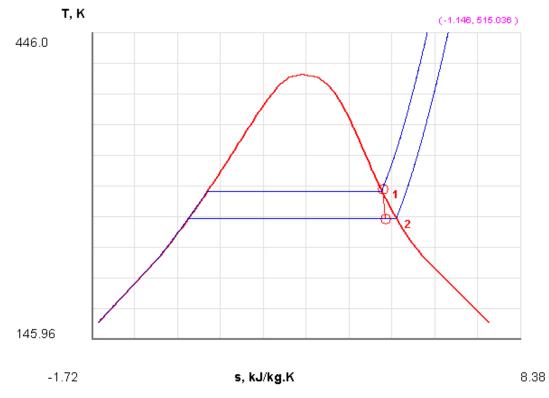
And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

155

9. Now, go to State Panel and see States 1 and 2:


State 1:

• Mixed	SI C Er	nglis	h	< ©Ca	se-0 🛩	>	Help Messa	ges On	Super	-Iterate	Super-Calculate		Load	uper-Initiali	ize
Sta	te Panel				Dev	ice Pai	hel	1	E	Exergy Panel			I/O Par	rel	
< ©State-1	v >		Ca	culate	١	lo-Plot	5 💙	Initialize		Superheate	d Vapor		Ammonia(NH3) ~	
₹ p1		I	~	Т1			T x1			Γ y1		1	v1		
800.0	kPa	*	20.0		deg-C	~		fraction	~		fraction	*	0.16142	m^3/kg	1
u1		1		h1			🗖 s1			Vel1		1			
1335.6714	kJ/kg	~	1464.7	263	kJ/kg	~	5.1321	kJ/kg.K	*	0.0	m/s	*	0.0	m	
e1		1	- j	1			phit			psi1		1	✓ mdot1		
1335.6714	kJ/kg	*	1464.7	263	kJ/kg	~		kJ/kg	~		kJ/kg	*	0.01	kg/s	
Voldot1	naring			205 A1	norng		MM1	nu/ng	0.6		norng		0.01	ng/s	
0.00161	m^3/s	~	161.41	537	m^2	~	17.031	kg/kmol	~						

State 2:

• Mixed C SI C	English	< ©Case-0	2	₩ Help Messa	ages On	Super	-Iterate Su	per-Calculate		Load	Super-Initiali	ize
State Panel)evice Pa				Exergy Panel	1		I/O Par		
< <mark>©State-2 v</mark> >	Ca	Iculate	No-Plo	s 🗸	Initialize		Saturated Mixtu	Ire		Ammonia(NH3) 🗸	
⊽ ρ2	Г	T2		r x2			Γ y2		ſ	v2		
300.0 kPa	✓ -9.259	25 deg-0	*	0.94729	fraction	*	0.99979	fraction	~	0.38551	m^3/kg	1
u2	Г	h2		⊏ s 2			I Vel2		ſ	▼ z2		
1248.0526 kJ/kg	✓ 1363.4	763 kJ/kg	~	5.19853	kJ/kg.K	*	450.0	m/s	~	0.0	m	
e2	1	2		phi2			psi2		1	✓ mdot2		
1349.3026 kJ/kg	▶ 1464.7	263 kJ/kg	*		kJ/kg	*		kJ/kg	*	=mdot1	kg/s	
Voldot2	Г	A2		MM2								
0.00386 m^3/s	✓ 1.0E-5	m^2	~	17.031	kg/kmol	~						

Thus: A2 = 8.5668935E-6 m² = 8.567 mm², T2 = -9.259 C, x2 = 0.94729.....Ans.

10. Draw the indicative T-s diagram after choosing the required plot from Plots tab:

11. Now, go to the I/O panel and see the **TEST code** which can be used to regenerate the calculations at a later date, and also other calculations such as property values at different States etc:

#******ANALYST: Dr. Muliya; TEST License: Professional******

Solution logged at: Dec 20, 2013 9:43:40 PM

#*****TEST-code: To save the solution, copy the codes generated below into a text file. To reproduce the solution at a later time, launch the daemon (see path name below), paste the saved TEST-code at the bottom of this I/O panel, and click the Load button.

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>PC-Model; v-10.bb06

#-----Start of TEST-code -----

```
States {
```

State-1: Ammonia(NH3); Given: { p1= 800.0 kPa; T1= 20.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; mdot1= 0.01 kg/s; } State-2: Ammonia(NH3); Given: { p2= 300.0 kPa; Vel2= 450.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/s; } }

Analysis {

```
Device-A: i-State = State-1; e-State = State-2;
Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; }
}
```

#-----End of TEST-code -----

ORACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

Click on the ad to read more

#*****DETAILED OUTPUT:

Evaluated States:

#	State-1: Ammonia(NH3) > Superheated Vapor;
#	Given: p1= 800.0 kPa; T1= 20.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; mdot1= 0.01 kg/s;
#	Calculated: v1= 0.1614 m^3/kg; u1= 1335.6714 kJ/kg; h1= 1464.7263 kJ/kg;
#	s1= 5.1321 kJ/kg.K; e1= 1335.6714 kJ/kg; j1= 1464.7263 kJ/kg;
#	Voldot1= 0.0016 m^3/s; A1= 161.4154 m^2; MM1= 17.031 kg/kmol;
#	State-2: Ammonia(NH3) > Saturated Mixture;
#	Given: p2= 300.0 kPa; Vel2= 450.0 m/s; z2= 0.0 m;
#	mdot2= "mdot1" kg/s;
#	Calculated: T2= -9.2592 deg-C; x2= 0.9473 fraction; y2= 0.9998 fraction;
#	v2= 0.3855 m^3/kg; u2= 1248.0526 kJ/kg; h2= 1363.4763 kJ/kg;
#	s2= 5.1985 kJ/kg.K; e2= 1349.3026 kJ/kg; j2= 1464.7263 kJ/kg;
#	Voldot2= 0.0039 m^3/s; A2= 0.0 m^2; MM2= 17.031 kg/kmol;

#-----Property spreadsheet starts: The following property table can be copied onto a spreadsheet (such as Excel) for further analysis or plots. -----

# State	p(kPa)	T(K)	x	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	800.0	293.2		0.1614	1335.67	1464.73	5.132
# 02	300.0	263.9	0.9	0.3855	1248.05	1363.48	5.199

Mass, Energy, and Entropy Analysis Results:

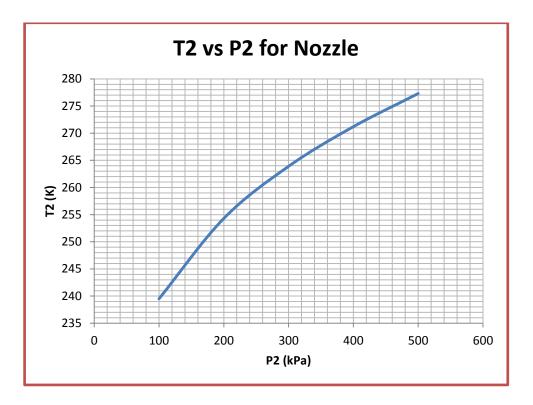
Device-A: i-State = State-1; e-State = State-2;

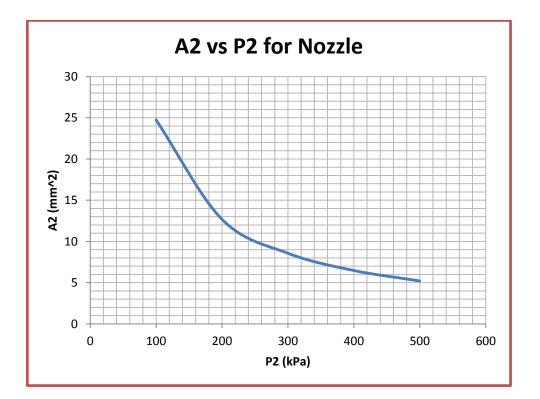
Given: Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K;

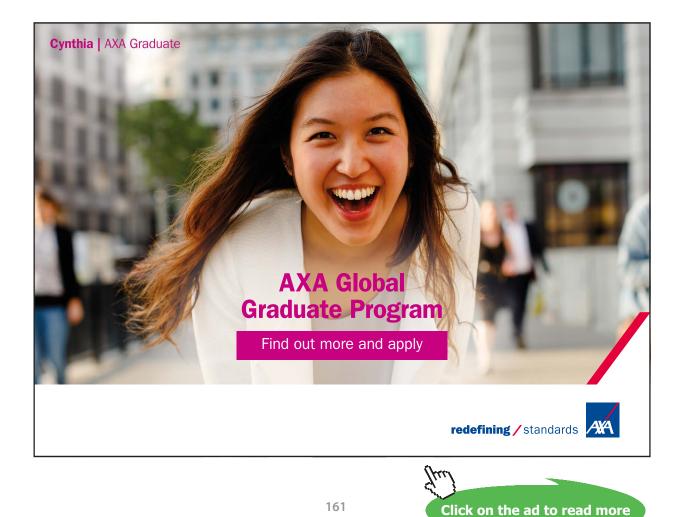
Calculated: Sdot_gen= "6.64382E-4" kW/K; Jdot_net= 0.0 kW; Sdot_net= "-6.64382E-4" kW/K;

Note: In the above calculations, $j = h + V^2/2 + g.Z$, and $e = u + V^2/2 + g.Z$

(b) If the exit pressure varies from 100 to 500 kPa, mass flow rate remaining constant at 0.01 kg/s, plot the variation of T2 and A2 with p2:


The procedure is quite simple:


Go to State 2, change the pressure p2 to desired value and click Calculate, then click SuperCalculate. All values are updated.


Do this for all desired values of p2 and separately tabulate p2, T2 and A2:

P2 (kPa)	T2 (K)	A2 (mm^2)
100	239.5	24.74
200	254.3	12.68
300	263.9	8.567
400	271.2	6.472
500	277.3	5.2045

Now, we can copy these values to EXCEL and draw the graphs:

Prob.5.21. A Diffuser shown in fig. has air entering at 100 kPa, 300 K, with a velocity of 200 m/s. The inlet cross-sectional area of the diffuser is 100 mm². At the exit, the area is 860 mm², and the velocity is 20 m/s. Determine the exit pressure and temp of air. [Ref. 2]:

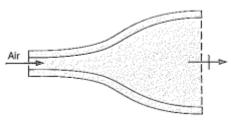
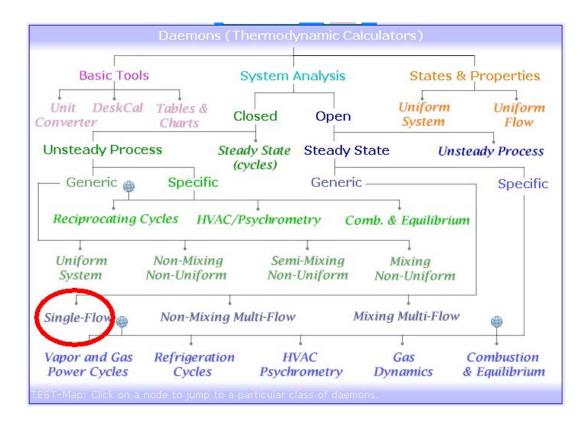



Fig.Prob.5.21

TEST Solution:

1. Go to the Daemon tree and locate System Analysis – Open – Generic – Single Flow:

2. Select the Perfect Gas (PG) Model (cp = const.) for Material model, since air is the working substance:

PC Model	 Pure Phase-Transition Fluid: The phase-change (PC) model can be used to determine states of sub-cooled (compressed) liquid, super-heated vapor, and saturated mixture of liquid and vapor phases. Based on the saturation and super-heated tables, the model is quite accurate. Sub-cooled liquid is modeled with the compressed-liquid sub-model, except for species with an asterisk (H2O* as opposed to H2O), which uses compressed liquid sub-model, except for species with an asterisk (H2O* as opposed to H2O), which uses compressed liquid sub-model, except for species with an asterisk (H2O* as opposed to H2O), which uses compressed liquid sub-model, except for Species with an asterisk (H2O* as opposed to H2O), which uses compressed liquid sub-model, except for Species with an asterisk (H2O* as opposed to H2O), which uses compressed liquid sub-model, except for Species, should be treated as PC fluids if there is any possibility of a phase transition. Examples: Analyze a steady steam turbine with one inlet and one exit. For specific examples, click on the help icon at the bottom margin of the daemon.
P = CI SL Model	Pure Solid and Pure Liquid: Constant density and constant specific heats ($c_p = c_v = c$) characterize the solid/liquid (SL) model. Beside a wide selection to choose from, a new solid or liquid can be created by assigning custom material properties. Working substances such as steel, iron, copper, aluminum, wood, water, oil, etc., which can be assumed to maintain their condensed (solid or liquid) phase when a system undergoes other changes, can be analyzed with the SL model. Examples: Liquid water is pumped steadily from a given <i>inlet-state</i> to a given <i>exit-state</i> with no possibility of a phase change. For specific examples, click on the help icon at the bottom margin of the daemon.
	Pure Gas: A pure gas has a fixed chemical composition across space and time. Oxygen, nitrogen, and air are examples of a pure gas. The PG (perfect gas) model is the simplest gas model which obeyes the ideal gas equation ($pv = RT$) and assumes eats to be constant. In the IG (ideal gas) model, specific heats are assumed energic, Single-Flow, Open-Steady Daemon tion of temperature only. The RG (real gas) model uses generalized v = RT compressibility charts and is useful for gases near the critical or super-critical

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on **+44 (0)20 7000 7573**.

* Figures taken from London Business School's Masters in Management 2010 employment report

Download free eBooks at bookboon.com

163

3. We get the following screen after clicking on PG model. Now, choose Air as the Working substance from the drop down menu. Then, enter known values of P1, T1, Vel1 and A1 for State 1. Click on Calculate. We get:

	Generic	c, Open Steady, Sing	le-Flow, Daemo	on: PG Model	
ti Move mouse over a variable to di	TEST	emons > Systems > Oper	$\frac{d}{dt} = 0$		Model
€ Mixed C SI C En	8 S		s On Super-Iter	ate Super-Calculate	Load Super-Initialize
State Panel		Device Panel	Exer	gy Panel	1/0 Panel
< CState-1 V >	Calculate	No-Plots 💌 Initialize	Formation I	Enthalpy: 🕐 No 🖲 Yes	Air 🗸
₩ p1	▼ T1	□ v1	Г	u1	🗖 ht
100.0 KPa	✓ 300.0	K 🖌 0.86096	m^3/kg 💉 -84	1.2395 kJ/kg	✓ 1.85646 kJ/kg ✓
□ s1	Vel1	∀ z1	Г	e1	⊑ j1
6.8929 kJ/kg.K	✓ 200.0	n/s 💉 0.0	m 😽 -64	.2395 kJ/kg	✓ 21.85646 kJ/kg ✓
phi1	psi1	mdot1	Г	Voldot1	✓ A1
kJ/kg	× [k	J/kg 💉 0.02323	kg/s 💉 0.0	2 m^3/s	✓ 100.0 mm^2 ✓
MM1	R1	c_p1		c_v1	k1
28.97 kg/kmol	✓ 0.28699 kJ/	/kg.K 💉 1.00349	kJ/kg.K 🛛 🖌 0.7	1651 kJ/kg.K	✓ 1.40054 UnitLess ✓

Note that mass flow rate is calculated as mdot1 = 0.02323 kg/s.

4. Now, go to State 2, and enter A2, Vel2 and mdot2 (= mdot1). Click on Calculate. We get:

• Mixed	C SI C E	ngli	sh	< Case	-0 ~ >	5	Help Messages	s On	Super	-Iterate S	uper-Calculate		Load	Super-Initiali	ize
	State Panel				Device	Pan	et		E	Exergy Panel			I/O Pa	nel	
< ©State	e-2 💙 >		Calcul	ate	No-Plots	~	Initialize	F	ormat	ion Enthalpy:	⊙No ⊙Yes		Air	~	•
— p2			– 7	72		ſ	- v2			🗂 u2		ſ	h2		
	kPa	~			к	~	0.74043	m^3/kg	*		kJ/kg	~		kJ/kg	~
s2			<u>ا ا</u>	/el2		1	✓ z2			Г e2		Γ	- j2		
	kJ/kg.K	~	20.0		m/s	*	0.0	m	~	<u></u>	kJ/kg	× [kJ/kg	1
phi2			psi2			1	✓ mdot2			Voldot2		F	✓ A2		
	kJ/kg	*			kJ/kg	~	=mdot1	kg/s	*	0.0172	m^3/s	*	860.0	mm ^a 2	1
MM2			F	2			c_p2			c_v2			k2		
28.97	kg/kmol	~	0.28699	9	kJ/kg.K	Y	1.00349	kJ/kg.K	~	0.71651	kJ/kg.K	~	1.40054	UnitLess	

Go to Device Panel, enter b-state and f-state as State 1 and State 2 respectively as shown.
 Also, enter Qdot = 0 and Wdot_ext = 0, since heat transfer and work transfer for diffuser are zero. Click on Calculate. We get:

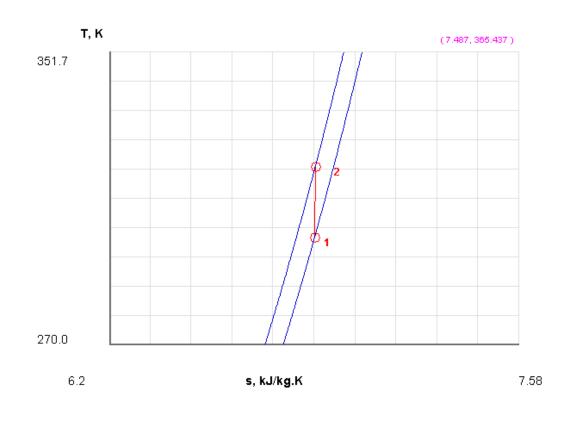
•	Aixed C SI	C Engli	sh	< Case-0 🗸	> 🔽 H	elp Message	s On	Super-Iterate	Super-Ca	Iculate	Load Super-I	Initialize
	State F	anel		Dev	ice Panel			Exergy P	anel		I/O Panel	
				1. A. 191	Concernance of the second	nowing 1	- Castron		Server 1			
	< Device-A [1-2]	>		State-1	×		State-2	~	Calculate	Initial	ize
7	Qdot			Wdot_ext			₩ T_I	В		Sdot_	_gen	
0.0		kW	*	0.0	kW	~	298.15	к	~		kW/K	1
Jd	ot_net			Sdot_net								
0.0		kW	*		kW/K	*						

6. Now, click on **SuperCalculte.** We get:

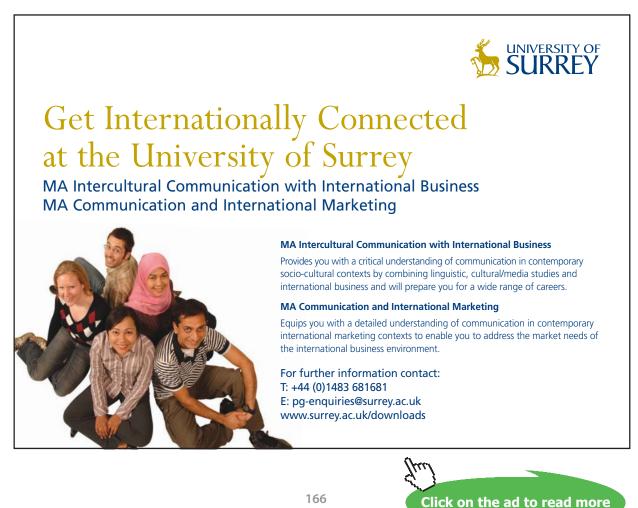
• Mixed C SI C English	< ©Case-0 ✓ > 🔽 Help Me	ssages On Super-Iterate	Super-Calculate Loa	ad Super-Initialize
State Panel	Device Panel	Exergy Panel		I/O Panel
< Device-A [1-2] ->	i-State: State-1 👻	e-State: State-2 🗸	Calculate	Initialize
	The second s			
Qdot	Wdot_ext	▼ T_B	Sdot_ger	
.0 kW 🔊	0.0 KW	✓ 298.15 K	✓ 5.0E-5	kW/K

7. Now, go back to States panel:

And, observe States 1 and 2:


State 1:

• Mixed	SI CE	ngli	sh	< ©Ca	se-0 💙 >	1	Help Messages	s On	Super	-Iterate	Super-Calculate		Load	Super-Initial	ize
Sta	ate Panel				Device	Par	el.		j.	Exergy Panel			I/O P	anel	
< ©State-1	¥ >		Calcu	late	No-Plots	¥	Initialize		Format	ion Enthalpy:	○No •Yes		Air		~
⊽ ρ1			v	T1		- 1	□ v1			□ u1		Г	h1		
100.0	kPa	*	300.0		К	*	0.86096	m^3/kg	*	-84.2395	kJ/kg	× 1	.85646	kJ/kg	l
s1			•	Vel1			⊽ z1			⊏ e1		Г	j1		
6.8929	kJ/kg.K	*	200.0		m/s	~	0.0	m.	*	-64.2395	kJ/kg	× 2	1.85646	kJ/kg	
phi1			psit				mdot1			Voldot	1	F	A1		
1) 1	kJ/kg	*			kJ/kg	*	0.02323	kg/s	*	0.02	m^3/s	~ 1	00.0	mm^2	1
MM1	kJ/kg	~	R1		kJ/kg	*	0.02323 c p1	kg/s	*	0.02 c_v1	m^3/s	× 1	00.0 k1	mm*2	
28.97	kg/kmol	~	0.2869	9	kJ/kg.K	~	1.00349	kJ/kg.K	*	0.71651	kJ/kg.K	× 1	.40054	UnitLess	


State 2:

• Mixed O	SI CE	ngli	sh < 🤇	Case-0 💙 >	F	Help Messages	s On	Super	-Iterate	Super-Calculat	e	Load	Super-Initial	lize
Sta	te Panel		1	Device	Pan	el		1	Exergy Panel			I/O F	anel	
< ©State-2	¥ >		Calculate	No-Plots	~	Initialize		Format	ion Enthalpy:	ONO OYes	i.	Air	1	~
Г р2			Γ <u>72</u>		1	- v2			Γ u2		4	□ h2		
123.92677	kPa	*	319.73105	к	~	0.74043	m^3/kg	*	-70.10205	kJ/kg	~	21.65646	kJ/kg	1
s2			I▼ Ve/2		j	₹ z2			Г e2			∀ j2		
6.89525	kJ/kg.K	~	20.0	m/s	~	0.0	m	~	-69.90205	kJ/kg	~	21.856464	kJ/kg	1
phi2			psi2		j	✓ mdot2				2		✓ A2		
	kJ/kg	~		kJ/kg	~	=mdot1	kg/s	~	0.0172	m^3/s	~	860.0	mm^2	1
MM2			R2			c_p2			c_v2			k2		
28.97	kg/kmol	~	0.28699	kJ/kg.K	~	1.00349	kJ/kg.K	~	0.71651	kJ/kg.K	~	1.40054	UnitLess	,

Thus: Exit pressure, p2 = 123.93 kPa, exit temp, T2 = 319.73 K ... Ans.

8. Draw the indicative T-s diagram from the Plot tag, after choosing T-s plot:

SuperCalculate also produces TEST code and the detailed property output etc. in the I/O panel. Part of the output is shown below:

#~~~~~OUTPUT OF SUPER-CALCULATE :

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>PG-Model; v-10.bb05

#-----Start of TEST-code -----

States {

State-1: Air; Given: { p1= 100.0 kPa; T1= 300.0 K; Vel1= 200.0 m/s; z1= 0.0 m; A1= 100.0 mm^2; } State-2: Air; Given: { Vel2= 20.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/s; A2= 860.0 mm^2; }

Analysis {

```
Device-A: i-State = State-1; e-State = State-2;
Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; }
}
```

#-----End of TEST-code -----

#*****DETAILED OUTPUT:

Evaluated States: State-1: Air > PG-Model; # Given: p1= 100.0 kPa; T1= 300.0 K; Vel1= 200.0 m/s; # z1= 0.0 m; A1= 100.0 mm^2; # Calculated: v1= 0.861 m^3/kg; u1= -84.2395 kJ/kg; h1= 1.8565 kJ/kg; # s1= 6.8929 kJ/kg.K; e1= -64.2395 kJ/kg; j1= 21.8565 kJ/kg; # mdot1= 0.0232 kg/s; Voldot1= 0.02 m^3/s; MM1= 28.97 kg/kmol; # R1= 0.287 kJ/kg.K; c_p1= 1.0035 kJ/kg.K; c_v1= 0.7165 kJ/kg.K; # k1= 1.4005 UnitLess; # State-2: Air > PG-Model; # # Given: Vel2= 20.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/s; A2= 860.0 mm^2; # # Calculated: p2= 123.9268 kPa; T2= 319.7311 K; v2= 0.7404 m^3/kg; u2= -70.102 kJ/kg; h2= 21.6565 kJ/kg; s2= 6.8952 kJ/kg.K; # # e2= -69.902 kJ/kg; j2= 21.8565 kJ/kg; Voldot2= 0.0172 m^3/s; MM2= 28.97 kg/kmol; R2= 0.287 kJ/kg.K; c_p2= 1.0035 kJ/kg.K; # # c_v2= 0.7165 kJ/kg.K; k2= 1.4005 UnitLess;

#-----Property spreadsheet:

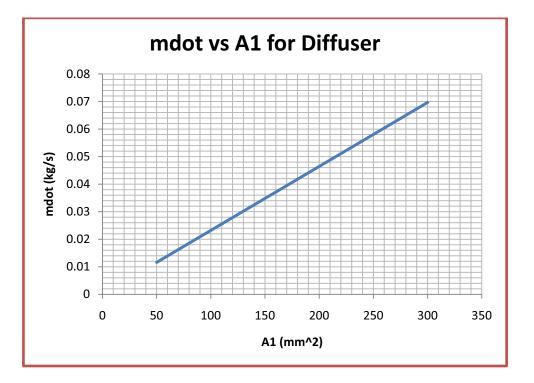
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	100.0	300.0	0.861	-84.24	1.86	6.893
#	2	123.93	319.7	0.7404	-70.1	21.66	6.895
#	Proper	rty spreadsheet	ends				

Mass, Energy, and Entropy Analysis Results:

#	Device-A: i-State = State-1; e-State = State-2;
#	Given: Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K;
#	Calculated: Sdot_gen="5.472404E-5" kW/K; Jdot_net=0.0 kW; Sdot_net="-5.472404E-
5" kW/	K;

(b) As A1 varies from 50 to 300 mm², plot the variation of mdot, p2 and T2, other quantities remaining unchanged:

The procedure is as follows


Go to State 1, change the pressure A1 to desired value and click Calculate (or, hit Enter), then click SuperCalculate. All values are updated.

Do this for all desired values of A1and separately tabulate A1, mdot, p2, and T2:

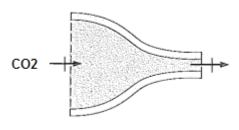
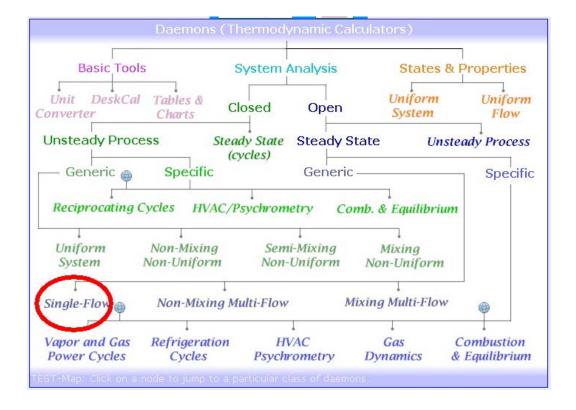
A1 (mm^2)	mdot (kg/s)	P2 (kPa)	T2 (K)
50	0.01161	61.96	319.73
100	0.02323	123.93	319.73
150	0.03484	185.89	319.73
200	0.04646	247.85	319.73
250	0.05807	309.82	319.73
300	0.06969	371.78	319.73

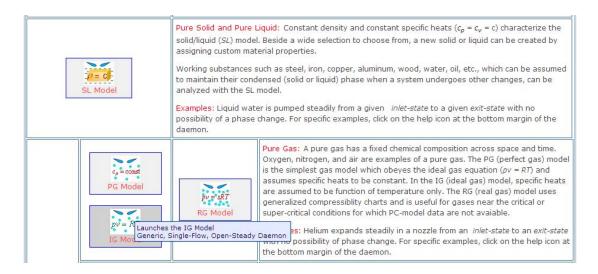
Note that T2 does not change; but, mdot and P2 vary with A2.

Now, plot these results in EXCEL:

====

Prob.5.22. Carbon dioxide enters an adiabatic nozzle steadily at 1 MPa, 500 C with a mass flow rate of 6000 kg/h and leaves at 100 kPa and 450 m/s. The inlet area of the nozzle is 40 cm^2. Determine (a) the inlet velocity, and (b) the exit temperature. [Ref. 1]:


Fig.Prob.5.22

TEST Solution:

1. Go to Daemon tree, choose System Analysis - Open - Generic - Single Flow as shown below:

2. On clicking Single Flow, we are led to Material model:

3. Choose Ideal Gas (IG) model and select CO2 as the working fluid. In IG Model, sp. heat is taken as a function of temp. Enter the data given for State 1, i.e. P1, T1, A1 and mdot1; click on Calculate (or, hit Enter). We get:

	Generic, Open S	Steady, Single-Flow, Da	emon: IG Model	
Move mouse over a variable to disp	Home of TEST	Systems > Open > Steady > $\frac{d}{dt} = 0$		Model RT
• Mixed C SI C Engl	ish <mark>< Case-0 ♥ ></mark>	Help Messages On Supe	er-Iterate Super-Calculate	Load Super-Initialize
State Panel	Device Pa	anel	Exergy Panel	I/O Panel
< ©State-1 V >	Calculate No-Plots V	Initialize Formati	on Enthalpy: 🕥 No 🔍 Yes	C02 🗸
Γ ρ1 Γ	✓ T1	rho1	🗖 v1	🗖 u1
1000.0 kPa 🛩	500.0 deg-C 💙	6.84664 kg/m²3 ❤	0.14606 m^3/kg 💙	-8600.727 kJ/kg 🗸
Γ h1 Γ	s1	└ Vel1	✓ z1	F e1
-8454.669 kJ/kg 💙	5.37865 kJ/kg.K 🗸	60.85705 m/s 💙	0.0 m 💉	-8598.874 kJ/kg 💙
⊏ jt	phi1	psi1	🔽 mdot1	└ Voldot1
-8452.817 kJ/kg 🗡	kJ/kg 💙	kJ/kg 💙	=6000/3600 kg/s 💙	0.24343 m^3/s ↔
I A1	MM1	R1	□ c_p1	
40.0 cm^2 💉	44.01 kg/kmol 🗸	0.18891 kJ/kg.K 🛩	1.15816 kJ/kg.K 🗸	

Note that Vel1 is calculated as Vel1 = 60.86 m/s.... Ans.

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

4. Enter data known for State 2, i.e. P2, Vel2 and mdot2 = mdot1. Hit Enter. We get:

• Mix	(ed (si c	Eng	lish	< Ca	ise-0 🗸	>	₩Н	elp Messa	ges On	Sup	er-Ite	rate	Super-	Calcula	te	Load	d 📕	Super-Initia	lize
	Sta	te Panel				Dev	/ice Pa	anel				Exer	gy Panel	ł				I/O Pa	nel	
< 0	DState-2	v >		Calcu	late	No-PI	ots 🗸		Initializ	e	Forma	tion E	nthalpy;	C No	• Yes	3	CO2	2		*
ν ρ:	2			Г 7	2				rho2	10		Г	v2			ſ	- (u 2		
100.0		kPa	~			deg-C	~			kg/m^3	~			<i>m</i> ^	3/kg	~)		kJ/kg	
n h	2			– s	2			•	Vel2			•	z2			ſ		e2		
		kJ/kg	۷			kJ/kg.K	~	450	0	m/s	*	0.0		1	n	~			kJ/kg	
j 2	?			phi2				p	si2			•	mdota	2		ſ		Voldot2	2	
1		kJ/kg	~			kJ/kg	~			kJ/kg	~	=ma	lot1	kg	ls	~	1		m^3/s	~
Г j2 Г А		kJ/kg	~	phi2		kJ/kg	~	p.		kJ/kg	~	-			/s	·		Voldot2		
	-	cm^2	~	44.01	-	kg/kmol	~	0.18	7	kJ/kg.K	~			kJ/k	m K	~				

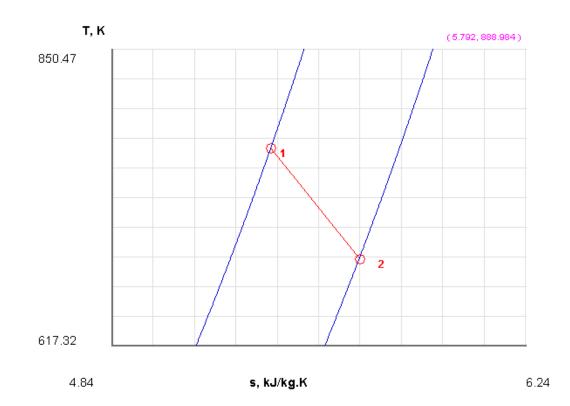
5. Go to Device Panel. Enter State 1 for b-state, State 2 for f-state, and Qdot = 0, Wdot_ext = 0. Click on Calculate. We get:

State Panel	De	evice Panel		Exergy Panel		I/O Panel	
							_
C Device-A [1-2]	> i-State: ☑ Wdot ext	State-1 💌	e.5	nte: State-2 ₩		late Initializ	e
.0 kW	0.0	kW	× 298.15	-	× 5	kW/K	
Jdot_net	Sdot_net						

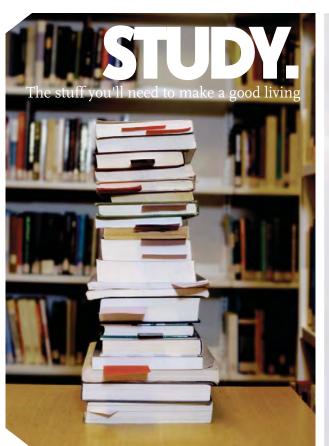
6. Now, click on SuperCalculate. We get:

Mixed SI Englisi	n < <mark>©Case-0 ></mark> 🔽 Help	Messages On Super-Iterate Su	ber-Calculate Load Super-Initialize
State Panel	Device Panel	Exergy Panel	I/O Panel
< Device-A [1-2]	i-State: State-1	• State: State-2 💌	Calculate
Qdot	Wdot_ext	✓ T_B	☐ Sdot_gen
	CANE DESCRIPTION OF THE OWNER OF THE OWNER	✓ 298,15 K	✓ 0.4977 kW/K
1.0 KW	🔀 0.0 kW	290.10	NAME NAME
Jdot net	Sdot net	× 230.10	NTIS NTIS

7. Go back to States Panel: We get:


State 1:

Move mouse over a variable to dis	play its value with more precision			
• Mixed C SI C Engl	lish < ©Case-0 v >	Help Messages On Supe	er-Iterate Super-Calculate	Load Super-Initialize
State Panel	Device Pa	anel	Exergy Panel	I/O Panel
< <mark>©State-1 ∨</mark> >	Calculate No-Plots V	Initialize Formati	ion Enthalpy: 💿 No 💿 Yes	C02 🗸
Γ ν p1	▼ T1	🗆 rho1	🗐 v1	🗖 u1
1000.0 kPa 💌	500.0 deg-C 💉	6.84664 kg/m*3 👻	0.14606 m^3/kg 😪	-8600.727 kJ/kg 💙
Г h1 Г	51	└ Vel1	▼ z1	F e1
-8454.669 kJ/kg 😪	5.37865 kJ/kg.K 💙	60.85705 m/s 🗸	0.0 m 🗸	-8598.874 kJ/kg 💙
🗆 jt	phi1	psi1	I▼ mdot1	Voldot1
-8452.817 kJ/kg 😪	kJ/kg 💙	kJ/kg 💙	=6000/3600 kg/s 💉	0.24343 m [∧] 3/s ∨
✓ A1	MM1	R1	□ c_p1	
40.0 cm²2 💉	44.01 kg/kmol 🗸	0.18891 kJ/kg.K 🗸	1.15816 kJ/kg.K 🛩	


And, State 2:

• Mixed	I C SI	Eng	glish < 🤇	Case-0 💙 >	₩ Help Messa	iges On	Super-Iterate	Super-Calculate	Load	Super-Initialize
	State Pane	el		Device	Panel		Exergy Pan	el	1/C	Panel
< 08	tate-2 💙 >		Calculate	No-Plots	 Initializ 	ze	Formation Enthalpy	/ ONO OYes	C02	*
✓ p2			Γ T2		rho2		Γ v2		Γ u2	
100.0	kPa	~	412.7627	deg-C	• 0.77174	kg/m^3	✓ 1.29577	m^3/kg	✓ -8683.645	kJ/kg
h2			⊏ s 2		Ve/2		▼ z2		Γ e2	
-8554.067	kJ/kg	~	5.67727	kJ/kg.K	✓ 450.0	m/s	♥ 0.0	m	✓ -8582.395	kJ/kg
			phi2		psi2		🔽 mde	ot2		lot2
-8452.817	kJ/kg	~		kJ/kg	•	kJ/kg	✓ =mdot1	kg/s	2.15961	m^3/s
A2			MM2		R2		Гср	2		
47.99143	cm^2	~	44.01	kg/kmol	0.18891	kJ/kg.K	♥ 1.11962	kJ/kg.K	~	

Thus: Inlet velocity, Vel1 = 60.86 m/s, exit temp, T2 = 412.76 C ... ans.

8. Plot the indicative T-s diagram:

<section-header><text><image><text><text>

Click on the ad to read more

175

9. The I/O panel gives TEST code and other details. Part of it is shown below:

#~~~~OUTPUT OF SUPER-CALCULATE :

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>IG-Model; v-10.bb05

#-----Start of TEST-code -----

States {

State-1: CO2; Given: { p1= 1000.0 kPa; T1= 500.0 deg-C; z1= 0.0 m; mdot1= "6000/3600" kg/s; A1= 40.0 cm^2; } State-2: CO2; Given: { p2= 100.0 kPa; Vel2= 450.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/s; } }

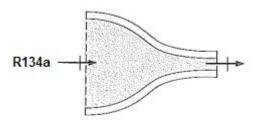
Analysis {

Device-A: i-State = State-1; e-State = State-2; Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; } }

#-----End of TEST-code -----

#-----Property spreadsheet starts: #

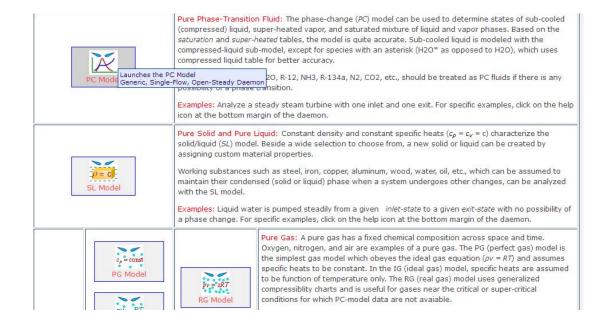
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	1000.0	773.2	0.1461	-8600.73	-8454.67	5.379
#	2	100.0	685.9	1.2958	-8683.64	-8554.07	5.677


#-----Property spreadsheet ends-----

Mass, Energy, and Entropy Analysis Results:

Device-A: i-State = State-1; e-State = State-2; # Given: Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; # Calculated: Sdot_gen= 0.49769834 kW/K; Jdot_net= "-2.1262167E-5" kW; Sdot_net= -0.49769834 kW/K;

Prob.5.23. Refrigerant 134a at 700 kPa and 120 C enters an adiabatic nozzle with a velocity of 20 m/s and leaves at 400 kPa and 30 C. Determine (a) the exit velocity, and (b) ratio of inlet to exit area, A1/A2. [Ref. 1]



TEST Solution:

1. In the Daemons tree, select System Analysis – Open – Generic – Single Flow as shown below:

Basic Too	ls	System Analysis	States	& Properties
Unit DeskCa onverter	l Tables & Charts	Closed Open	Uniform System	Uniform Flow
Unsteady Proc	ess St	eady State Steady S (cycles)	itate Un	steady Process
second se	and a state of a state of a	COLORSO SIGNATION CONTRACTOR CONTRA		and a stranger
— Generic Reciprocating	Specific Cycles HVAC	Generic C/Psychrometry Co	mb. & Equilibriu	m Specific
Reciprocating		C/Psychrometry Co Semi-Mixing	mb. & Equilibriu Mixing	um
Reciprocating Uniform System	Cycles HVAC	C/Psychrometry Co Semi-Mixing Non-Uniform	mb. & Equilibriu Mixing	um
Reciprocating Uniform	Cycles HVAC Non-Mixing Non-Uniform	C/Psychrometry Co Semi-Mixing Non-Uniform Multi-Flow M	mb. & Equilibriu Mixing Non-Uniform	um

2. For Material model, choose Phase Change (PC) model, since R134a is the working fluid:

Technical training on *WHAT* you need, *WHEN* you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/

> Phone: +61 8 9321 1702 Email: training@idc-online.com Website: www.idc-online.com

OIL & GAS ENGINEERING

ELECTRONICS

AUTOMATION & PROCESS CONTROL

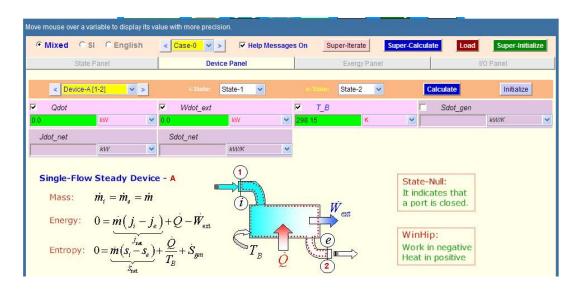
> MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS

ELECTRICAL POWER

Click on the ad to read more

178


3. In the Window that appears, select the R134a as the substance and enter the data for State 1, i.e. P1. T1 and Vel1, and click Calculate (or, hit Enter). We get:

	A Hom	ds.net > Daemo	ppen Steady, S ns > Systems >				1odel	
Move mouse over a variable	the Contract of the State	S T	cision.	dt				
• Mixed • SI •	English	< Case-0 🗸	> 🔽 Help Me	ssages On	Super-Iterate	Super-Calculate	Load	Super-Initialize
State Panel		D	evice Panel		Exergy Panel		1/O 1	anel .
< OState-1 🗸 >	Ca	lculate	No-Plots 💌	Initialize	Superheat	ed Vapor	R-134a	×
Γ ρ1	v	T1	□ x1		🗖 y1		□ v1	
700.0 kPa	✓ 120.0	deg-C	~	fraction	*	fraction 💌	0.04331	m^3/kg 🛛 👻
🖵 u1	Г	h1	□ s1		Vel1		▼ z1	
327.5737 kJ/kg	✓ 357.8	898 kJ/kg	✓ 1.18867	kJ/kg.K	⊻ 20.0	m/s 🗸	0.0	m 💙
F ef	F	j1	phi1		psi1		r mdot	
327.7737 kJ/kg	₩ 358.0	898 kJ/kg	~	kJ/kg	*	kJ/kg	•	kg/s 💙
Voldot1	Г	A1	MM1					
m^3/s	~	<i>m</i> ^2	▶ 102.03	kg/kmol	~			

4. Similarly, fill in data for State 2, press Enter:

Mixed C SI C E	English <	Case-0 💙 >	Help Mess	ages On	Super-Iterate	Super-Calculate	Load	Super-Initialize
State Panel		Devic	e Panel		Exergy	Panel	1/0 1	anel
< <mark>©State-2 v</mark> >	Calcul	ate No	-Piots 💌	Initialize	Supe	rheated Vapor	R-134a	~
p2	▼ 72		□ x2		Г	y2	Γ v2	
00.0 kPa	→ 30.0	deg-C	~	fraction	×	fraction	♥ 0.05693	m^3/kg /
u2	□ h2		r s2		•	Vel2	▼ z2	
51.45975 kJ/kg	274.23074	kJ/kg	▶ 0.99037	kJ/kg.K	✓ 0.0	m/s	✓ 0.0	m
e2	Γ j2		phi2		ps	12	🔽 mdotž	?
51,45975 kJ/kg	× 274,23074	kJ/kg	*	kJ/kg	*	kJ/kg	=mdot1	kg/s

5. Go to Device Panel, enter Qdot = 0, Wdot_ext = 0; press Enter:

6. Click on SuperCalculate. Go to States Panel:

State 2:

		nglish		ase-0 v >	Help Mess	ages On	Super	-Iterate Sur	per-Calculate	Load	Super-Initiali
S	tate Panel			Devic	e Panel		E	Exergy Panel	ĺ	1/0	Panel
< ©State	-2 🗙 >		Calculate	No	-Plots 💌	Initialize		Superheated Va	apor	R-134a	~
p2		•	T2		□ x2			Γ y2		Γ v2	
00.0	kPa	✓ 30.	0	deg-C	¥	fraction	*		fraction	0.05693	m^3/kg
u2		E.	h2		□ s2			□ Vel2		▼ z2	
51.45975	kJ/kg	✓ 274	4.23074	kJ/kg	✓ 0.99037	kJ/kg.K	*	409.53403	m/s	0.0	m
e2		V	j2		phi2			psi2		✓ mdot.	2
35.3188	kJ/kg	≤ 358	8.0898	kJ/kg	×	kJ/kg	*		kJ/kg	emdot1	kg/s

Thus: Exit velocity = Vel2 = 409.53 m/s ... Ans.

7. Use the I/O panel to calculate A1/A2:

We have: rho1 * A1 * Vel1 = rho2 * A2 * Vel2.... By mass balance i.e. (A1/A2) = (1/v2)*Vel2/(Vel1 * (1/v1)) i.e. (A1/A2) = 15.578 Ans.

8. Also, from I/O panel, copy the TEST code etc:

```
#~~~~~OUTPUT OF SUPER-CALCULATE
```

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>PC-Model; v-10.bb06

#-----Start of TEST-code -----

States {

```
State-1: R-134a;
Given: { p1= 700.0 kPa; T1= 120.0 deg-C; Vel1= 20.0 m/s; z1= 0.0 m; }
State-2: R-134a;
Given: { p2= 400.0 kPa; T2= 30.0 deg-C; z2= 0.0 m; mdot2= "mdot1" kg/s; }
}
```

Analysis {

Device-A: i-State = State-1; e-State = State-2; Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; } }

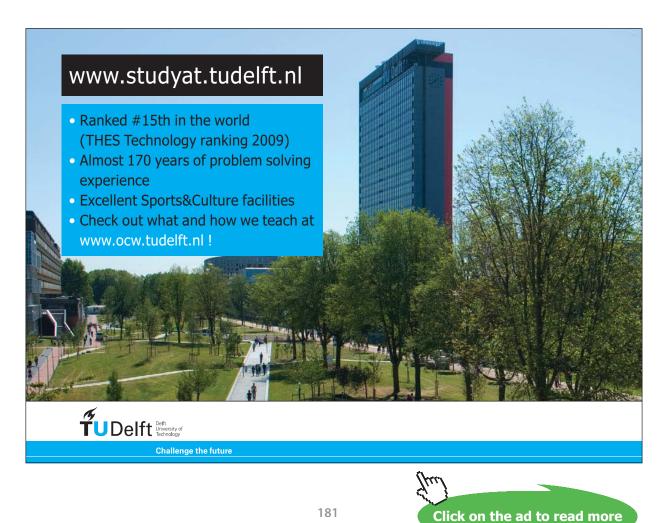
#-----End of TEST-code -----

#Property spreadsheet starts:

# State	e p(kPa)	T(K) x	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	700.0	393.2	0.0433	327.57	357.89	1.189
# 02	400.0	303.2	0.0569	251.46	274.23	0.99

Mass, Energy, and Entropy Analysis Results:

#	Device-A: i-State = State-1; e-State = State-2;
---	---


Given: Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; #

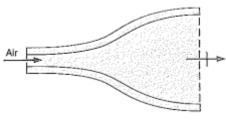
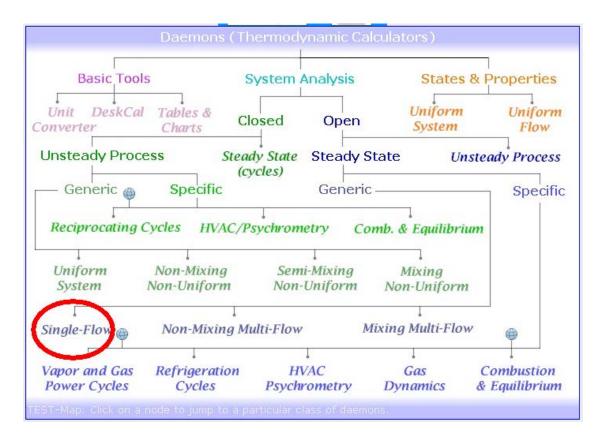
#*****CALCULATE VARIABLES: Type in an expression starting with an '=' sign ('= mdot1*(h2-h1)', '= sqrt(4*A1/PI)', etc.) and press the Enter key)********

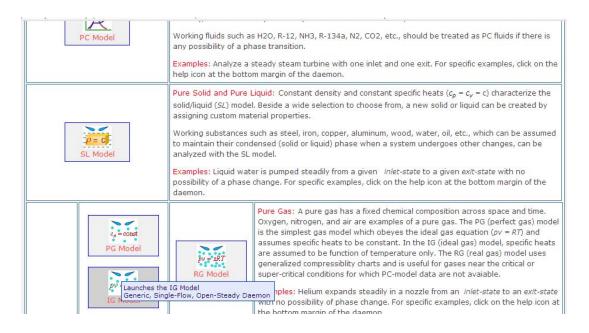
#(A1/A2) = (1/v2)*Vel2/(Vel1 * (1/v1))

(1/v2)*Vel2/(Vel1 * (1/v1)) = 15.578052777777797

Download free eBooks at bookboon.com

Prob.5.24. Air at 80 kPa, 27 C, and 220 m/s enters a Diffuser at a rate of 2.5 kg/s and leaves at 42 C. The exit area of the diffuser is 400 cm². The air is estimated to lose heat at a rate of 18 kJ/s during this process. Determine: (a) the exit velocity, and (b) the exit pressure. [Ref. 1]


Fig.Prob.5.24

TEST Solution:

1. Go to Daemon tree, choose System Analysis – Open – Generic – Single Flow as shown below:

2. For Material model, choose Ideal Gas (IG) model, where cp is taken as a function of temp. (PG model also will give almost the same results):

3. Choose Air as the working substance. Enter given data of P1, T1, Vel1, and mdot1 for State 1. Click Enter:

	Generic, Open S	teady, Single-Flow, Da	aemon: IG Model	
	Home of TEST Solution S		e Generic > SingleFlow > IG-Ν	
• Mixed C SI C Eng	llish < Case-0 ♥ >	Help Messages On Supe	er-Iterate Super-Calculate	Load Super-Initialize
State Panel	Device Pa	inel	Exergy Panel	I/O Panel
< ©State-1 💌 >	Calculate No-Plots V	Initialize Format	ion Enthalpy: 🔅 No 🔍 Yes	Air
ν ρ1	▼ T1	rho1	⊑ v1	🗖 u1
80.0 kPa 💌	27.0 deg-C 💌	0.92873 kg/m^3 🗸	1.07674 m^3/kg 💉	-84.11575 kJ/kg 💙
∏ h1	□ s1	Vel1	▼ z1	F e1
2.02326 kJ/kg 💙	6.95744 kJ/kg.K 🛩	220.0 m/s 💉	0.0 m 💌	-59.91575 kJ/kg 💙
⊑ j1	phi1	psi1	₩ mdot1	Voldot1
26.22326 kJ/kg 💙	kJ/kg 💙	kJ/kg 💙	2.5 kg/s 🛩	2.69184 m^3/s ❤
L A1	MM1	R1	□ c_p1	
0.01224 m*2 💙	28.97 kg/kmol 💌	0.28699 kJ/kg.K 🗸	1.00379 kJ/kg.K 🛩	

Note that in addition to properties such as u1, h1, s1, volume flow rate Voldot1 and inlet area A1 are also calculated.

4. Similarly, enter data for State 2, i.e. T2, A2 and mdot2, and click Enter:

• Mixed O SI O	English	< Case-0	× > .	Help Message	es On Sup	er-Iterate Su	per-Calculate	Load Su	per-Initialize
State Panel			Device Pan	əl	1	Exergy Panel		I/O Pane	el
< OState-2 V >	Ca	culate No	-Plots 💌	Initialize	Forma	tion Enthalpy: 🚺	No •Yes	Air	~
p2	V	T2		rho2		□ v2		Г u2	
kPa	✓ 42.0	deg-	° 🗸		kg/m^3 💉	<u></u>	m^3/kg 💉	-73.34679	kJ/kg
- h2	Γ	s2	Г	Vel2		▼ z2		e2	
17.09702 kJ/kg	×	kJ/kg.)	< 🖌		m/s 💙	0.0	m 💙		kJ/kg
j2	ph	i2		psi2		₩ mdot2		Voldot2	
kJ/kg	~	kJ/kg	~		kJ/kg 💙	=mdot1	kg/s 💉		m^3/s

5. Go to Devices Panel, enter Qdot = -18 kW (negative sign since heat is leaving the system), Wdot_ext = 0. And for i-State = State 1, b-state = State 2. Click Calculate (or, hit Enter):

Mixed C SI C English	< Case-0 > F Help Messag	es On Super-Iterate Super-Calcul	ate Load Super-Initialize
State Panel	Device Panel	Exergy Panel	I/O Panel
< Device-A [1-2] >	i-State: State-1 💌	e-State-2 👻	Calculate
Qdot	✓ Wdot_ext	▽ T_B □	Sdot_gen
-18.0 kw	🗸 0.0 kW 💉	298.15 К 💉	kW/K
Jdot net	Sdot net		
	×		

6. Now, click on SuperCalculate:

Go to State-1 and 2:

State 1:

Move mouse over a variable to display its	value with more precision.		
• Mixed C SI C English	< Case-0 > Frequencies Allowed	super-Iterate Super-Calo	culate Load Super-Initialize
State Panel	Device Panel	Exergy Panel	I/O Panel
< <mark>©State-1 ▼ > Calcu</mark>	ulate No-Plots 🗸 Initialize	Formation Enthalpy: 🔘 No 💿	Yes Air 🗸
ν p1 ν 7	Г1 Г rho1	□ v1	🗆 u1
80.0 kPa 💉 27.0	deg-C 🖌 0.92873	kg/m^3 💉 1.07674 m^3/kg	✓ -84.11575 kJ/kg ✓
□ h1 □ s	st 🔽 Velt	⊽ z1	E e1
2.02326 kJ/kg 😪 6.95744	4 kJ/kg.K 💙 220.0	m/s 💉 0.0 m	✓ -59.91575 kJ/kg ✓
🗆 j1 phi1	psi1	l⊽ mdot1	└ Voldot1
26.22326 kJ/kg 😪	kJ/kg 💙	kJ/kg 💙 2.5 kg/s	✓ 2.69184 m [*] 3/s ✓
E A1 MM1	R1	⊏ c_p1	
0.01224 m^2 💉 28.97	kg/kmol 🗸 0.28699	kJ/kg.K 🖌 1.00379 kJ/kg.K	*

State 2:

rho2 = 1.0069549 kg/m^3 [De	ensity]							
• Mixed C SI C E	nglish	< ©Case-0 v	> 🔽 Help Mes	sages On	Super-Iterate	Super-Calculate	Load	Super-Initialize
State Panel		De	vice Panel		Exergy Panel		1/0 1	Panel
< ©State-2 🗸 >	Calcu	late No-Pl	ots 🔽 🛛 Initia	lize	ormation Enthalpy:	ONO OYes	Air	~
Г p2	⊽ 7	2	□ rho2		Γ v2		Γ u2	
91.07284 kPa 1	42.0	deg-C	✓ 1.00695	kg/m^3	✓ 0.99309	m^3/kg 💉	-73.34679	kJ/kg 🗸
□ h2	□ s.	2	✓ Ve/2		▼ z2		⊏ e2	
17.09702 kJ/kg	✓ 6.96924	kJ/kg.K	♥ 62.06832	m/s	▶ 0.0	m 👻	-71.42055	kJ/kg 😽
I ∕ j2	phi2		psi2		I▼ mdot2		└ Voldo	ot2
19.023258 kJ/kg	~	kJ/kg	×	kJ/kg	✓ =mdot1	kg/s 😽	2.48273	m^3/s 🗸
✓ A2	MM2		R2		Γ c_p2			
400.0 cm^2	✓ 28.97	kg/kmol	✓ 0.28699	kJ/kg.K	▶ 1.00605	kJ/kg.K 💌		

Thus: Vel2 = 62.07 m/s, p2 = 91.07 kPa.....Ans.

#

T, K (6.379,363.601) 346.67 2 270.14 6.26 s, kJ/kg.K 7.67 8. From the I/O panel, copy the TEST code etc: #~~~~OUTPUT OF SUPER-CALCULATE: Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>IG-Model; v-10.bb05 #-----Start of TEST-code -----States { State-1: Air; Given: { p1= 80.0 kPa; T1= 27.0 deg-C; Vel1= 220.0 m/s; z1= 0.0 m; mdot1= 2.5 kg/s; } State-2: Air; Given: { T2= 42.0 deg-C; z2= 0.0 m; mdot2= "mdot1" kg/s; A2= 400.0 cm^2; } } Analysis { Device-A: i-State = State-1; e-State = State-2; Given: { Qdot= -18.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; } } #-----End of TEST-code

7. Draw the indicative T-s diagram:

#	Prope	rty spreadsheet s	tarts:				
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	80.0	300.2	1.0767	-84.12	2.02	6.957
#	2	91.07	315.2	0.9931	-73.35	17.1	6.969
====	=====	=======================================	=====	===========	==============	============	

Prob.5.25. Argon gas enters steadily an adiabatic turbine at 900 kPa and 450 C with a velocity of 80 m/s and leaves at 150 kPa with a velocity of 150 m/s. The inlet area of the turbine is 60 cm^2. If the power output of the turbine is 250 kW, determine the exit temp of argon. [Ref. 1]

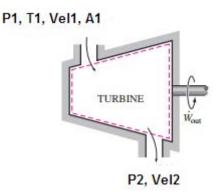


Fig.Prob.5.25

Study at one of Europe's leading universities

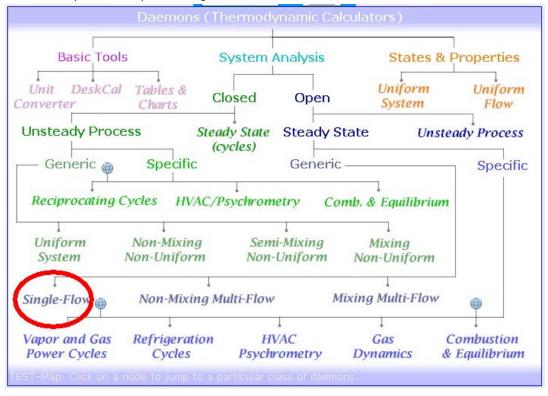
DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk



Click on the ad to read more

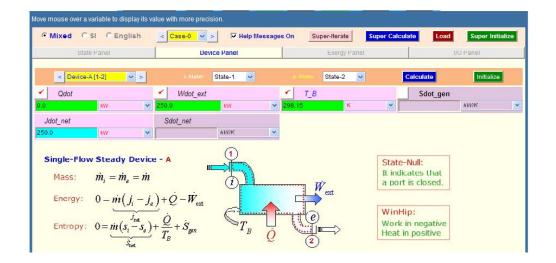
187

Download free eBooks at bookboon.com

TEST Solution:

1. Go to System Analysis ---Single Flow daemon as shown below:

2. For Material Model, choose Perfect Gas (PG) model, and select Argon for the working substance. Enter the data, viz. P1, T1, Vel1 and A1 for State 1, and click on Calculate (or, hit Enter). We get:


			Gen	eric One	n Ste	adv Singl	e-Flow	Dae	emon: PG I	Model				
love mouse ov	er a variable tr	6	Home of TEST	Daemons	> Sys			y > 0		gleFlow >	PG-M c _p = co			
Mixed	C SI C E			ase-0 🗸 >		Help Message	s On	Super	-iterate S	uper-Calcul	ate	Load	Super-Initial	lize
	State Panel			Devic	e Pane		[E	Exergy Panel		1	I/O P	anel	
< ©State	e-1 💙 >		Calculate	No-Plot	s 😽	Initialize	F	ormat	ion Enthalpy:	O No 💿 Y	es	Ar		~
₽ p1			₩ T1		Г	v1			⊏ u1			□ h1		
900.0	kPa	~	450.0	deg-C	¥ 0	.16722	m^3/kg	~	70.63281	kJ/kg	*	221.12766	kJ/kg	
□ s1			Vei1		F	z1			r e1			⊏ jt		
3.88243	kJ/kg.K	*	80.0	m/s	~ 0	.0	m	~	73.83281	kJ/kg	*	224.32767	kJ/kg	
phi1			psi1		Г	mdot1			Voldot1			₩ A1		
	kJ/kg	~		kJ/kg	~ 2	.87053	kg/s	~	0.18	m^3/s	~	60.0	cm^2	
MM1			R1			c_p1			c_v1			k1		
39.95	kg/kmol	~	0.20811	kJ/kg.K	~ 0	.5203	kJ/kg.K	~	0.31219	kJ/kg.K	~	1.66661	UnitLess	1

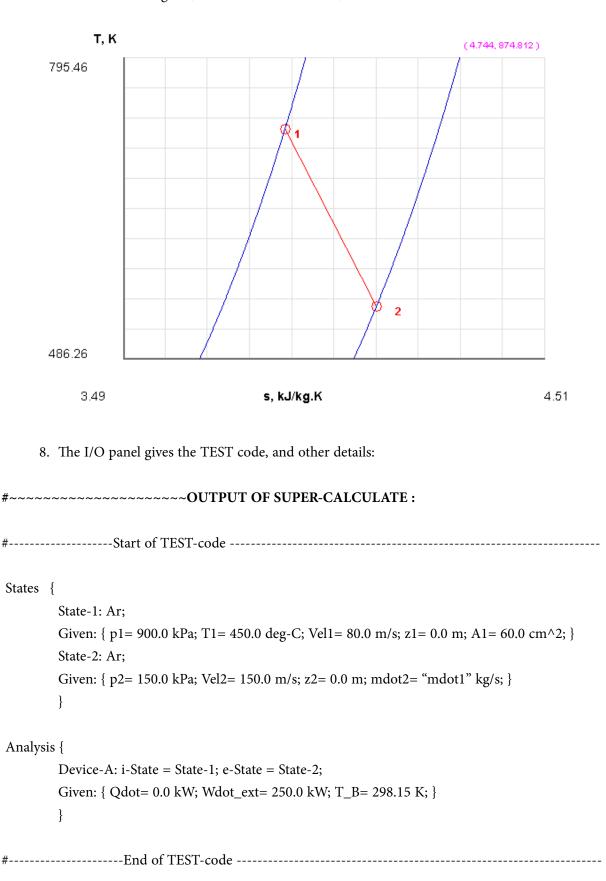
Note that additional properties at State 1 and mass flow rate, mdot1 are calculated.

3. Enter given data for State 2, i.e. P2, Vel2 and modot2 = mdot1; hit Enter:

• Mixed	SI CE	nglis	sh < Cas	e-0 💙 >	F	Help Mess	ages On	Super	-Iterate	Super-Calculat	е	Load	Super-Initiali	ze
Sta	ite Panel			Device	Pan	el .		1	Exergy Panel			I/O P	anel	
< ©State-2	¥ >		Calculate	No-Plots	~	Initi	alize	Format	ion Enthalpy:	O No • Ye	з	Ar	~	•
/ p2			T2			v2			u2	- (y		h2	11	
150.0	kPa	~		deg-C	~	_	m^3/kg	~		kJ/kg	~		kJ/kg	~
s2			✓ Vel2			< z2			e2			j2		
	kJ/kg.K	~	150.0	m/s	*	0.0	m	*		kJ/kg	~		kJ/kg	Y
phi2			psi2			< mdo	t2		Voldo	2		A2		
	kJ/kg	*		kJ/kg	*	=mdot1	kg/s	*		m^3/s	~		cm^2	~
MM2			R2			c_p2			c_v2			k2		
39.95	kg/kmol	~	0.20811	kJ/kg.K	~	0.5203	kJ/kg.K	*	0.31219	kJ/kg.K	~	1.66661	UnitLess	1

4. Go to Devices Panel. Enter Qdot = 0 and Wdot_ext = 250 kW. Enter State 1 and State 2 for b-state and f-state respectively. Click Calculate:

5. Click SuperCalculate:


Mixed	SI C Engl	ish	< ©Case-0 v >	Help Mes	ssages On	Super-Iterate	Super-Calculate	Load Super	-Initialize
Sta	te Panel		Devic	ce Panel	1	Exergy Pane	1	I/O Panel	
									~ ~ ~
< Device	-A [1-2]	/ >	i-State:	State-1 👻		state-2 🗸	Calc	ulate Initia	alize
Qdot			✓ Wdot_ext		1	Т_В		Sdot_gen	
.0	kW	~	250.0	kW	298.1	K	✓ 0.6349	9 kW/K	
Jdot_net			Sdot_net						
C They want to A to a f	kW	~	-0.63499	kW/K	~				

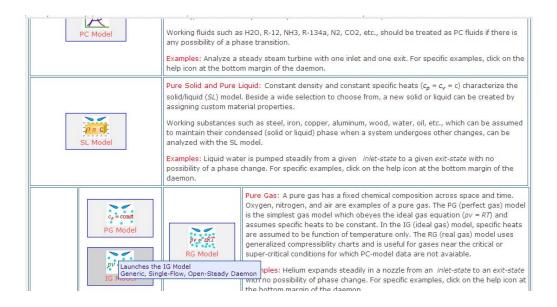
6. Now, go back to States Panel, see State 2:

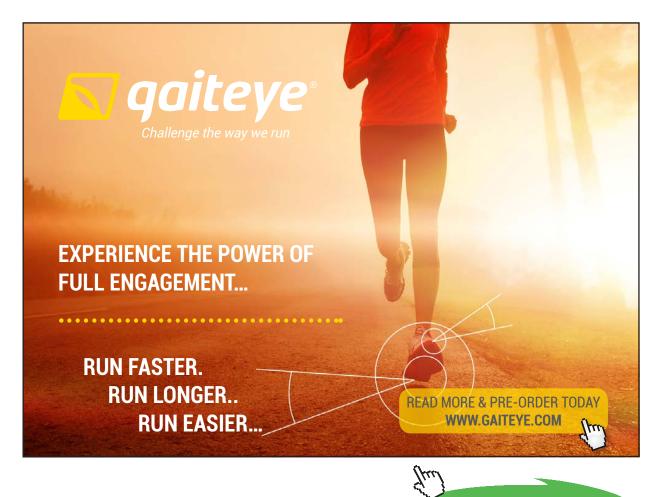
sh <mark><</mark> ©Ca	se-0 💙 >	✓ Help Messages On	Super-Iterate	Super-Calculate	Load	Super-Initialize
	Device Pa	inel	Exergy Panel		I/O P	anel
Calculate	No-Plots 🗸	Initialize		ONO •Yes	Ar	~
T2		v2	u2		h2	
267.14038	deg-C 💉	0.7496 m^3/kg	₩ 13.54582	kJ/kg 💉	125.98573	kJ/kg
✓ Vel2		✓ z2	e2		✓ j2	
150.0	m/s 💙	0.0 m	₩ 24.79582	kJ/kg 🐦	137.23573	kJ/kg
psi2		✓ mdot2	Volde	ot2	A2	
	kJ/kg 💉	=mdot1 kg/s	✓ 2.15175	m^3/s 💉	143.44984	cm^2
	T2 267.14038 Vel2 150.0	Calculate No-Plots T2 267.14038 deg-C ✓ Ve/2 150.0 m/s psi2	T2 v2 267.14038 deg-C 0.7496 m*3/kg ✓ Ve/2 ✓ z2 150.0 m/s 0.0 m ps/2 ✓ model2	Calculate No-Plots Initialize Formation Enthalpy: 72 v2 u2 267.14038 deg-C 0.7496 m*3/kg 13.54582 ✓ Vel2 ✓ z2 e2 150.0 m/s 0.0 m 24.79582 psi2 ✓ mdot2 Vold	Calculate No-Plots Initialize Formation Enthalpy: No Yes 72 v2 u2 267.14038 deg-C 0.7496 m*3/kg 13.54582 kJ/kg v Ve/2 v2 e2 e2 10.0 m/s v 0.0 m v 24.79582 kJ/kg v psi2 ✓ mdot2 Voldot2 Voldot2 Voldot2 V	Calculate No-Plots Initialize Formation Enthalpy: No Yes Ar 72 v2 u2 h2 h2 h2 h2 j2 j2 </td

Observe that T2 = 267.14 deg. C.....Ans.

7. Indicative T-s diagram, obtained from Plots tab, is as follows:

#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	900.0	723.2	0.1672	70.63	221.13	3.882
#	2	150.0	540.3	0.7496	13.55	125.99	4.104


Prob.5.26. Air flows steadily through an adiabatic turbine, entering at 1 MPa, 500 C and 120 m/s and leaving at 150 kPa, 150 C and 250 m/s. The inlet area of turbine is 80 cm². Determine (a) the mass flow rate of air, and (b) the power output of turbine. [Ref. 1]


TEST Solution:

1. Choose System Analysis Single Flow daemon as in previous cases:

Basic Too	S	System	Analysis	States	& Properties
Unit DeskCa onverter	Tables & Charts	Closed	Open	Uniform System	Uniforn Flow
Unsteady Proc	ess S	teady State (cycles)	Steady S	tate Ur	steady Proces
— Generic <i>Reciprocating</i>	Specific Cycles HVA	C/Psychrom	Generic	nb. & Equilibri	Specif
Ļ		Sem		1	um
Reciprocating Uniform System	Cycles HVA	Sem	tetry Co I ii-Mixing Uniform	nb. & Equilibri Mixing	1
Reciprocating	Cycles HVA	Sem Non-	tetry Co I ii-Mixing Uniform	mb. & Equilibri Mixing Non-Uniforn	1

2. For Material model, choose Ideal Gas (IG) model, where cp is a function of temp. (We can choose PG model also; results will not be much different):

193

Download free eBooks at bookboon.com

Click on the ad to read more

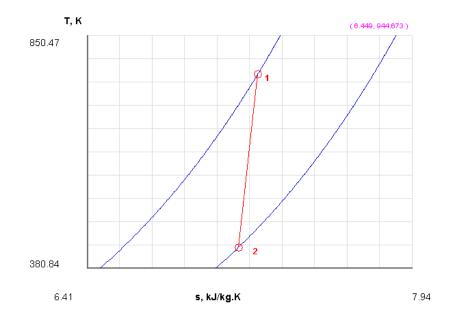
3. Choose Air for material, enter data, i.e. P1, T1, A1, Vel1 for State 1; press Enter:

	Generic, Open S	Steady, Single-Flow, [Daemon: IG Model			
thermofluids.net > Daemons > Systems > Open > Steady > Generic > SingleFlow > IG-ModelImage: Home of TESTImage: Ho						
Mixed C SI C Englisi	h <mark>< Case-0 ♥</mark> >	₩ Help Messages On Su	per-Iterate Super-Calculate	Load Super-Initialize		
State Panel	Device Pa	anel	Exergy Panel	I/O Panel		
< <mark>©State-1 v</mark> >	Calculate No-Plots 🗸	Initialize Form	ation Enthalpy: 💿 No 💿 Yes	Air 🗸		
🔽 p1 🔽	T1	rho1	□ v1	🗖 u1		
1000.0 kPa 💉 50	0.0 deg-C 💉	4.50687 kg/m^3 N	0.22188 m^3/kg ✓	274.44998 kJ/kg 💙		
□ h1 □	s1	Vel1	∀ z1	F ef		
496.33362 kJ/kg 🌱 7.2	1504 kJ/kg.K 🛩	120.0 m/s	r 0.0 m 😽	* 281.64996 kJ/kg 😪		
Γ jt	phi1	psi1	mdot1	□ Voldot1		
503.5336 kJ/kg 💉	kJ/kg 💉	kJ/kg	✓ 4.32659 kg/s ✓	0.96 m^3/s 💙		
₩ A1	MM1	R1	Г с_p1			
80.0 cm*2 🗸 28	97 kg/kmol 👻	0.28699 kJ/kg.K				

Note that mdot1 is calculated as 4.327 kg/s Ans.

4. Now, enter data for State 2, i.e. P2, T2, Vel2, and mdot2 = mdot1. Press Enter:

vice Panel Exergy	Panel	
	ranei	I/O Panel
ots 👻 Initialize Formation Ent	halpy: ONO OYes <mark>Air</mark>	×
Г rho2 Г	v2 🗖 i	u2
✓ 1.23519 kg/m³3 ✓ 0.809	059 m^3/kg ❤ 5.2398	38 kJ/kg
Vel2	z2 🔽	e2
✓ 250.0 m/s ✓ 0.0	m 💉 36.489	988 kJ/kg
psi2	mdot2	Voldot2
🖌 🖌 🖌 kJ/kg	bt1 kg/s 💉 3.5027	76 m^3/s *
	rho2 r 1.23519 kg/m²3 0.805 マ Ve/2 マ 250.0 m/s 0.0 psi2 マ	□ rho2 v2 □ ■ 1.23519 kg/m*3 0.80959 m*3/kg 5.2392 □ Ve/2 □ z2 □ ■ 250.0 m/s 0.0 m 36.489 ps/2 □ mdot2 □ □


Note that A2 is calculated as 140.11 cm².

5. Now, go to Device Panel. Enter State 1 and State 2 for b-state and f-state respectively. Also Qdot = 0. Press Calculate:

I/O Panel
Calculate
✓ -0.38996 kW/K

Note that work output is calculated as: Wdot_ext = 1495.3 kW Ans.

6. Indicative T-s diagram is as follows:

7. Clicking on SuperCalculate gives TEST code etc. in the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE:

Device-A: i-State = State-1; e-State = State-2; Given: { Qdot= 0.0 kW; T_B= 298.15 K; } }

#-----End of TEST-code -----

#

#	Prope	rty spreadsheet	starts:				
#							
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	1000.0	773.2	0.2219	274.45	496.33	7.215
#	2	150.0	423.2	0.8096	5.24	126.68	7.125
#							
#	Prope	rty spreadsheet	ends				
#							
# Ma	ss, Energ	y, and Entropy	Analysis	Results:			
#	Devic	ce-A: i-State = St	ate-1; e-9	State = State-2;			
#		Given: Qdot=	= 0.0 kW;	T_B= 298.15 K			
#		Calculated:	Wdot_ex	t= 1495.2935	kW; Sdot_gen=	-0.3899593 kV	V/K; Jdot_net=
1495.	2935 kW	; Sdot_net= 0.38	899593 k ^v	W/K;			

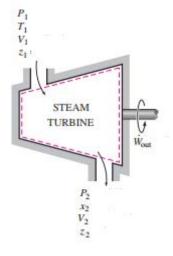
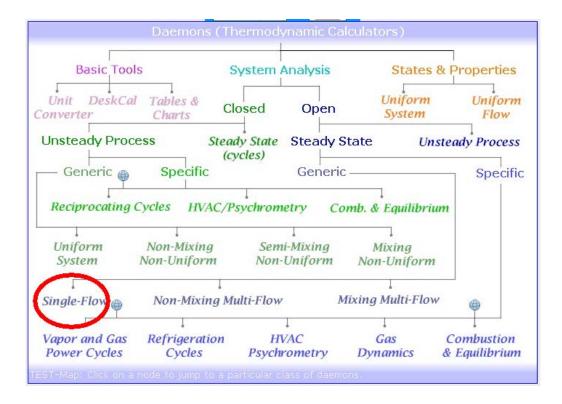
Prob.5.27. Steam flows steadily through an adiabatic turbine. The inlet conditions of steam are: 6 MPa, 400 C and 80 m/s and the exit conditions are: 40 kPa, 92% quality and 50 m/s. The mass flow rate of steam is 20 kg/s. Determine: (a) the change in K.E. (b) the power output, and (c) the turbine inlet area.

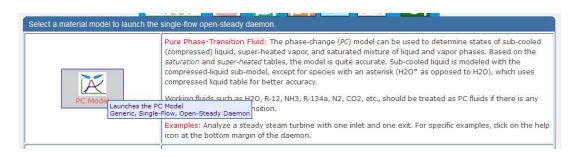
196

Download free eBooks at bookboon.com

Click on the ad to read more

(b) Plot the Power output and exit temp against the exit pressure as exit pressure varies from 10 to 200 kPa. [Ref. 1]


Fig.Prob.5.27

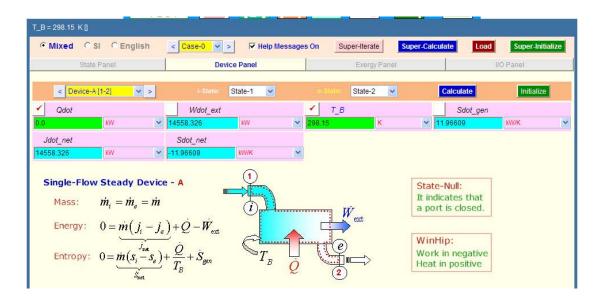
TEST Solution:

1. Go to Daemons tree and choose System Analysis.....Single Flow as shown below:

2. Choose PC model for Material Model, since Steam is the working substance:

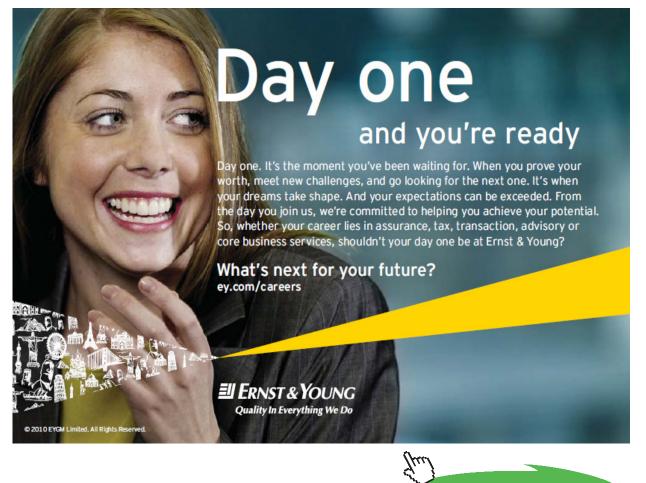
3. Choose H2O for working substance, enter data for State 1, i.e. enter P1, T1, Vel1 and mdot1, and press Enter (or, Calculate):

We get:


	Gene thermofluids.net >	eric, Open Steady, Sir Daemons > Systems > Op	-	emon: <i>PC Model</i> Generic > SingleFlow > F		
Move mouse over a variable to		more precision.				
• Mixed C SI C E	nglish < Cas	e-0 v > 🔽 Help Messa	ages On Super	-Iterate Super-Calcula	te Load Super-In	nitialize
State Panel		Device Panel	1	Exergy Panel	I/O Panel	
< OState-1 💙 >	Calculate	No-Plots 💌	Initialize	Superheated Vapor	H20	~
🖌 p1	🖌 T1	x1		y1	v1	
6000.0 kPa	400.0	deg-C 💌	fraction 💙	fraction	✓ 0.04739 m*3/	(g 🗸
ut	ht	st		✔ Vel1	¥ z1	
2892.8093 kJ/kg	3177.143	kJ/kg 💉 6.54066	kJ/kg.K 😽	80.0 m/s	✓ 0.0 m	*
e1	jt	phi1		psi1	✓ mdot1	
2896.0093 kJ/kg	₩ 3180.343	kJ/kg 😽	kJ/kg 💙	kJ/kg	✓ 20.0 kg/s	*
Voldot1	A1	MM1				
0.94778 m*3/s	✓ 0.01185	m^2 💉 18.0	kg/kmol 🗸			

Note that Turbine inlet area A1 is calculated as: A1 = $0.01185 \text{ m}^2 \dots \text{Ans}$.

4. Enter data for State 2, i.e. P2, x2, Vel2 and mdot1 = mdot2. Press Enter (or, Calculate). We get:


• Mixed O SI	C Engli	ish < Cas	se-0 🗸 >	🔽 Help Messages On	Super-	Iterate Super-O	Calculate	Load	Super-Initialize
State F	Panel		Device P	anel	E	exergy Panel		1/0 P	anel
< ©State-2	v >	Calculate	No-Plo	ots 🐱 🛛 Initializ		Sat.Mixture: Liq.+Va	p.	H2O	~
p2		T2		🖌 x2		y2		v2	
0.0 k	Pa 💙	75.84323	deg-C 🗸	0.92 frac	ion 💌	0.99998 fr	action 💉	3.68204	m^3/kg
u2		h2		s2		✓ Vel2		✓ z2	
304.226 kJ	kg 💌	2451.1768	kJ/kg 🗸 🗸	7.13896 kJ/kg.	< 🔻	50.0 m	s 🗸	0.0	m
e2		j2		phi2		psi2		✓ mdot2	
305.476 kJ	kg 😽	2452.4268	kJ/kg 💉	kJ/k	, 🗸	Ku	l/kg 💙	=mdot1	kg/s

5. Go to Device Panel. Enter State 1 and State 2 for b-state and f-state respectively. Also enter Qdot = 0, and press Calculate. We get:

Note that Wdot_ext is calculated as: 14558.3 kW = 14.558 MW = Work output of turbine... Ans.

Also: Vel2 = 50 m/s, Vel1 = 80 m/s, and therefore, change in K.E. = $(Vel2^2 - Vel1^2) / 2$.

199

Click on the ad to read more

Download free eBooks at bookboon.com

i.e.

$$\frac{\text{Vet2}^2 - \text{Ve11}^2}{2} = \frac{50^2 - 80^2}{2} = -1.95 \times 10^3 \qquad \text{J/kg Ans}$$

6. Click on SuperCalculate and go to I/O panel to get TEST code and other details:

#~~~~OUTPUT OF SUPER-CALCULATE:

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>PC-Model; v-10.ca08

#-----Start of TEST-code -----

States {

State-1: H2O; Given: { p1= 6000.0 kPa; T1= 400.0 deg-C; Vel1= 80.0 m/s; z1= 0.0 m; mdot1= 20.0 kg/s; } State-2: H2O; Given: { p2= 40.0 kPa; x2= 0.92 fraction; Vel2= 50.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/s; } }

Analysis {

Device-A: i-State = State-1; e-State = State-2; Given: { Qdot= 0.0 kW; T_B= 298.15 K; } }

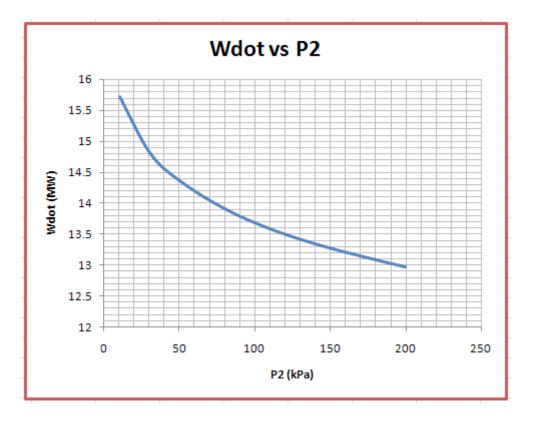
#-----End of TEST-code -----

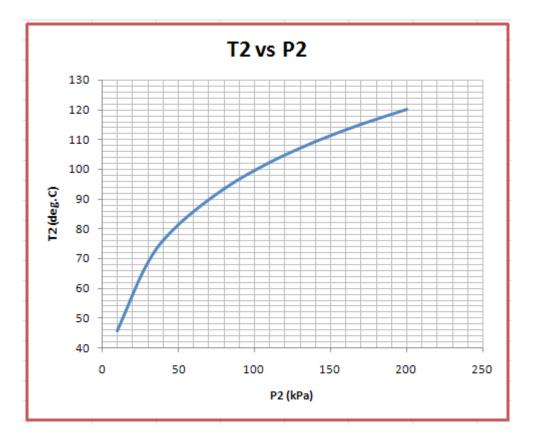
#-----Property spreadsheet starts:

# State	p(kPa)	T(K)	х	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	6000.0	673.2		0.0474	2892.81	3177.14	6.541
# 02	40.0	349.0	0.9	3.682	2304.23	2451.18	7.139

Mass, Energy, and Entropy Analysis Results:

Device-A: i-State = State-1; e-State = State-2; # Given: Qdot= 0.0 kW; T_B= 298.15 K; # Calculated: Wdot_ext= 14558.326 kW; Sdot_gen= 11.966095 kW/K; Jdot_net= 14558.326 kW; Sdot_net= -11.966095 kW/K;


(b) Plot Power output and T2 as P2 varies from 10 to 200 kPa:


The procedure is quite simple:

Go to State 2, enter the desired value of P2 and press Enter. Then, press SuperCalculate. Read the value of T2 and Wdot_ext and tabulate the values. Results are shown below:

P2(kPa)	Wdot_ext (MW)	T2 (deg.C)
10	15.717	45.81
30	14.815	69.08
50	14.354	81.31
80	13.907	93.48
110	13.59	102.3
140	13.345	109.29
170	13.143	115.17
200	12.972	120.23

Plot the above results in EXCEL:

Download free eBooks at bookboon.com

Click on the ad to read more

Prob.5.28. Air enters the compressor of a gas turbine plant at 100 kPa, 25 C with a low velocity and exits at 1 MPa and 347 C with a velocity of 90 m/s. The compressor is cooled at a rate of 1500 kJ/min and the power input to the compressor is 250 kW. Determine the mass flow rate of air through the compressor. [Ref. 1]

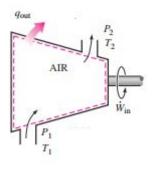
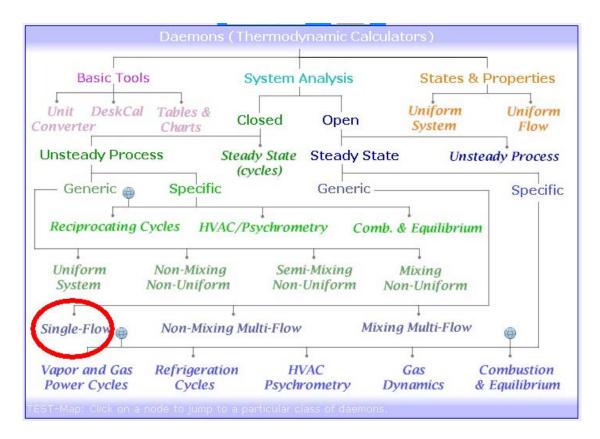



Fig.Prob.5.28

TEST Solution:

1. Go to System Analysis Single Flow daemon, as in the case of previous problems:

2. Choose the Ideal Gas (IG) model, since we are going to use Air as working substance:

SL Model	can be assumed to m undergoes other cha Examples: Liquid wat	such as steel, iron, copper, aluminum, wood, water, oil, etc., which naintain their condensed (solid or liquid) phase when a system nges, can be analyzed with the SL model. er is pumped steadily from a given <i>inlet-state</i> to a given <i>exit-state</i> a phase change. For specific examples, click on the help icon at the daemon.
c, = const PG Model	py = gRT RG Model odel ww, Open-Steady Daemon	Pure Gas: A pure gas has a fixed chemical composition across space and time. Oxygen, nitrogen, and air are examples of a pure gas. The PG (perfect gas) model is the simplest gas model which obeyes the ideal gas equation ($pv = RT$) and assumes specific heats to be constant. In the IG (ideal gas) model, specific heats are assumed to be function of temperature only. The RG (real gas) model uses generalized compressibility charts and is useful for gases near the critical or super-critical conditions for which PC-model data are not avaiable. Examples: Helium expands steadily in a nozzle from an <i>inlet-state</i> to an <i>exit-state</i> with no possibility of phase change. For specific examples, click on the help icon at the bottom margin of the daemon.

3. Choose Air for working substance, enter data i.e. P1, T1, Vel1 for State 1 and press Enter:

Generic, Open Steady, Single-Flow, Daemon: IG Model							
	Home of TEST		n > Steady > Generic > $\frac{d}{dt} = 0$	SingleFlow > IG-M pv = 1			
Move mouse over a variable to di			es On Super-Iterate	Super-Calculate	Load Super-Initialize		
State Panel	De	evice Panel	Exergy Panel		I/O Panel		
< ©State-1 V >	Calculate No-F	lots 👻 Initialize	Formation Enthalpy:	©No ●Yes	Air 💌		
₽ p1	✓ T1	rho1	□ v1	1	🗖 u1		
100.0 kPa 💌	25.0 deg-C	✓ 1.1687	kg/m^3 ❤ 0.85565	m^3/kg 💙	-85.54906 kJ/kg 💙		
□ h1	□ s1	Vel1	⊽ z1	1	E e1		
0.01597 kJ/kg 💙	6.88669 kJ/kg.K	✓ 0.0	m/s 💉 0.0	m 💙	-85.54906 kJ/kg 💙		
⊑ <i>jt</i>	phi1	psi1	□ mdot1	1	Voldot1		
0.01597 kJ/kg 🗸	kJ/kg	×	k.J/kg 💙	kg/s 💙	m^3/s 💙		
L A1	MM1	R1	□ c_p1				
m^2 💙	28.97 kg/kmol	✓ 0.28699	kJ/kg.K 💉 1.00349	kJ/kg.K 💙			

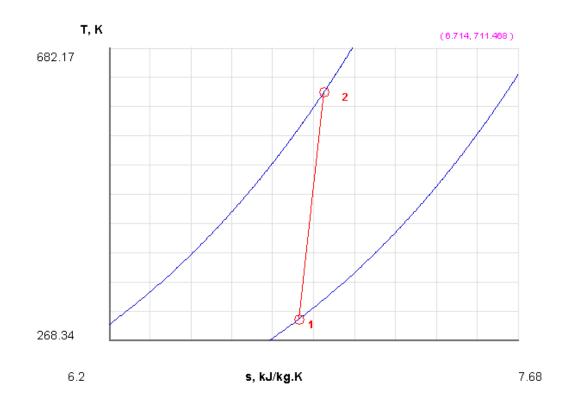
4. Enter P2, T2 and Vel2 and mdot2 = mdot1 for State 2; press Enter:

• Mixed OSI O	English	< Case-0 🗸	> 5	7 Help Messag	es On S	Super-Iterate	Super-Calculate	Load	Super-Initializ
State Panel		De	vice Pane	el	1	Exergy Pane	el	1/0 I	Panel
< <mark>©State-2 v</mark> >	Calc	ulate No-P	ots 💌	Initialize	For	mation Enthalpy	ONO •Yes	Air	¥
✓ p2		T2	Г	rho2		Γ v2		□ u2	
1000.0 kPa	→ 347.0	deg-C	× 5	.61878	kg/m^3	✓ 0.17797	m^3/kg 💙	153.85896	kJ/kg
h2	Г	s2	V	Vel2		▼ z2		⊏ e2	
331.83368 kJ/kg	← 6.9780)8 kJ/kg.K	~ 9	0.0	m/s	♥ 0.0	m 👻	157.90897	kJ/kg
j2	phil	2		psi2		l √ mdo	t2	└ Voldo	ot2
335.88367 kJ/kg	~	kJ/kg	× [kJ/kg	💌 =mdot1	kg/s 💉		m^3/s
A2	MM	2		R2		Γ c_p2	?		
m^2	× 28.97	kg/kmol	¥ 0	.28699	kJ/kg.K	✓ 1.05998	kJ/kg.K 🗸	1	

5. Go to Device Panel, enter b-state and f-state, and also Qdot = 0, Wdot_ext = -250 (negative sign since work is input to compressor), press Enter:

Mixed OSI CEnglish	< Case-0 > F Help Messag	es On Super-Iterate Super-	Calculate Load Super-Initialize
State Panel	Device Panel	Exergy Panel	I/O Panel
< Device-A [1-2] >	i-State: State-1	State-2 💌	Calculate Initialize
Qdot	Wdot_ext	✓ T_B	└── Sdot_gen
1500/60 kW 💉	-250.0 kW 🗸	298.15 K	 0.14507 kW/K

6. Now, click on SuperCalculate to up-date all calculations:


Go to State Panel, State 1:

Device Par	nel	Exergy Panel	I/O Panel
Iculate No-Plots 👻	Initialize Formati	on Enthalpy: 🕒 No 오 Yes	Air 🗸
Т1 Г	rho1	🗆 v1	🗖 u1
deg-C 💌	1.1687 kg/m^3 ❤	0.85565 m^3/kg ❤	-85.54906 kJ/kg *
st F	✓ Vel1	✓ z1	r e1
669 kJ/kg.K 😽	0.0 m/s 😽	0.0 m 😪	-85.54906 kJ/kg *
ii1	psi1	✓ mdot1	Voldot1
kJ/kg 💉	kJ/kg 💙	0.6699066 kg/s 💉	0.57321 m^3/s
	T1 deg-C v s1 i1	T1 □ rho1 deg-C ▼ 1.1687 kg/m²3 ♥ s1 ♥ Vel1 669 kJ/kg.K ♥ 0.0 m/s ♥ i1 psi1 ♥	T1 rho1 ∨1 deg-C 1.1687 kg/m*3 0.85565 m*3/kg v s1 Vel1 Z1 569 kJ/kg.K 0.0 m/v 0.0 m i1 psi1 ✓ mdot1

And, State 2:

Move mouse over a variable	e to di	isplay its value wit	h more precisior	1.					
• Mixed • SI • C	En	glish < <mark>©0</mark>	ase-0 🗸 >	▼ Help Messag	es On Sup	er-Iterate	uper-Calculate	Load	Super-Initialize
State Panel			Device Pa	anel		Exergy Panel		I/O Pa	nel
< <mark>©State-2</mark> V >		Calculate	No-Plots 💊	Initialize	Format	ion Enthalpy:	🔿 No 💿 Yes	Air	~
₽ ρ2		▼ 72		Γ rho2		Γ v2		Γ u2	
1000.0 kPa	~	347.0	deg-C 💉	5.61878	kg/m^3 🛛 💙	0.17797	m^3/kg 💉	153.85896	kJ/kg 💉
□ h2		□ s2		₩ Vel2		▼ z2		⊏ e2	
331.83368 kJ/kg	~	6.97808	kJ/kg.K 💉	90.0	m/s 💙	0.0	m 🗸	157.90897	kJ/kg 💙
□ j2		phi2		psi2		₩ mdot2		Voldot2	
335.88367 kJ/kg	~		kJ/kg 💉		kJ/kg 💙	=mdot1	kg/s 🗸 🗸	0.11923	m^3/s 💉
Г A2		MM2		R2		Г с_p2			
0.00132 m^2	~	28.97	kg/kmol 💉	0.28699	kJ/kg.K 💉	1.05998	kJ/kg.K 💉		

Thus: mdot1 = 0.6699 kg/s Ans.

7. Indicative T-s diagram is as follows:

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

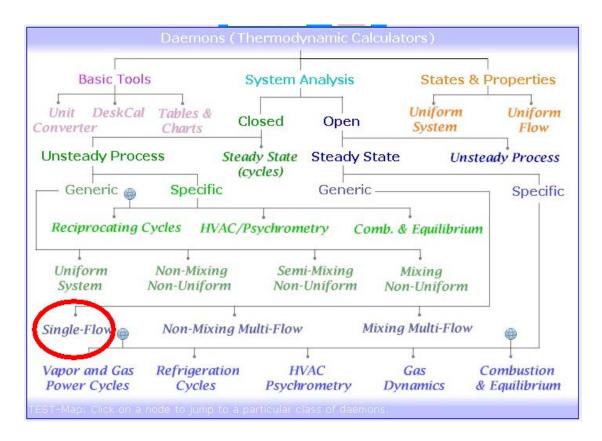
206

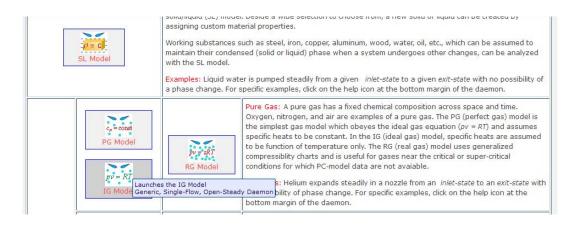
Click on the ad to read more

Download free eBooks at bookboon.com

ALLER AV

Dove


8. From the I/O panel, get the TEST code etc.: #~~~~~OUTPUT OF SUPER-CALCULATE: # Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>IG-Model; v-10.bb05 # #-----Start of TEST-code -----States { State-1: Air; Given: { p1= 100.0 kPa; T1= 25.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; } State-2: Air; Given: { p2= 1000.0 kPa; T2= 347.0 deg-C; Vel2= 90.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/s; } } Analysis { Device-A: i-State = State-1; e-State = State-2; Given: { Qdot= "-1500/60" kW; Wdot_ext= -250.0 kW; T_B= 298.15 K; } } #-----End of TEST-code -----#-----Property spreadsheet starts: p(kPa) $T(K) v(m^3/kg)$ u(kJ/kg) h(kJ/kg) # State s(kJ/kg) 100.0 298.2 0.8557 0.02 # 1 -85.55 6.887 1000.0 # 2 620.2 0.178 331.83 6.978 153.86 # #------Property spreadsheet ends-----# Mass, Energy, and Entropy Analysis Results: Device-A: i-State = State-1; e-State = State-2; # Given: Qdot= "-1500/60" kW; Wdot_ext= -250.0 kW; T_B= 298.15 K; # Calculated: Sdot_gen=0.14507116 kW/K; Jdot_net=-225.0 kW; Sdot_net=-0.061220754 # kW/K;


Prob.5.29. A compressor operating at steady state takes in 45 kg/min of methane gas (CH4) at 1 bar, 25 C, 15 m/s, and compresses it with negligible heat transfer to 2 bar, 50 m/s at exit. The power input to the compressor is 110 kW. Using the ideal gas model, determine the temp of the gas at the exit. [Ref. 5]

TEST Solution:

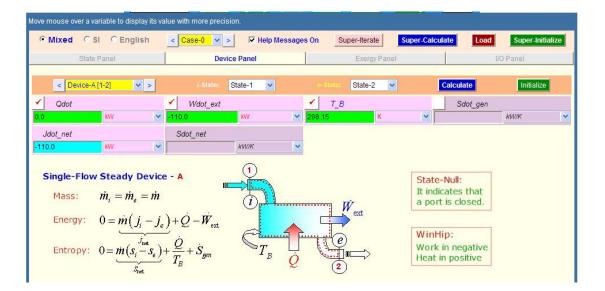
1. Go to System Analysis ... Single Flow daemon as shown:

2. Select IG model for Material model:


3. Choose Methane (CH4) for working substance, enter data for State 1 (i.e. P1, T1, Vel1 and mdot1), press Enter:

The second se			
Mixed C SI C English	< Case-0 ♥ > I▼ Help Message	s On Super-Iterate Super-Ca	alculate Load Super-Initialize
State Panel	Device Panel	Exergy Panel	I/O Panel
< OState-1 V > Calco	ılate No-Plots 🖌 Initialize	Formation Enthalpy: 💭 No	• Yes Methane(CH4)
🖌 p1 🖌	T1 rho1	V1	u1
100.0 kPa 💉 25.0	deg-C ❤ 0.64708	kg/m^3 ❤ 1.5454 m^3/	/kg 💙 -4822.3643 kJ/kg 💙
h1 s	1 Vel1	🖌 z1	e1
-4667.824 kJ/kg 💙 11.618	71 kJ/kg.K 💉 15.0	m/s 💉 0.0 m	✓ -4822.252 kJ/kg ✓
j1 phi1	psi1	✓ mdot1	Voldot1
-4667.712 kJ/kg 💙	kJ/kg 💙	kJ/kg 💉 45.0 kg/m	min 💙 1.15905 m^3/s 💙
A1 MM1	R1	c_p1	
0.07727 m^2 🖌 16.04	kg/kmol 🗸 0.51833	kJ/kg.K 💙 2.22247 kJ/kg.	I.K 👻

Discover the truth at www.deloitte.ca/careers

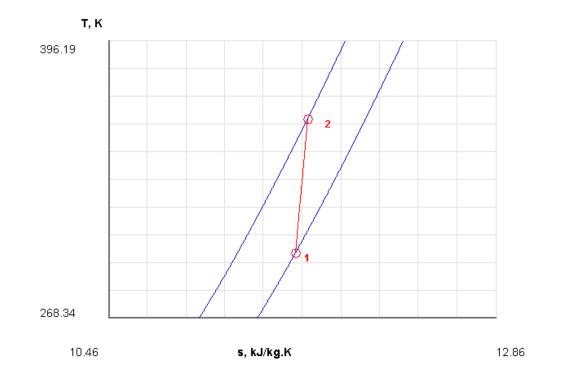

Download free eBooks at bookboon.com

209

4. Enter data for State 2, (i.e. P2, Vel2 and mdot2), press Enter:

• Mixed	ISI C	Eng	lish <	Case-0 🗸	>	🔽 Help Messa	ges On	Supe	r-Iterate	Super-Calculate	Load	Super-Initialize
Sta	ate Panel			Dev	ice Pa	nel		1	Exergy Pane	1	I/C	Panel
< ©State-2	* >		Calculate	No-Pl	ots 💉	Initial	ize	Forma	tion Enthalpy	n 🔿 No 💿 Yes	Methan	e(CH4) 🗸 🗸
🖌 p2			T2			rho2			v2		u2	
200.0	kPa	~	[deg-C	~		kg/m^3	*		m^3/kg 💙		kJ/kg
h2			s2			✓ Vel2			🖌 z2		e2	
	kJ/kg	~		kJ/kg.K	*	90.0	m/s	*	0.0	m 💙		kJ/kg
<u>j2</u>			phi2			psi2			< mde	ot2	Vold	dot2
	kJ/kg	*		kJ/kg	*		kJ/kg	*	=mdot1	kg/min 💉		m^3/s
A2			MM2			R2			c_p2	?		
	m^2	~	16.04	kg/kmol	~	0.51833	kJ/kg.K	~		kJ/kg.K 💙		

5. Go to Device Panel, enter for b-state and f-state, and also Qdot = 0, Wdot_ext = -110 kW (negative sign since work is done on the system in compressor). Press Enter:



6. Now click on SuperCalculate. Go to State Panel, State 2. We get:

• Mixed	C SI C	Eng	lish < 🔍	Case-0 💌 🗆		Help Messag	es On	Supe	r-Iterate	Super-Calculat	е	Load	Super-Initia	lize
S	tate Panel			Devi	ice Par	iel:			Exergy Panel	1		I/O P	anel	
< ©State-	2 × >		Calculate	No-Plo	ots 🗸	Initializ	e	Forma	tion Enthalpy:	ONo OYes	в	Methane(CH4)	~
✓ p2			T2			rho2			v2			u2		
200.0	kPa	*	87.02169	deg-C	*	1.07131	kg/m^3	*	0.93344	m^3/kg	~	-4711.782	kJ/kg	•
h2			s2			✓ Vel2			✓ z2			e2		
-4525.0947	kJ/kg	~	11.69383	kJ/kg.K	*	90.0	m/s	*	0.0	m	¥	-4707.7324	kJ/kg	
 ✓ j2 			phi2			psi2			✓ mdot2	2		Voldot	2	
-4521.045	kJ/kg	~		kJ/kg	*		kJ/kg	~	=mdot1	kg/min	*	0.70008	m^3/s	*
A2			MM2			R2			c_p2					
0.00778	m^2	~	16.04	kg/kmol	~	0.51833	kJ/kg.K	*	2.39128	kJ/kg.K	¥			

Thus: T2 = 87.02 deg. C ... Ans.

7. Indicative T-s diagram is as follows:

8. I/O panel gives TEST code etc:

#~~~~OUTPUT OF SUPER-CALCULATE :

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>IG-Model; v-10.ca08

#-----Start of TEST-code -----

States {

State-1: Methane(CH4); Given: { p1= 100.0 kPa; T1= 25.0 deg-C; Vel1= 15.0 m/s; z1= 0.0 m; mdot1= 45.0 kg/min; } State-2: Methane(CH4); Given: { p2= 200.0 kPa; Vel2= 90.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/min; } }

Analysis {

Device-A: i-State = State-1; e-State = State-2; Given: { Qdot= 0.0 kW; Wdot_ext= -110.0 kW; T_B= 298.15 K; } } #-----End of TEST-code ------ _____

#	Prope	rty spreadshee	t starts:					
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)	
#	1	100.0	298.2	1.5454	-4822.36	-4667.82	11.619	
#	2	200.0	360.2	0.9334	-4711.78	-4525.09	11.694	
#	Prope	rty spreadshee	t ends					
# Mas	# Mass, Energy, and Entropy Analysis Results:							

#	Device-A: i-State = State-1; e-State = State-2;
#	Given: Qdot= 0.0 kW; Wdot_ext= -110.0 kW; T_B= 298.15 K;
#	Calculated: Sdot_gen= 0.056342352 kW/K; Jdot_net= -110.00039 kW; Sdot_net=
-0.056	342352 kW/K;

Prob.5.30. Helium is to be compressed from 120 kPa, 310 K to 700 kPa, 430 K. A heat loss of 20 kJ/kg occurs during compression. Neglecting K.E. changes, determine the power input required for a mass flow rate of 90 kg/min. [Ref. 1]

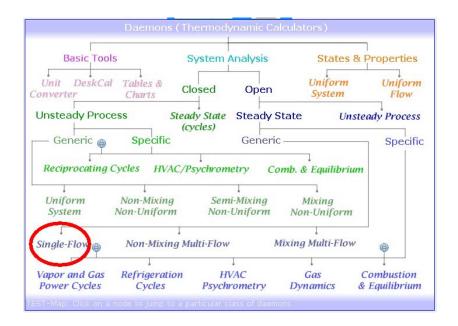
Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd



Download free eBooks at bookboon.com

212

TEST Solution:

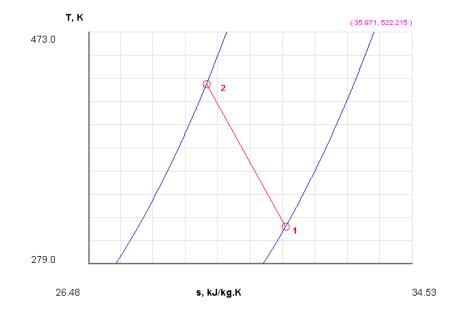
1. Go to System Analysis ... Single Flow daemon as shown:

2. Choose the Ideal Gas (IG) model for Material model, since Helium is the working substance:

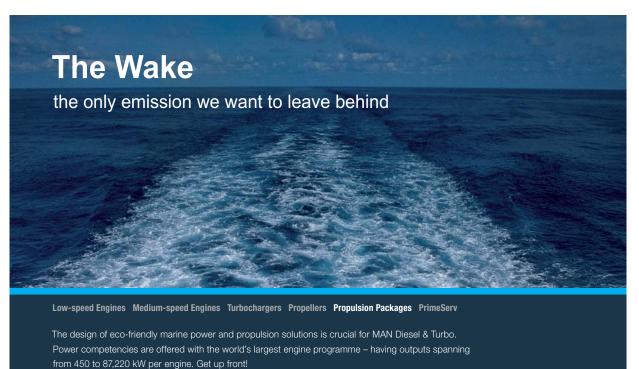
SL Model	analyzed with the Examples: Liquid v	ondensed (solid or liquid) phase when a system undergoes other changes, can be SL model. vater is pumped steadily from a given <i>in/et-state</i> to a given <i>exit-state</i> with no use change. For specific examples, click on the help icon at the bottom margin of the
	lel pv = 2RT RG Model	Pure Gas: A pure gas has a fixed chemical composition across space and time.Oxygen, nitrogen, and air are examples of a pure gas. The PG (perfect gas) modelis the simplest gas model which obeyes the ideal gas equation ($pv = RT$) andassumes specific heats to be constant. In the IG (ideal gas) model, specific heatsare assumed to be function of temperature only. The RG (real gas) model usesgeneralized compressibility charts and is useful for gases near the critical orsuper-critical conditions for which PC-model data are not avaiable.Encoders:Batternonady DaemonIthe bottom margin of the daemon.
	st.	Binary Mixture: The mixture of two gases, A and B, is expressed in terms of the

3. Choose He for working substance, enter data for State 1 (i.e. P1, T1, mdot1 = 1.5 kg/s), press Enter. We get:

D He	uids.net > Daemons > Systems > Opene of E S T	gle-Flow, Daemon: IG Modelen > Steady> Generic $\frac{d}{dt} = 0$ $\boxed{20}$ $\frac{d}{dt} = 0$ $\boxed{20}$	> IG-Model $pv = RT$
Move mouse over a variable to display		ages On Super-Iterate Super-Calcu	ulate Load Super-Initialize
State Panel	Device Panel	Exergy Panel	I/O Panel
< ©State-1 v > Ca	Iculate No-Plots 🗸 Initial	ze Formation Enthalpy: 💭 No 💿 Y	Yes <mark>He v</mark>
⊽ ρ1 ⊽	T1 rho1	⊏ v1	□ u1
120.0 kPa 💉 310.	0 К 💉 0.18624	kg/m^3 💉 5.36946 m^3/kg	✓ -582.7529 kJ/kg ✓
🗆 h1 🗖	s1 🔽 Vel1	▼ z1	F e1
61.58207 kJ/kg 💉 31.3	8894 kJ/kg.K 🛩 0.0	m/s 🕥 0.0 m	✓ -582.7529 kJ/kg ✓
Γ j1 p.	hi1 psi1	I▼ mdot1	□ Voldot1
61.58207 kJ/kg 😁	kJ/kg 💉	kJ/kg 💉 1.5 kg/s	✓ 8.05419 m*3/s ✓
F A1 M	IM1 R1	□ c_p1	
805418.75 m²2 ⊻ 4.0	kg/kmol 💉 2.0785	kJ/kg.K 💉 5.19651 kJ/kg.K	~


4. Enter data for State 2, i.e. P2, T2, mdot2 = mdot1. Press Enter. We get:

• Mixed C SI C	Eng	lish <mark>< Ca</mark>	se-0 💙 >	🔽 Help Messag	es On Su	per-Iterate	Super-Calculate	Load	Super-Initiali	ze
State Panel			Device Pa	anel		Exergy Panel		I/O F	Panel	
< <mark>©State-2</mark> v >		Calculate	No-Plots	Initialize	Form	ation Enthalpy:	⊙No ⊙Yes	He	~	
▽ ρ2		▼ T2		rho2		□ v2		Γ u2		
700.0 kPa	~	430.0	K 🗸	0.78321	kg/m^3 🔹 💊	1.27679	m^3/kg 💉	-208.59203	kJ/kg	•
🗖 h2		⊏ s2		Vel2		▼ z2		Г e2		
685.16296 kJ/kg	~	29.42369	kJ/kg.K 🛛 👻	0.0	m/s 💊	0.0	m 🗸	-208.59203	kJ/kg	1
Г j2		phi2		psi2		₩ mdot	?	□ Voldo	t2	
685.16296 kJ/kg	~		kJ/kg 💙		kJ/kg	mdot1	kg/s 💉	1.91519	m^3/s	~
Г A2		MM2		R2		□ c_p2				
191518.92 m ^a 2	~	4.0	kg/kmol 💉	2.0785	kJ/kg.K	5.19651	kJ/kg.K 😪			


 Go to Device Panel. Enter Qdot = - 20 * mdot1 and click on Calculate, and SuperCalculate. We get:

		ages On Super-Iterate Super-Cal	culate Load Super-Initialize
State Panel	Device Panel	Exergy Panel	I/O Panel
< Device-A [1-2] >	i-State: State-1 🗸	e-State: State-2	Calculate
Qdot 20*mdot1 kW *	✓ -965.37134 KW *		Sdot_gen

Thus: W = - 965.37 kW ... Ans. (negative sign, since work is done on the system in compressor)

6. Indicative T-s diagram from Plots tab:

Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**

Download free eBooks at bookboon.com

215

7. I/O panel gives the TEST code and other details: #~~~~~OUTPUT OF SUPER-CALCULATE: Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>IG-Model; v-10.bb05 # #-----Start of TEST-code -----States { State-1: He; Given: { p1= 120.0 kPa; T1= 310.0 K; Vel1= 0.0 m/s; z1= 0.0 m; mdot1= 1.5 kg/s; } State-2: He; Given: { p2= 700.0 kPa; T2= 430.0 K; Vel2= 0.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/s; } } Analysis { Device-A: i-State = State-1; e-State = State-2; Given: { Qdot= "-20*mdot1" kW; T_B= 298.15 K; } } #-----End of TEST-code ------#-----Property spreadsheet starts $T(K) v(m^3/kg) u(kJ/kg)$ h(kJ/kg) # State p(kPa) s(kJ/kg) 120.0 310.0 5.3695 -582.75 61.58 31.389 # 1 700.0 # 2 430.0 1.2768 -208.59 685.16 29.424 #------Property spreadsheet ends------# Mass, Energy, and Entropy Analysis Results: # Device-A: i-State = State-1; e-State = State-2; Given: Qdot= "-20*mdot1" kW; T B= 298.15 K; # # Calculated: Wdot_ext= -965.37134 kW; Sdot_gen= -2.8472614 kW/K; Jdot_net= -935.37134 kW; Sdot_net= 2.9478817 kW/K;

Prob.5.31. Refrigerant-134a is throttled from the sat. liquid state at 800 kPa to a temp of -20 C. Determine the pressure of the refrigerant at the final state. [Ref. 1]

TEST Solution:

Note that this is a problem on throttling. The daemon to be used is still the same as used earlier, viz.

Systems>Open>SteadyState>Generic>SingleFlow>IG-Model:

1. Go to System ... Single Flow daemon:

Basic Too	ls	System /	Analysis	States	& Properties
Unit DeskCa onverter	l Tables & Charts	Closed	Open	Uniform System	Uniform Flow
Jnsteady Proc	ess S	teady State (cycles)	Steady S	tate U	nsteady Proces
			to to the second second second		and the second
— Generic <i>Reciprocating</i>	Specific Cycles HVA	C/Psychrom	Generic etry Co	mb. & Equilibri	Specifi
, ľ		Sem	10- 10-10-10-10-10-10-10-10-10-10-10-10-10-1	mb. & Equilibri	ium
Reciprocating Uniform System	Cycles HVAC Non-Mixing Non-Uniform	Sem Non-	etry Co ↓ i-Mixing Uniform	nb. & Equilibri Mixing Non-Uniforn	ium n
Reciprocating Uniform System	Cycles HVAC Non-Mixing Non-Uniform	Sem	etry Co ↓ i-Mixing Uniform	nb. & Equilibri Mixing	ium n
Reciprocating	Cycles HVAC Non-Mixing Non-Uniform	Sem Non- I g Multi-Flow	etry Co ↓ i-Mixing Uniform	nb. & Equilibri Mixing Non-Uniforn	ium n

2. Choose PC model for material model since R134a is the working substance:

t	eric, Single-Flow, Open-Steady Daemons: Select a Material Model ermofluids.net > Daemons > Systems > Open > Steady > Generic > SingleFlow \overrightarrow{D} Home \overrightarrow{T} \overrightarrow{D} \overrightarrow{D} \overrightarrow{d} \overrightarrow{d} = 0 \overrightarrow{D} \overrightarrow{d} the single-flow open-steady daemon.
PC Model Launcher Generic,	Pure Phase-Transition Fluid: The phase-change (PC) model can be used to determine states of sub- cooled (compressed) liquid, super-heated vapor, and saturated mixture of liquid and vapor phases. Based on the saturation and super-heated tables, the model is quite accurate. Sub-cooled liquid is modeled with the compressed-liquid sub-model, except for species with an asterisk (H2O* as opposed to H2O), which uses compressed liquid table for better accuracy. s the PC Model D, R-12, NH3, R-134a, N2, CO2, etc., should be treated as PC fluids if there is Single-Flow, Open-Steady Daemon Examples: Analyze a steady steam turbine with one inlet and one exit. For specific examples, click on the help icon at the bottom margin of the daemon.
2 = 0 SL Model	 Pure Solid and Pure Liquid: Constant density and constant specific heats (c_p = c_v = c) characterize the solid/liquid (SL) model. Beside a wide selection to choose from, a new solid or liquid can be created by assigning custom material properties. Working substances such as steel, iron, copper, aluminum, wood, water, oil, etc., which can be assumed to maintain their condensed (solid or liquid) phase when a system undergoes other changes, can be analyzed with the SL model. Examples: Liquid water is pumped steadily from a given <i>inlet-state</i> to a given <i>exit-state</i> with no possibility of a phase change. For specific examples, click on the help icon at the bottom margin of the daemon.

X RBS Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

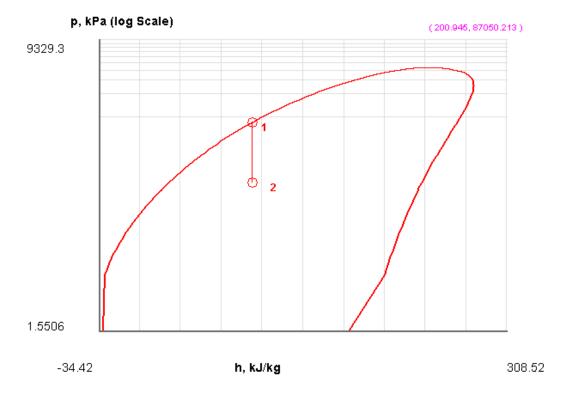
And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

218

Download free eBooks at bookboon.com


3. Choose R134a for working substance and enter data for State 1, i.e. P1, x1 and press Enter. We get:

t	hermofluids		Same and the All	dy, Single-Flov ns > Open > Stea	1. Contract Contracts		PC-Model	
Move mouse over a variable to	Home TES o display its v	ST 🗾	recision.	$\frac{d}{dt}$ =	•		K	
• Mixed OSI OF	English	< Case-0	· >	elp Messages On	Super-Iterate	Super-Calcula	te Load	Super-Initialize
State Panel		D	evice Panel		Exergy P	anel		I/O Panel
< <mark>©State-1 v</mark> >	Cal	iculate	No-Plots 💌	Initialize	Satura	ted Liquid	R-134	•
₽ p1	Г	T1	√	x1	Γ	y1	Γ.	/1
800.0 kPa	★ 31.278	31 deg-C	✓ 0.0	fraction	♥ 0.0	fraction	✓ 8.5E-4	m^3/kg 💉
🗖 u1	Г	h1	Γ	s1	v	Vel1		z1
94.00123 kJ/kg	♥ 94.678	359 kJ/kg	✓ 0.35	063 kJ/kg.K	♥ 0.0	m/s	♥ 0.0	m 😽
🗖 ef	Г	j1	pl	hit	psi	1	Γ.	ndot1
94.00123 kJ/kg	♥ 94.678	359 kJ/kg	×	kJ/kg	×	kJ/kg	▼	kg/s 💙
Voldot1	Г	A1	М	IM1				
m^3/s	✓	<i>m</i> ^2	★ 102.	03 kg/kmol	~			

4. Enter data for State 2, i.e. T2, and h2 = h1 since it is throttling process. Click on Calculate and SuperCalculate. We get:

Mixed C SI C	English	< Case-0	✓ > ✓ Help Me	ssages On	Super-Iterate	Super-Calcula	te Load	Super-Initialize
State Panel			Device Panel		Exergy P	Panel	ĺ	I/O Panel
< ©State-2 💙 >	С	alculate	No-Plots 💌	Initialize	Sat.M	ixture: Liq.+Vap.	R-134a	~
ρ2		T2	□ x2		Г	y2	E v2	2
33.69997 kPa	≁ -20.0	deg-	c 🖌 0.32928	fraction	✓ 0.989	84 fraction	✓ 0.04873	m^3/kg
u2	1	h2	□ s2		1	Vel2	∀ z	2
18.16329 kJ/kg	∽ =h1	kJ/kg	✓ 0.3778	kJ/kg.K	♥ 0.0	m/s	✓ 0.0	m
e2	Γ	j2	phi2		psi	2	<u> </u>	dot2
8.16329 kJ/kg	✓ 94.6	7859 kJ/kg	~	kJ/kg	~	kJ/kg	~	kg/s

Thus: p2 = 133.7 kPa ... Ans.

5. Indicative P-h diagram is easily obtained from the Plots tab:

6. I/O panel gives the TEST code etc:

#~~~~OUTPUT OF SUPER-CALCULATE:

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>PC-Model; v-10.bb06

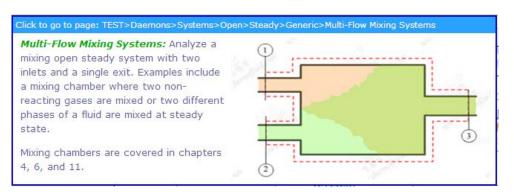
#-----Start of TEST-code -----

States {

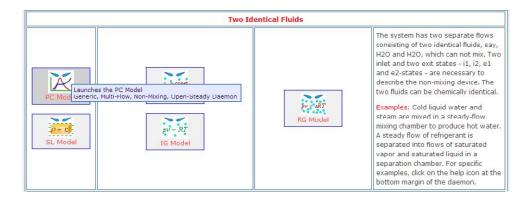
State-1: R-134a; Given: { p1= 800.0 kPa; x1= 0.0 fraction; Vel1= 0.0 m/s; z1= 0.0 m; } State-2: R-134a; Given: { T2= -20.0 deg-C; h2= "h1" kJ/kg; Vel2= 0.0 m/s; z2= 0.0 m; } }

#-----End of TEST-code -----

#	Property sprea	dsheet:						
# State	p(kPa)	T(K)	x	v(m3/kg)	u(kJ/kg	g)	h(kJ/kg)	s(kJ/kg)
# 01	800.0	304.4	0.0	8.0E-4	94.0	94.68	0.351	
# 02	133.7	253.2	0.3	0.0487	88.16	94.68	0.378	
	===========			==============				


Prob.5.32. A hot water stream at 80 C enters a mixing chamber with a mass flow rate of 0.5 kg/s where it is mixed with a stream of cold water at 20 C. If it is desired that the mixture leave the chamber at 42 C, determine the mass flow rate of the cold water stream. Assume that all the streams are at a pressure of 250 kPa. [Ref. 1]

TEST Solution:


1. This is a problem on mixing chambers. So, choose the appropriate daemon as shown below:

Basic Too	ls	System A	Analysis	States	& Properties
Unit DeskCa onverter	l Tables & Charts	Closed	Open	Uniform System	Uniform Flow
Unsteady Proc	cess S	teady State (cycles)	Steady S	tate Un	steady Process
— Generic 🍙	Specific		Generic		
Reciprocating		C/Psychrom			
Uniform	Cycles HVA		etry Co I i-Mixing	mb. & Equilibriu Mixing	um
1	Cycles HVA	Sem	etry Co	mb. & Equilibriu	um
Uniform System	Cycles HVA	Sem	etry Co I i-Mixing Uniform	mb. & Equilibriu Mixing	am
Uniform	Cycles HVA	Sem Non-	etry Co I i-Mixing Uniform	mb. & Equilibriu Mixing Non-Uniform	am

2. Hovering the mouse pointer on Mixing Multi-Flow brings up the following:

3. Choose Phase Change (PC) model, and choose H2O as working substance:

ORACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

Click on the ad to read more

222 Download free eBooks at bookboon.com

4. Enter data for State 1, i.e. P1, T1, mdot1; click on Calculate (or, press Enter). We get:

			Generic	, Open	Stea	dy, Multi	-Flow, Mix	ing l	Daemon:	PC Mode	e/			
		the	rmofluids.net ┣ Home ♂		ons >	Systems >	Open > Ste		> Generic	> Mixing > P	C-Mo	del		
			TEST			<u></u>	$\frac{d}{dt}$ =	=0	23		R	_		
love mouse over	a variable t	o disp	lay its value wi	th more pr	ecision.									
• Mixed	SI CI	Engli	sh < C	ase-0 🗸	>	🔽 Help Mes	sages On	Super	-Iterate	Super-Calcul	ate	Load	Super-Initia	lize
	State I	Panel	1			D	evice Panel					I/O Panel		
< ©State-	1 💙 >		Calculate		No-Plot	s 👻	Initialize		Subcooled I	Liquid		H20	~	•
Γ ρ1			▼ T1			□ x1			□ y1			□ v1		
250.0	kPa	~	80.0	deg-C	~		fraction	~		fraction	~	0.00103	m^3/kg	~
🗆 u1			□ h1			□ s1			Vel1			▼ z1		
334.86124	kJ/kg	~	335.1185	kJ/kg	~	1.0753	kJ/kg.K	~	0.0	m/s	~	0.0	m	~
□ e1			□ j1			phi1			psi1			🔽 mdo	t1	
334.86124	kJ/kg	*	335.1185	kJ/kg	~		kJ/kg	~		kJ/kg	~	0.5	kg/s	*
Voldot1			Γ A1			MM1								
5.1E-4	m^3/s	~	51.45	m^2	~		kg/kmol	~						

5. Enter data for State 2 (i.e. cold stream entering), i.e, P2 and T2, press Enter:

• Mixed C SI C E	nglish < Case-0	► > Free Help Mes	sages On Super-Iterat	e Super-Calculate	Load Super-Initialize
State Pa	anel	D	evice Panel		I/O Panel
< CState-2 V >	Calculate	No-Plots 💌	Initialize	ooled Liquid	H20 🗸
₩ p2 =p1 kPa	 ✓ T2 ✓ 20.0 de 	g-C ▼	fraction 👻	y2 fraction	√ v2 0.001 m^3/kg
U2 83.95766 kJ/kg		r s2 © ❤ 0.2966	kJ/kg.K <mark>⊮</mark> 0.0	Vel2 m/s	l⊽ z2 0.0 m
e2 83.95766 kJ/kg	∏ j2 ≫ 84.20816 kJ/	phi2	kJ/kg 🗸	i2 kJ/kg 💙	mdot2 kg/s
Voldot2	Г A2	, MM2			,
m^3/s	✓ m	^2 🗸	kg/kmol 🗸		

6. Now, enter data for State 3 (i.e. state after mixing), i. P3, T3, mdot3 (= mdot2 + mdot1), press Enter:

• Mixed C SI C	English < Ca	se-0 💌 > 🔽 Help Mes	sages On Super-Iterate	Super-Calculate	Load Super-Initialize
State	Panel	D	evice Panel		I/O Panel
< OState-3 V >	Calculate	No-Plots 💌	Initialize	oled Liquid	H20 🗸
₹ p3	₩ T3	□ x 3	(🗆	/3	Γ v3
250.0 kPa	✓ 42.0	deg-C 💉	fraction 💌	fraction 💉	0.00101 m^3/kg
т и3		□ s 3		/el3	₩ z3
175.91716 kJ/kg	* 176.16922	kJ/kg 💙 0.59906	kJ/kg.K 💽 0.0	m/s 💉	0.0 m
e3	Г ј3	phi3	psi3		₩ mdot3
175.91716 kJ/kg	✓ 176.16922	kJ/kg 💌	kJ/kg 💉	kJ/kg 💙	=mdot1+mdot2 kg/s

 Go to Device Panel, enter State 1, State 2 and State 3 for i1-state, i2-state and e1-state respectively. e2-state is maintained as Null-state since there is only one exit. Press Enter, and also SuperCalculate:

	CEnglish	< Case-0 V >	Help Mess	sages On	Super-	Iterate	Super-Calcula	Load	Super-Initialize
Sta	ate Panel		De	evice Pane	H			I/O Panel	
Initialize		< Device-A [1,2-3	j v >		Calculate		C Non-Mix	ing	Mixing Device
1-State: State-1	~	i2-State:	State-2 💌			State-3	~		e: State-Null 🗸
Qdot		₩dot_ext		•	Т_В		Г	Sdot_gen	
.0 ki	V 💌	0.0	kW	✓ 298.1	5	к	✓ 0.02	327	kW/K

8. Now, go to State 2:

• Mixed	SI C E	nali	sh < OC:	ase-0 🗸	>	✓ Help Mes	sages On	Supe	r-Iterate	Super-Ca	Iculate		oad	Super-Initia	lize
	State P	1.5					evice Panel						Panel		
< ©State-2	v >		Calculate	1	lo-Plots	8 💌	Initialize		Subcoole	d Liquid		H2	0	~	
▼ p2			✓ T2		ſ	x2			🗂 y2			Г	v2		
=p1	kPa	~	20.0	deg-C	~		fraction	~	[fracti	ion 💉	0.0	01	m^3/kg	*
u2		J	h2		I	s2			Vel.	2		₽	z2		
83.95766	cJ/kg	~	84.20816	kJ/kg	~	0.2966	kJ/kg.K	*	0.0	m/s	*	0.0		m	2
e2		1	j2			phi2			psi2			•	mdot2		
83.95766	cJ/kg	~	84.20816	kJ/kg	*		kJ/kg	~]	kJ/kg	ı 🗸	0.8	642205	kg/s	
Voldot2		1	A2			MM2									
8.7E-4 m	n^3/s	~	86.59489	m^2	~		kg/kmol	~							

Thus: mdot2 = 0.864 kg/s ... Ans.

9. Go to I/O panel to see TEST code etc:

#~~~~OUTPUT OF SUPER-CALCULATE:

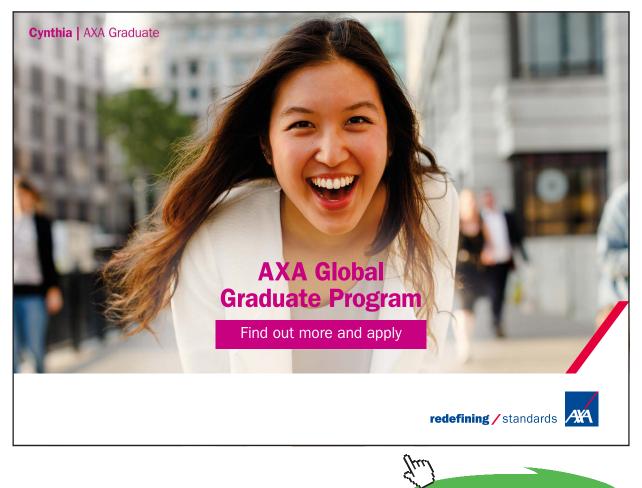
Daemon Path: Systems>Open>SteadyState>Generic>MultiFlowMixed>PC-Model; v-10. bb06

#-----Start of TEST-code -----

States {

State-1: H2O; Given: { p1= 250.0 kPa; T1= 80.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; mdot1= 0.5 kg/s; } State-2: H2O; Given: { p2= "p1" kPa; T2= 20.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; }

```
State-3: H2O;
Given: { p3= 250.0 kPa; T3= 42.0 deg-C; Vel3= 0.0 m/s; z3= 0.0 m; mdot3= "mdot1+mdot2"
kg/s; }
}
```


Analysis {

Device-A: i-State = State-1, State-2; e-State = State-3; Mixing: true; Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; } }

```
#-----End of TEST-code -----
```

#-----Property spreadsheet :

# State	p(kPa)	T(K) x	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	250.0	353.2	0.001	334.86	335.12	1.075
# 02	250.0	293.2	0.001	83.96	84.21	0.297
# 03	250.0	315.2	0.001	175.92	176.17	0.599

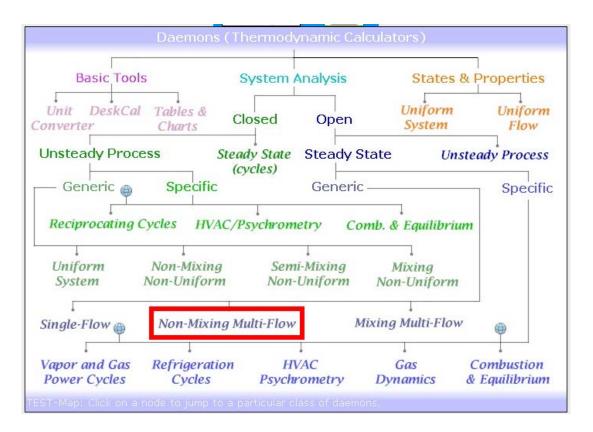
Mass, Energy, and Entropy Analysis Results:

```
# Device-A: i-State = State-1, State-2; e-State = State-3; Mixing: true;
# Given: Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K;
# Calculated: Sdot_gen= 0.023273543 kW/K; Jdot_net= "-2.842171E-14" kW; Sdot_net=
-0.023273543 kW/K;
```

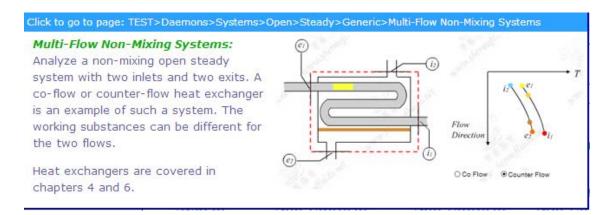
Verify:

#*****CALCULATE VARIABLES: Type in an expression starting with an '=' sign ('= mdot1*(h2-h1)', '= sqrt(4*A1/PI)', etc.) and press the Enter key)********

(mdot1*h1+mdot2*h2) = 240.3336599692044 mdot3*h3 = 240.33365996920443


i.e. Energy balance is verified.

Prob. 5.33. Steam enters the condenser of a steam power plant at 20 kPa as sat. vapour with a mass flow rate of 20000 kg/h. It is to be cooled by water from a nearby river, circulating the water through the tubes within the condenser. The river water is not allowed to experience a temp rise above 10 C. If the steam is to leave the condenser as sat. liquid at 20 kPa, determine the mass flow rate of cooling water required. [Ref. 1]


TEST Solution:

This is a Non-mixing multi-flow type problem. i.e. the steam and cooling water do not mix.

1. Choose the daemon suitable for Non-mixing, multi-flow problem, as shown below:

2. Hovering the mouse pointer over "Non-mixing Multi-Flow" gives following window:

Note that this is the daemon required to solve parallel flow and counter-flow heat exchangers:

3. Choose PC model under **'Two Identical Fluids'** as shown below, since water/steam is the working substance:

	Two Identical Fluids
	ches the PC Model ric, Multi-Flow, Non-Mixing, Open-Steady Daemon PG Model IG Model
pv = 2RT RG Model	The system has two separate flows consisting of two identical fluids, say, H2O and H2O, which can not mix. Two inlet an two exit states - i1, i2, e1 and e2-states - are necessary to describe the non-mixing device. The two fluids can be chemically identical. Examples: Heat is exchanged in a counter-flow heat exchanger between a flow of cold liquid water and hot steam. For specific examples, click on the help icon at the bottom margin of the daemon.
	Two Different Fluids
PC Model + PC Model	The system has two separate flows consisting of two phase-change (PC) fluids, say, H2O and NH3, which can not mix. Two inlet and two exit states - i1, i2, e1 and e2-states - are necessary to describe the non-mixing device. The two fluids can be chemically identical. Examples: R-134a and H2O are the two fluids in a heat exchanger. Suppose both the inlet states, state-1 (i1) and state 2 (i2), and one of the exit states, state-3 (e1), are completely given. For state-4 (e2 state), set mdot4=mdot2, set up the device panel with the known value of Wdot_ext(=0) and Qdot (=0, if adiabatic), and click Super-Calculate to evaluate State-4. If T3 and T4 are both unknown, but related, iterative solution is necessary in which Qdot is left as an unknown, T3 is guessed until Qdot approaches the known value. For specific examples, click on the help icon at the bottom margin of the daemon.

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or give us a call on +44 (0)20 7000 7573.

* Figures taken from London Business School's Masters in Management 2010 employment report

Download free eBooks at bookboon.com

228

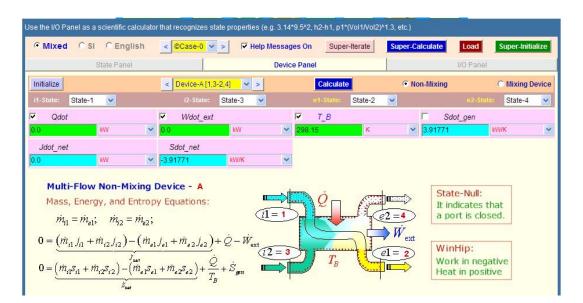
4. After choosing H2O as the working substance, enter data for State 1, i.e. P1, x1 (= 1, since sat. vap. is entering the condenser), and hit Enter:

	Generic, O	pen Steady,	, Multi-Flow, I	Non-Mixing	Daemon: PC M	lodel		
ť	hermofluids.net >	Daemons > S	ystems > Open	> Steady > Ge $\frac{d}{dt} = 0$	eneric > UnMixed :	PC-Model		
Move mouse over a variable to	dieplay its value with			$\frac{dt}{dt} = 0$				
Mixed C SI C EI				0				
		se-0 <mark>▼</mark> >	Help Messages (1	rate Super-Calc		_	Ze
State Pa	anel		Device Pa	anel		1/0 P	anel	
< OState-1 V >	Calculate	No-Plots	nitia	alize Sa	aturated Vapor	H2O	~	
ν p1	Γ T1	I	▼ x1	Г	y1	Γ	v1	
20.0 kPa	✓ 60.06198	deg-C 💙	1.0 fr	action 💉 🚺	0 fraction	n 🗡 <mark>7.651</mark>	61 m^3/kg	*
🗖 u1	□ h1	ſ	s1	•	Vel1	~	z1	
2456.7214 kJ/kg	✓ 2609.708	kJ/kg 💉	7.90863 kJ/	kg.K 😽 <mark>0</mark> .	0 m/s	✓ 0.0	m	~
⊏ e1	🗂 j1		phi1		psi1	V	mdot1	
2456.7214 kJ/kg	✓ 2609.708	kJ/kg 💉	k.	J/kg 🔽	kJ/kg	← =200	00/3600 kg/s	~
└ Voldot1	Γ A1		MM1					
42.50897 m^3/s	4250896.5	m^2 💉	18.0 kg	y/kmol 💉				

5. Enter data for State 2 (i.e. sat. liq. leaving the condenser); i.e. enter P2, x2 (=0.0), mdot2 = mdot1. Hit Enter:

Move r	mouse over	a variable t	o disp	olay its value with	more precis	ion.										
•	Mixed	si ci	Engli	ish <mark>< Cas</mark>	se-0 💙 >		✓ Help Messa	ges On	Super	-Iterate	Super-Ca	iculate	L	bad	Super-Initiali	ize
		State I	Panel				Devi	ce Panel					1/0	Panel		
	< ©State-	2 🗙 >		Calculate	No-I	Plots	~	Initialize		Saturated	Liquid		H20)	~	
~	p2			□ 72		Ţ	×2			Г y2			Г	v2		
20.0	С.	kPa	~	60.06198	deg-C	~	0.0	fraction	~	0.0	fract	ion 💌	0.00	102	m^3/kg	~
Г	u2			□ h2		Г	s2			✓ Vel	2		•	z2		
251.	36913	kJ/kg	~	251.38947	kJ/kg	~	0.83197	kJ/kg.K	~	0.0	m/s	~	0.0		m	~
Г	e2			□ j2			phi2			psi2			•	mdo	t2	
251.	36913	kJ/kg	~	251.38947	kJ/kg	• [kJ/kg	~		kJ/k	7 ~	=ma	lot1	kg/s	~
Γ	Voldot2			A2			MM2									
0.00	565	m^3/s	~	565.0207	m^2	*	18.0	kg/kmol	~							

6. For State 3, enter data for river water entering the condenser; hit Enter:


• Mixed • S	I C Eng	lish < OC	ase-0 💙 >	✓ Help Mess	ages On 🔡	Super-Iterate	Super-Calculate	Load	Super-Initialize
	State Pane	el		De	vice Panel			I/O Panel	
< ©State-3	v >	Calculate	No-Pl	ots 💌	Initialize	Subcool	ed Liquid	H2O	~
⊽ p3		▼ T3		□ x 3		Г уЗ		Γ v3	
100.0	kPa 🗸	25.0	deg-C 💙		fraction	×	fraction	v 0.001	m^3/kg
U3		□ h3		□ s3		Ve	a/3	∀ z3	
104.87847 kJ	/kg 🗸	104.97879	kJ/kg 💙	0.36732	kJ/kg.K	✓ 0.0	m/s	0.0	m
e3		□ j3		phi3		psi3		<u> </u>	ot3
104.87847 kJ	/kg 🗸 🗸	104.97879	kJ/kg 💙		kJ/kg	*	kJ/kg	·	kg/s
Voldot3		Г A3		MM3					
m'	3/s 🗸				kg/kmol	~			

7. State 4 is river water exiting the condenser; enter the data, i.e. P4, T4, mdot4 = mdot3, and hit Enter:

Mixed ○ S	Eng	lish < ©C:	ase-0 💙 >	🔽 Help Messag	jes On Su	per-Iterate	Super-Calculate	Load	Super-Initialize
	State Pane	A		Devic	ce Panel			I/O Panel	
< ©State-4	¥ >	Calculate	No-Plot	s 🕶 📃	Initialize	Subcooled	Liquid	H20	~
✓ p4		▼ T4		Г x4		Г у4		Γ v4	
=p3	kPa 💌	=T3+10	deg-C 🛛 💙		fraction	 I 	fraction 💙	0.00101	m^3/kg
u4		□ h4		🗖 s4		I▼ Vel4		▼ z4	
146.67184 k	J/kg 💙	146.77248	kJ/kg 💉	0.50523	kJ/kg.K	✓ 0.0	m/s 🗸	0.0	m
e4		□ j4		phi4		psi4		₩ mdot	4
146.67184 k	J/kg 💙	146.77248	kJ/kg 💙		kJ/kg	~	kJ/kg 💙	=mdot3	kg/s
Voldot4		Г A4		MM4			No.		
0.31545 m	^3/s 🗸	31544.615	m^2 💉		kg/kmol	~			

Note that exit temp of cooling (river) water is 10 C above the inlet temp.

 Now, go to Device Panel, enter i-1 state, i-2 state, e-1 state and e-2 state as shown. Also, Qdot = 0, and Wdot_ext = 0. Press Calculate, and SuperCalculate:

9. Go to State Panel.

See State 3:

• Mixed C SI C	English < 🞯	Case-0 💙 > 🔽	Help Messages On	Super-Iterate	Super-Calculate	Load	Super-Initialize
Stat	e Panel		Device Panel			I/O Panel	
< <mark>©State-3</mark> × >	Calculate	No-Plots	✓ Initialize	Subcooled	Liquid	H2O	~
✓ p3	▼ 73		x3	Г уЗ		Γ v3	
100.0 kPa	25.0	deg-C 💌	fraction	¥	fraction 💙	0.001	m^3/kg
u3	🗖 h3	F	s3	I▼ Ve/3	1	∀ z3	
104.87847 kJ/kg	✓ 104.97879	kJ/kg 💙 0.3	16732 kJ/kg.K	✓ 0.0	m/s 🗸	0.0	m
e3	Г ј3		phi3	psi3		₩ mdot3	3
104.87847 kJ/kg	✓ 104.97879	kJ/kg 💉	kJ/kg	~	kJ/kg 💉	313.48685	kg/s
Voldot3	☐ A3		ммз				
0.31448 m^3/s	✓ 31447.955	m^2 💉	kg/kmol	~			

We see that: mdot3 = 313.49 kg/s ...flow rate of cooling (river) water required... Ans.

Download free eBooks at bookboon.com

10. To see the TEST code etc go to I/O panel: #~~~~~~ OUTPUT OF SUPER-CALCULATE : Daemon Path: Systems>Open>SteadyState>Generic>MultiFlowUnmixed>PC-Model; v-10. # bb06 #-----Start of TEST-code ------States { State-1: H2O; Given: { p1= 20.0 kPa; x1= 1.0 fraction; Vel1= 0.0 m/s; z1= 0.0 m; mdot1= "20000/3600" kg/s; } State-2: H2O; Given: { p2= 20.0 kPa; x2= 0.0 fraction; Vel2= 0.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/s; } State-3: H2O; Given: { p3= 100.0 kPa; T3= 25.0 deg-C; Vel3= 0.0 m/s; z3= 0.0 m; } State-4: H2O; Given: { p4= "p3" kPa; T4= "T3+10" deg-C; Vel4= 0.0 m/s; z4= 0.0 m; mdot4= "mdot3" kg/s; } } Analysis { Device-A: i-State = State-1, State-3; e-State = State-2, State-4; Mixing: false; Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; } } #-----End of TEST-code ------#*****DETAILED OUTPUT: # Evaluated States: # State-1: H2O > Saturated Mixture; Given: p1= 20.0 kPa; x1= 1.0 fraction; Vel1= 0.0 m/s; # z1= 0.0 m; mdot1= "20000/3600" kg/s; # Calculated: T1= 60.062 deg-C; y1= 1.0 fraction; v1= 7.6516 m^3/kg; # # u1= 2456.7214 kJ/kg; h1= 2609.708 kJ/kg; s1= 7.9086 kJ/kg.K; e1= 2456.7214 kJ/kg; j1= 2609.708 kJ/kg; Voldot1= 42.509 m^3/s; # A1= 4250896.5 m^2; MM1= 18.0 kg/kmol;

```
Download free eBooks at bookboon.com
```

Calculated: T2= 60.062 deg-C; y2= 0.0 fraction; v2= 0.001 m^3/kg;

u2= 251.3691 kJ/kg; h2= 251.3895 kJ/kg; s2= 0.832 kJ/kg.K;

Given: p2= 20.0 kPa; x2= 0.0 fraction; Vel2= 0.0 m/s;

z2= 0.0 m; mdot2= "mdot1" kg/s;

State-2: H2O > Saturated Mixture;

#

#

#

#

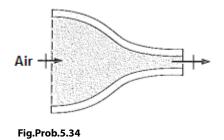
#

#	e2= 251.3691 kJ/kg; j2= 251.3895 kJ/kg; Voldot2= 0.0056 m^3/s;
#	A2= 565.0207 m^2; MM2= 18.0 kg/kmol;
#	State-3: H2O > Subcooled Liquid;
#	Given: p3= 100.0 kPa; T3= 25.0 deg-C; Vel3= 0.0 m/s;
#	z3= 0.0 m;
#	Calculated: v3= 0.001 m^3/kg; u3= 104.8785 kJ/kg; h3= 104.9788 kJ/kg;
#	s3= 0.3673 kJ/kg.K; e3= 104.8785 kJ/kg; j3= 104.9788 kJ/kg;
#	mdot3= 313.4869 kg/s; Voldot3= 0.3145 m^3/s; A3= 31447.955 m^2;
#	State-4: H2O > Subcooled Liquid;
#	Given: p4= "p3" kPa; T4= "T3+10" deg-C; Vel4= 0.0 m/s;
#	z4= 0.0 m; mdot4= "mdot3" kg/s;
#	Calculated: v4= 0.001 m^3/kg; u4= 146.6718 kJ/kg; h4= 146.7725 kJ/kg;
#	s4= 0.5052 kJ/kg.K; e4= 146.6718 kJ/kg; j4= 146.7725 kJ/kg;
#	Voldot4= 0.3154 m^3/s; A4= 31544.615 m^2;
#	Property spreadshast starts.

#-----Property spreadsheet starts:

# State	p(kPa)	T(K)	х	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	20.0	333.2	1.0	7.6516	2456.72	2609.71	7.909
# 02	20.0	333.2	0.0	0.001	251.37	251.39	0.832
# 03	100.0	298.2		0.001	104.88	104.98	0.367
# 04	100.0	308.2		0.001	146.67	146.77	0.505

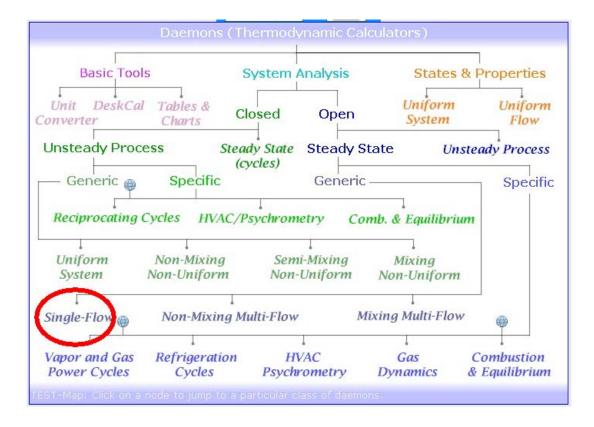
Mass, Energy, and Entropy Analysis Results:


Device-A: i-State = State-1, State-3; e-State = State-2, State-4; Mixing: false;

Given: Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K;

Calculated: Sdot_gen= 3.9177132 kW/K; Jdot_net= 0.0 kW; Sdot_net= -3.9177132 kW/K;

Prob.5.34. Air enters an adiabatic horizontal nozzle at 400 C with a velocity of 50 m/s. The inlet area is 240 cm². Temp of air at exit is 80 C. Given that the sp. vol. of air at the inlet and exit are respectively 0.2 m³/kg and 1.02 m³/kg, find the area of cross-section of the nozzle at the exit. Assume that enthalpy of air is a function of temp only and that cp = 1.005 kJ/kg.K. [VTU-BTD-July 2006:]



TEST Solution:

This problem is the same as Prob.5.13 which was solved with EES.

1. Go to the Daemon tree and locate System Analysis - Open - Generic - Single Flow:

2. Select the Perfect Gas (PG) Model (cp = const.) for Material model, since air is the working substance:

PC Model	 Pure Phase-Transition Fluid: The phase-change (PC) model can be used to determine states of sub-cooled (compressed) liquid, super-heated vapor, and saturated mixture of liquid and vapor phases. Based on the saturation and super-heated tables, the model is quite accurate. Sub-cooled liquid is modeled with the compressed-liquid sub-model, except for species with an asterisk (H2O* as opposed to H2O), which uses compressed liquid table for better accuracy. Working fluids such as H2O, R-12, NH3, R-134a, N2, CO2, etc., should be treated as PC fluids if there is any possibility of a phase transition.
	Examples: Analyze a steady steam turbine with one inlet and one exit. For specific examples, click on the help icon at the bottom margin of the daemon.
	Pure Solid and Pure Liquid: Constant density and constant specific heats ($c_p = c_v = c$) characterize the solid/liquid (<i>SL</i>) model. Beside a wide selection to choose from, a new solid or liquid can be created by assigning custom material properties.
₽ = 0 SL Model	Working substances such as steel, iron, copper, aluminum, wood, water, oil, etc., which can be assumed to maintain their condensed (solid or liquid) phase when a system undergoes other changes, can be analyzed with the SL model.
	Examples: Liquid water is pumped steadily from a given <i>inlet-state</i> to a given <i>exit-state</i> with no possibility of a phase change. For specific examples, click on the help icon at the bottom margin of the daemon.
	Pure Gas: A pure gas has a fixed chemical composition across space and time. Oxygen, nitrogen, and air are examples of a pure gas. The PG (perfect gas) model is the simplest gas model which obeyes the ideal gas equation (<i>pv</i> = <i>RT</i>) and assumes eats to be constant. In the IG (ideal gas) model, specific heats are assumed eneric, Single-Flow, Open-Steady Daemon' tion of temperature only. The RG (real gas) model uses generalized <i>PV</i> = ^{<i>E</i>} <i>KT</i> .

3. We get the following screen after clicking on PG model. Now, choose Air as the Working substance from the drop down menu. Then, enter known values of T1, Vel1, v1 and A1 for State 1. Click on Calculate. We get:

		ther			eric, Ope	1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -			> Stea	dy > 0	emon: <i>PG</i> Generic > Sir	ngleFlow >				
v1 = 0.2 m^3/kg	g (Specific v	olume]		ST		é	24		$\frac{d}{dt} = 0$	0			c _p = cor	ଞା. ି		
• Mixed	C SI C	Engli	sh	< Cas	e-0 💙 >		✓ Hel	p Message	s On	Super-	Iterate	Super-Calcula	ate	Load	Super-Initiali	ze
	State Panel				Devic	e Par	iel			E	Exergy Panel			I/O Pa	anel	
< ©State	e-1 💙 >	t j	Calc	ulate	No-Plot	s 🗸	1	Initialize		Formati	ion Enthalpy:	ONO OY	es	Air	~	<
Г р1			V	T1			•	vt			⊏ u1			□ h1		
965.9249	kPa	~	400.0		deg-C	*	0.2		m^3/kg	*	183.12526	kJ/kg	¥	376.31024	kJ/kg	~
∏ s1			~	Vel1			•	z1			□ e1			⊏ j1		
7.05305	kJ/kg.K	~	50.0		m/s	~	0.0		m	~	184.37526	kJ/kg	~	377.56024	kJ/kg	~
phi1			ps	i1			Г	mdot1				1		₩ A1		
	kJ/kg	~			kJ/kg	*	6.0		kg/s	~	1.2	m^3/s	~	240.0	cm^2	~
MM1				R1				c_p1			c_v1			k1		
28.97	kg/kmol	~	0.286	99	kJ/kg.K	~	1.003	49	kJ/kg.K	~	0.71651	kJ/kg.K	~	1.40054	UnitLess	~

4. Enter data i.e. T2, v2 and mdot2 = mdot1 for State 2, hit Enter:

Initialize Formation Enthalpy: No Yes Air V V2 U2 h2 h2 1.02 m*3/kg V 46.15713 kJ/kg V 55.19217 kJ/kg V 0.0 m V e2 j2 j2 0.0 kJ/kg V v mod/2 Voldot2 A2 em*3/s em*2 v	Mixed C SI C Englis	h < Case-0 × >	Help Messages On	Super-Iterate Super-Calculate	e Load Super-Initialize
v2 v2 h2 1.02 m*3/kg -46.15713 kJ/kg 55.19217 kJ/kg v z2 e2 j2 0.0 m kJ/kg it mdot2 Voldot2 A2 emdot1 kg/s 6.12 m*3/s cm*2	State Panel	Device F	anel	Exergy Panel	I/O Panel
1.02 m*3/kg ✓ -46.15713 kJ/kg ✓ 55.19217 kJ/kg ✓ ✓ 2 0.0 m ✓ mdot2 =mdot1 kg/s	< <mark>©State-2 v</mark> >	Calculate No-Plots	 Initialize 	Formation Enthalpy: 🔍 No 🔍 Yes	Air 🗸 🗸
v z2 e2 j2 0.0 m kJ/kg kJ/kg v mdot2 Voldot2 A2 emdot1 kg/s 6.12 m*3/s cm*2	ρ2		✓ v2	Γ u2	🗖 h2
0.0 m kJ/kg kJ/kg	99.36205 kPa 🛩	80.0 deg-C	✓ 1.02 m ³ /kg	✓ -46.15713 kJ/kg	✓ 55.19217 kJ/kg ×
✓ mdot2 ✓ A2 =mdot1 kg/s ✓ 6.12 m*3/s ✓ cm*2	= s2	Vel2	₩ z2	E e2	□ j2
=mdot1 kg/s 💙 6.12 m*3/s 💟	7.05841 kJ/kg.K 🗸	m/s	✓ 0.0 m	kJ/kg	kJ/kg
	phi2	psi2	₩ mdot2	└ Voldot2	☐ A2
	kJ/kg 😽	kJ/kg	✓ =mdot1 kg/s	✓ 6.12 m [*] 3/s	✓ cm ²
C_pz C_vz Kz		and the second s	maore	and the second sec	

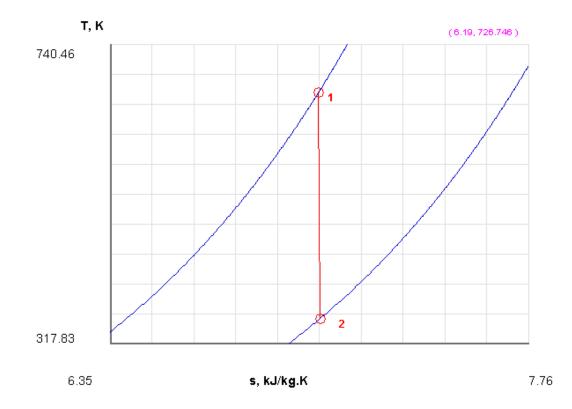
5. Go to Device Panel, enter State 1 and State 2 for i-state and e-state respectively; enter Qdot = 0 and Wdot_ext = 0 for the nozzle and click on Calculate. We get:

	Generic, Open Steady, Single	e-Flow, Daemon: PG Mode	/
	ds.net > Daemons > Systems > Open ne 47 IS 7 alue with more precision.	> Steady > Generic > SingleFlow $\frac{d}{dt} = 0$	v > PG-Model c_ = const
• Mixed C SI C English	Case-0 V > V Help Messages	s On Super-Iterate Super-Ca	alculate Load Super-Initialize
State Panel	Device Panel	Exergy Panel	I/O Panel
< Device-A [1-2] >	i-State: State-1 💉	e-State: State-2	Calculate
Qdot	Wdot_ext	▽ T_B	Sdot_gen
0.0 kW 🗸	0.0 kW 💉	298.15 K 😽	0.03221 kW/K 🛩
Jdot_net	Sdot_net		
0.0 kW 🗸	-0.03221 kW/K 😒		

6. Now, click on SuperCalculate. Go to State Panel. We get:

State 1:

Mixed	C SI C E	nglis	sh	< 00	ase-0 v >		₩ He	lp Message	s On	Super	r-Iterate	Super-Ca	lculate	Load	Super-Initi	ialize
St	tate Panel				Devi	ce Pai	nel				Exergy Pane	el .		1/	O Panel	
< ©State-	1 🗙 >		Calcu	ilate	No-Pic	ts 🗸		Initialize		Format	tion Enthalpy	/: ONO	• Yes	Air		~
Г p1		1	•	T1			•	v1			□ u1			□ h1		
965.9249	kPa	*	400.0		deg-C	*	0.2		m^3/kg	*	183.12526	kJ/k	•	376.3102	4 kJ/kg	1
s1			•	Vel1			•	z1			□ e1			□ j1		
7.05305	kJ/kg.K	~	50.0		m/s	~	0.0		m	*	184.37526	kJ/k) <u>Y</u>	377.5602	4 kJ/kg	
phi1			psi	1			Г	mdot1			□ Vol	dot1		₩ A1		
	kJ/kg	*			kJ/kg	*	6.0		kg/s	*	1.2	m^3/	s 🗸	240.0	cm^2	
MM1			R1				C	p1			c_v1			k1		
28.97	kg/kmol	~	0.2869	99	kJ/kg.K	~	1.00	349	kJ/kg.K	~	0.71651	kJ/kg	к 🗸	1.40054	UnitLess	s


And, State 2:

		Help Messages On	Super-Iterate	uper-Calculate	Load	uper-Initialize
	Device P	anel	Exergy Panel		I/O Par	el
Calculate	No-Plots	 Initialize 	Formation Enthalpy:	ONO OYes	Air	~
✓ T2		₩ v2	Γ u2		□ h2	
₩ 80.0	deg-C 🗸	1.02 mº3/k	g 🌱 <mark>-46.15713</mark>	kJ/kg 💉	55.19217	kJ/kg 🚿
□ Vel2		▼ z2	□ e2		I ▼ j2	
802.95465	m/s 😽	0.0 m	276.21094	kJ/kg 💉	377.56024	kJ/kg
psi2		₩ mdot2	Voldot2		□ A2	
~	kJ/kg 💊	=mdot1 kg/s	✓ 6.12	m^3/s 💉	76.2185	cm*2
	 ✓ T2 ✓ 80.0 ✓ Vel2 ✓ 802.95465 psi2 	Calculate No-Plots ✓ 72 ✓ 80.0 ✓ Vel2 ✓ 802.95465 ✓ psi2	Calcutate No-Plots Initialize V 72 V v2 80.0 deg-C 1.02 m*3/kg Vel2 V 2 v3/kg 802.95465 m/s 0.0 m ps/2 V m/dot2 v	Calculate No-Plots Initialize Formation Enthalpy: ▼ 72 ▼ v2 □ u2 ♥ 80.0 deg-C 1.02 m*3/kg -46.15713 ▼ Vel2 ▼ z2 □ e2 ≥ 2 ♥ 802.95485 m/s 0.0 m ≥76.21094 psi2 ▼ mdot2 ▼ voldot2 ▼ voldot2	Calculate No-Plots Initialize Formation Enthalpy: No Y es ▼ 72 ▼ v2 □ u2 ♥ 80.0 deg-C 102 m*3/kg ■ 46.15713 kJ/kg ♥ ♥ Vel2 ▼ z2 □ e2 ■ ●	Calculate No-Plots Initialize Formation Enthalpy: No Yes Air 7 72 7 <td< td=""></td<>

Thus: A2 = 76.22 cm², Vel2 = 802.95 m/s.... Ans.

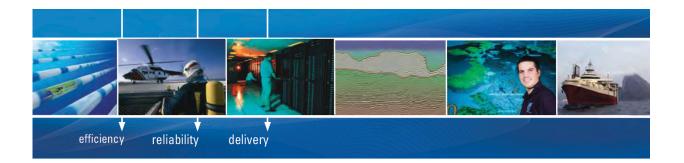
Also, p2 = 99.36 kPa, mdot1 = mdot2 = 6 kg/s ... Ans.

7. Indicative T-s diagram for Plots tab:

8. I/O panel gives the TEST code etc.:

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>PG-Model; v-10.bb05

#-----Start of TEST-code -----


States {

State-1: Air; Given: { T1= 400.0 deg-C; v1= 0.2 m^3/kg; Vel1= 50.0 m/s; z1= 0.0 m; A1= 240.0 cm^2; } State-2: Air; Given: { T2= 80.0 deg-C; v2= 1.02 m^3/kg; z2= 0.0 m; mdot2= "mdot1" kg/s; } }

Analysis {

Device-A: i-State = State-1; e-State = State-2; Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; } }

#-----End of TEST-code -----

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

#	Prope	rty spreadshe	et starts: #				
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	965.92	673.2	0.2	183.13	376.31	7.053
#	2	99.36	353.2	1.02	-46.16	55.19	7.058
#							
====			=======				

Prob.5.35. Steam at 1 MPa and 250 C enters a nozzle with a velocity of 60 m/s and leaves at 10 kPa. Assuming the flow process to be isentropic and the mass flow rate to be 1 kg/s, determine: (i) the exit velocity (ii) the exit diameter. [VTU-BTD-Jan./Feb. 2005]

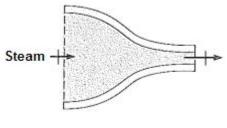


Fig.Prob.5.35

TEST Solution:

1. Choose the System analysis ... Single Flow daemon as shown below:

Basic Tool	S	System	Analysis	States	& Properties
Unit DeskCa onverter	Tables & Charts	Closed	Open	Uniform System	Uniform Flow
Unsteady Proc	ess S	Steady State (cycles)	Steady S	state U	nsteady Process
— Generic Reciprocating	Specific Cycles HVA	C/Psychron	Generic	mb. & Equilibri	Specifi
r T	. 1	sen			ium
Reciprocating Uniform System	Cycles HVA Non-Mixing Non-Uniforn	sen	netry Co i ii-Mixing -Uniform	mb. & Equilibri Mixing	n
Reciprocating	Cycles HVA Non-Mixing Non-Uniforn	n Sem n Non I g Multi-Flow	netry Co i ii-Mixing -Uniform	mb. & Equilibri Mixing Non-Uniforn	n

2. Choose the PC model for Material model:

X	Pure Phase-Transition Fluid: The phase-change (PC) model can be used to determine states of sub-cooled (compressed) liquid, super-heated vapor, and saturated mixture of liquid and vapor phases. Based on the saturation and super-heated tables, the model is quite accurate. Sub-cooled liquid is modeled with the compressed-liquid sub-model, except for species with an asterisk (H2O* as opposed to H2O), which uses compressed liquid table for better accuracy.
	ne PC Model ngle-Flow, Open-Steady Daemon 20, R-12, NH3, R-134a, N2, CO2, etc., should be treated as PC fluids if there is any position.
	Examples: Analyze a steady steam turbine with one inlet and one exit. For specific examples, click on the help icon at the bottom margin of the daemon.
p = c	Pure Solid and Pure Liquid: Constant density and constant specific heats ($c_p = c_v = c$) characterize the solid/liquid (<i>SL</i>) model. Beside a wide selection to choose from, a new solid or liquid can be created by assigning custom material properties. Working substances such as steel, iron, copper, aluminum, wood, water, oil, etc., which can be assumed to maintain their condensed (solid or liquid) phase when a system undergoes other changes, can be analyzed with the SL model.
	Examples: Liquid water is pumped steadily from a given <i>inlet-state</i> to a given <i>exit-state</i> with no possibility of a phase change. For specific examples, click on the help icon at the bottom margin of the daemon.
c _c = const PG Model	Pure Gas: A pure gas has a fixed chemical composition across space and time. Oxygen, nitrogen, and air are examples of a pure gas. The PG (perfect gas) model is the simplest gas model which obeyes the ideal gas equation ($pv = RT$) and assumes specific heats to be constant. In the IG (ideal gas) model, specific heats are assumed to be function of temperature only. The RG (real gas) model uses generalized compressibility charts and is useful for gases near the critical or super-critical conditions for which PC-model data are not available.

3. Select H2O as working substance. Enter data, i.e. P1, T1, Vel1 and mdot1 for State 1. Hit Enter:

	ids.net > Daemons > 9		eady > Generic > Si		odel	
	me of ST value with more precision.		-=0			
C Mixed C SI C English	< Case-0 💙 >	🔽 Help Messages On	Super-Iterate	Super-Calculate	Load	per-Initialize
State Panel	Device Pa	mel	Exergy Panel		I/O Pane	el.
< <mark>©State-1</mark> ¥ >	alculate No-Plo	ts 💌 Initializ	e Superheate	d Vapor	H20	~
ν ρ1 v	T1	□ x1	□ y1		⊏ v1	
1000.0 kPa 💉 250.0) deg-C 💉	fract	on 💉	fraction 😽	0.23267	m^3/kg 💉
🗆 u1 🗖	ht	Γ s1	Vel1		₩ z1	
2709.8926 kJ/kg 💙 2942	.5671 kJ/kg 💙	6.92455 kJ/kg.	К 🖌 60.0	m/s 🗸	0.0	m 🗸
Γ ef Γ	j1	phi1	psi1		₩ mdot1	
2711.6926 kJ/kg 💉 2944	.3672 kJ/kg 🛩	kJ/kg	· 🖌	kJ/kg 💙	1.0	kg/s 💙
	A1	MM1				
0.23267 m^3/s 💉 0.003	388 m^2 💉	18.0 kg/kr	nol 😽			

4. Enter P2,s2 = s1 (since isentropic) and mdot2 = mdot1 and hit Enter:

State Panel Device P	anel	Exergy Panel	I/O Panel
Calculato			no ranei
	ots 🐱 Initialize	Sat.Mixture: Liq.+Vap.	<mark>H20 🗸 🗸 🗸 🗸 🗸</mark>
₽ p2	□ x2	Г y2	Γ v2
10.0 kPa 💉 45.80996 deg-C 🛩	0.83661 fraction	V 0.99999 fraction V	12.2762 m*3/kg *
T u2 T h2	⊮ s2	Vel2	₩ z2
2070.9114 kJ/kg 💉 2193.6733 kJ/kg 🛩	=S1 kJ/kg.K	✓ m/s	M 0.0 m
e2 ⊽ j2	phi2	psi2	₩ mdot2
kJ/kg ♥ 2944.3672 kJ/kg ♥	kJ/kg	✓ kJ/kg 💊	emdot1 kg/s

Note in the above screen shot that immediately other parameters for State 2 are calculated.

Download free eBooks at bookboon.com

5. Go to Device Panel, enter State 1 and Styate 2 for i-state and e-state; also, enter Qdot = 0 and Wdot_ext = 0. Hit Enter:

• Mixed C SI C English	Case-0 > F Help Mess	ages On Super-Iterate Super-Calc	ulate Load Super-Initialize
State Panel	Device Panel	Exergy Panel	I/O Panel
	TANKASA DATA MA		
< Device-A [1-2] >	i-State: State-1 💌	e-Soter State-2 💌	Calculate
Qdot	✓ Wdot_ext	Г Т_В Г	Sdot_gen
0 kW	 0.0 kW 	✓ 298.15 K ✓ (0.0 kW/K

6. Now, click on SuperCalculate. Then, go to State Panel.

See State 1:

• Mixed OSI OE	nglish < <mark>©C</mark>	ase-0 🗙 > 🔽 Help Mess	sages On Super-I	Iterate Super-Calculate	Load Super-Initialize
State Panel		Device Panel	E	xergy Panel	I/O Panel
< <mark>©State-1</mark> V >	Calculate	No-Plots 💌	Initialize	Superheated Vapor	H20 🗸
	▼ T1	🗖 x1	1	⊏ y1	⊏ v1
1000.0 kPa	250.0	deg-C 💉	fraction 💌	fraction	 0.23267 m^3/kg
t	□ h1	□ s1	I	Vel1	▼ z1
2709.8926 kJ/kg	2942.5671	kJ/kg 💉 6.92455	kJ/kg.K 🛛 🖌	60.0 m/s 💉	r 0.0 m
e1	F j1	phi1		psit	I mdot1
2711.6926 kJ/kg	✓ 2944.3672	kJ/kg 💉	kJ/kg 💙	kJ/kg	1.0 kg/s 1
Voldot1	□	MM1			
0.23267 m*3/s	♥ 0.00388	m^2 ❤ 18.0	kg/kmol 💉		

And, State 2:

• Mixed OSI O	English	< ©Case-	0 🗸 >	Help Message	s On Super	-Iterate Sup	er-Calculate	Load	uper-Initialize
State Panel			Device Par	nel		Exergy Panel		I/O Pan	el
< ©State-2 🗸 >		Calculate	No-Plot	s 💌 🔢	nitialize	Saturated Mixtur	e	H20	~
p2	Г	T2		⊏ x2		Γ y2		Γ v2	
0.0 kPa	₩ 45.8	0996 d	eg-C 💌	0.83661	fraction 💉	0.99999	fraction 👻	12.2762	m^3/kg
u2	Г	h2		✓ s2		□ Ve/2		⊽ z2	
070.9114 kJ/kg	× 219	3.6733 ku	l/kg 💉	=s1	kJ/kg.K 💉	1225.3113	m/s 😽	0.0	m
e2	1	j2		phi2		psi2		₩ mdot2	
821.6052 kJ/kg	294	4.3672 k.	l/kg 😽		kJ/kg 💉		kJ/kg 💙	=mdot1	kg/s

I Law of Thermodynamics applied to Flow Processes

Thus: exit velocity, Vel2 = 1225.31 m/s,

exit area = 0.01002 m² = 100.188 cm²

Therefore, exit dia = d2 = 11.29 cm

7. I/O panel gives TEST code etc:

#~~~~~OUTPUT OF SUPER-CALCULATE:

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>PC-Model; v-10.bb06

#-----Start of TEST-code -----

States {

State-1: H2O; Given: { p1= 1000.0 kPa; T1= 250.0 deg-C; Vel1= 60.0 m/s; z1= 0.0 m; mdot1= 1.0 kg/s; } State-2: H2O; Given: { p2= 10.0 kPa; s2= "s1" kJ/kg.K; z2= 0.0 m; mdot2= "mdot1" kg/s; } }

Analysis {

Device-A: i-State = State-1; e-State = State-2; Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; } }

#-----End of TEST-code -----

#-----Property spreadsheet starts:

# State	p(kPa)	T(K)	х	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	1000.0	523.2		0.2327	2709.89	2942.57	6.925
# 02	10.0	319.0	0.8	12.2762	2070.91	2193.67	6.925

#*****CALCULATE VARIABLES:

sqrt(A2 * 4 /pi) = 0.11294417026465142 m

i.e. d2 = 11.29 cm ...Ans.

Prob. 5.36. Air flows steadily through a rotary compressor. At entry the air is at 20 C and 101 kPa. At exit it is at 200 C and 600 kPa. Assuming the flow to be adiabatic, (i) evaluate the work done per unit mass of air if the velocities at inlet and exit are negligible. (ii) what would be the increase in work input if the velocities at inlet and exit are 50 m/s and 110 m/s? [VTU-BTD-Ja./Feb. 2004]

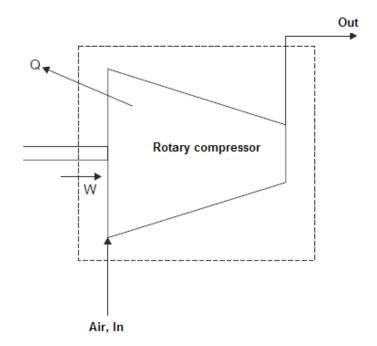


Fig.Prob.5.36

Technical training on *WHAT* you need, *WHEN* you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/

> Phone: +61 8 9321 1702 Email: training@idc-online.com Website: www.idc-online.com

OIL & GAS ENGINEERING

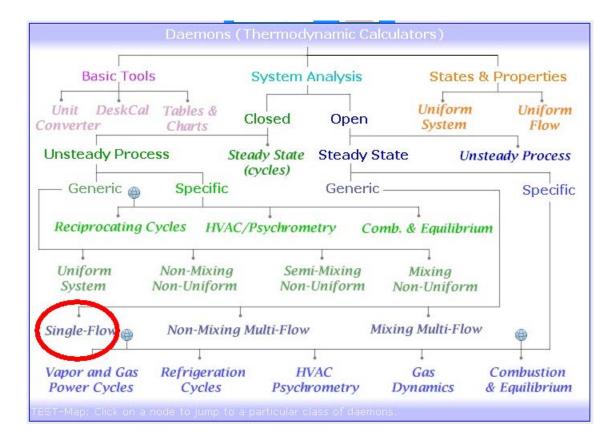
ELECTRONICS

AUTOMATION & PROCESS CONTROL

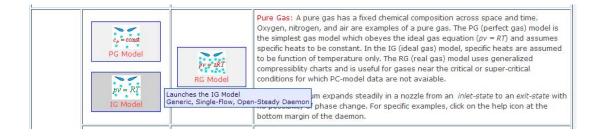
> MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS

ELECTRICAL POWER


Click on the ad to read more

244


Download free eBooks at bookboon.com

TEST Solution:

1. Choose the System analysis ... Single Flow daemon as shown below:

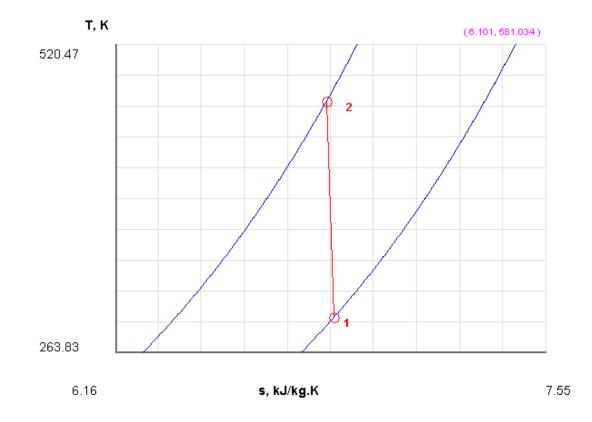
2. Choose the IG model for Material model:

A. When velocities are negligible:

3. Choose Air as working substance. Enter P1, T1, mdot1 for State 1. Vel1 = 0 by default. Hit Enter. We get:

		th	ermofluids	net > Daemon		Steady, Sing Systems > Ope	and the second second	y >		gleFlow >	IG-M pv =			
T1 = 20.0 deg-	C [Absolute	tempe	Contractor and the				ur							
• Mixed	C SI C	Eng	lish	< <mark>©Case-0</mark> 🗸	>	🔽 Help Message	s On	Supe	er-Iterate	uper-Calcul	ate	Load	Super-Init	ialize
	State Panel			Dev	ice Pa	inel	1		Exergy Panel			I/O P	anel	
< ©Stat	e-1 💙 >		Calcula	te No-Pl	ots 💊	Initialize	Fo	orma	ation Enthalpy:	ONO OY	es	Air		~
₽ p1			▼ T1			🗆 rho1			□ v1		_	□ u1		
101.0	kPa	*	20.0	deg-C	*	1.20052	kg/m^3	*	0.83297	m^3/kg	*	-89.13149	kJ/kg	*
□ h1			□ s1			Vel1			∀ z1			r e1		
-5.00139	kJ/kg	*	6.86686	kJ/kg.K	*	0.0	m/s	۷	0.0	m	~	-89.13149	kJ/kg	*
Γ j1			phi1			psi1			₩ mdot1			□ Voldot1		
-5.00139	kJ/kg	~		kJ/kg	*		kJ/kg	~	1.0	kg/s	~	0.83297	m^3/s	*
F A1			MM1			R1			□ c_p1					
83297.13	m^2	~	28.97	kg/kmol	*	0.28699	kJ/kg.K	~	1.00347	kJ/kg.K	~			

4. Enter P2, T2, mdot2=mdot1 for State 2; press Enter:


Nove mouse ove	er a variable t	o dis	play its value with	more precision			10							
• Mixed	C SI C	Eng	lish < 🔍	Case-0 💙 >	~	Help Message	s On	Supe	er-Iterate	Super-Calculate		Load	Super-Init	ialize
	State Panel			Device	ane	1			Exergy Panel			1/0	Panel	
< ©State	-2 💙 >		Calculate	No-Plots	~	Initialize				ONO OYes		Air		~
Γ ρ2			✓ T2		Г	rho2			Γ v2		Г	u2		
600.0	kPa	~	200.0	deg-C	4.	41866	kg/m*3	~	0.22631	m^3/kg	4	2.28758	kJ/kg	~
□ h2			□ s2		•	Vel2			₩ z2		Г	e2		
178.07526	kJ/kg	~	6.84186	kJ/kg.K	0.	0	m/s	*	0.0	m	/ 4	2.28758	kJ/kg	1
Γ j2			phi2			psi2			₩ mdot2		Г	Voldo	ot2	
178.07526	kJ/kg	~		kJ/kg			kJ/kg	~	=mdot1	kg/s	- 0	22631	m*3/s	~
Г A2			MM2			R2			Г с_p2					
22631.28	m^2	~	28.97	kg/kmol 💉	0.	28699	kJ/kg.K	*	1.03236	kJ/kg.K				

Go to Device Panel, enter State 1 and State 2 for i-state and e-state respectively.
 Also, Qdot = 0, Wdot_ext = 0. Click Calculate, and SuperCalculate. We get:

• Mixed C SI C Englis	h < ©Case-0 v >	Help Messages On	Super-Iterate Super-	Calculate Load	Super-Initialize
State Panel	Device P	anel	Exergy Panel	1/0	Panel
< Device-A [1-2]	> i-State: Stat	e-1 💌	State-2	Calculate	Initialize
Qdot		▼ 7_	_В	□ Sdot_gen	
.0 KW	✓ -183.07664	W Y 298.15	К	✓ -0.02501	kW/K

Thus: Work done on unit mass of air = -183.08 kW....(negative sign indicates work input since it is a compressor)..Ans.

6. Indicative T-s diagram:

247

Click on the ad to read more

Download free eBooks at bookboon.com

7. I/O panel gives TEST code etc:

#~~~~OUTPUT OF SUPER-CALCULATE :

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>IG-Model; v-10.bb05

#-----Start of TEST-code -----

States {

State-1: Air; Given: { p1= 101.0 kPa; T1= 20.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; mdot1= 1.0 kg/s; } State-2: Air; Given: { p2= 600.0 kPa; T2= 200.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/s; } }

Analysis {

Device-A: i-State = State-1; e-State = State-2; Given: { Qdot= 0.0 kW; T_B= 298.15 K; } }

#-----End of TEST-code -----

#-----Property spreadsheet starts:

#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	101.0	293.2	0.833	-89.13	-5.0	6.867
#	2	600.0	473.2	0.2263	42.29	178.08	6.842

B. When Vel1 = 50 m/s and Vel2 = 110 m/s:

The procedure is:

- i) Enter the Vel1 value , Calculate, and
- ii) enter Vel2 value, Calculate, and then
- iii) SuperCalculate.

We get:

State 1:

	Generic, Open	Steady, Single-F	low, Daemon: IG Ma	odel	
	Home of TEST		Steady > Generic > Single	$P_{\text{Flow}} > \text{IG-Model}$ $p_{\text{V}} = RT$	
• Mixed C SI C English	< ©Case-0 ♥ >	₩ Help Messages On	Super-Iterate Super-	er-Calculate	d Super-Initialize
State Panel	Device Pa	anel	Exergy Panel		I/O Panel
< <mark>©State-1 v</mark> > C	alculate T-s	Initialize	Formation Enthalpy:	No 💿 Yes 🛛 🔒 Air	v
🔽 p1 🔽	T1	🗖 rho1	□ v1	E.	u1
101.0 kPa 💉 20.0) deg-C 💉	1.20052 kg/m	№3 💉 0.83297	m^3/kg 🖌 -89.13	149 kJ/kg 🌱
🗆 ht 🗖	s1	Vel1	₩ z1	E.	e1
-5.00139 kJ/kg 🌱 6.86	6686 kJ/kg.K 🗸	50.0 m/s	0.0	m 😽 -87.88	149 kJ/kg 💙
Γ j1 p	bhi1	psit	✓ mdot1	Г	Voldot1
-3.75139 kJ/kg 😁	kJ/kg 🎽	kJ/k	rg 💉 1.0	kg/s 🛛 🖌 0.8329	97 m^3/s ↔
Γ A1 N	ліл1	R1	□ c_p1		
0.01666 m^2 ❤ 28.9	97 kg/kmol 🗸	0.28699 kJ/kg	.К 🔺 1.00347	kJ/kg.K 💉	

State 2:

• Mixed	C SI C	Eng	lish < 0	Case-0 🗙 🚊	>	Help Message	es On	Supe	r-Iterate	Super-Calculate	Load	Super-Initi	ialize
	State Panel			Dev	ice Pa	nel			Exergy Panel		-	I/O Panel	
< ©Sta	te-2 ❤ >	1	Calculate	T-s	~	Initialize	9	Forma	tion Enthalpy:	ONO OYes	Air		~
Γ ρ2			▼ T2			rho2			Γ v2		Γ u2		
600.0	kPa	*	200.0	deg-C	*	4.41866	kg/m^3	*	0.22631	m^3/kg	₩ 42.2875	3 kJ/kg	*
h2			□ s2			✓ Vel2			▼ z2		□ e2		
178.07526	kJ/kg	*	6.84186	kJ/kg.K	*	110.0	m/s	*	0.0	m	¥ 48.3375	3 kJ/kg	
<u>j2</u>			phi2			psi2			₩ mdot2	2	□ V	oldot2	
184.12526	kJ/kg	*		kJ/kg	*		kJ/kg	*	=mdot1	kg/s	✓ 0.22631	m^3/s	1
A2			MM2			R2			⊏ c_p2				
0.00206	m^2	*	28.97	kg/kmol	~	0.28699	kJ/kg.K	*	1.03236	kJ/kg.K	*		

Device Panel:

• Mixed O SI C English	n < <mark>©Case-0 v ></mark>	Help Messages On	Super-Iterate Super	-Calculate Load	Super-Initialize
State Panel	Device Par	nel 🛛	Exergy Panel	1	/O Panel
< Device-A [1-2]	> i-State: State-	1 💌 🕬	State-2	Calculate	Initialize
Qdot	□ Wdot_ext	v .	Т_В	□ Sdot_gen	
0 kW	✓ -187.87665 kW	/ 298.15	к	✓ -0.02501	kvv/K

Thus: Work done on unit mass of air = -187.88 kW...when inlet and exit velocities are considered...Ans.

#~~~~~~ OUTPUT OF SUPER-CALCULATE

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>IG-Model; v-10.bb05

#-----Start of TEST-code -----

States {

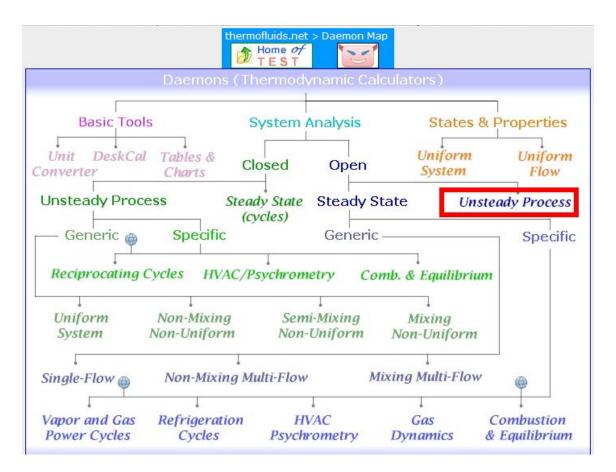
State-1: Air; Given: { p1= 101.0 kPa; T1= 20.0 deg-C; Vel1= 50.0 m/s; z1= 0.0 m; mdot1= 1.0 kg/s; } State-2: Air; Given: { p2= 600.0 kPa; T2= 200.0 deg-C; Vel2= 110.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/s; } }

Analysis {

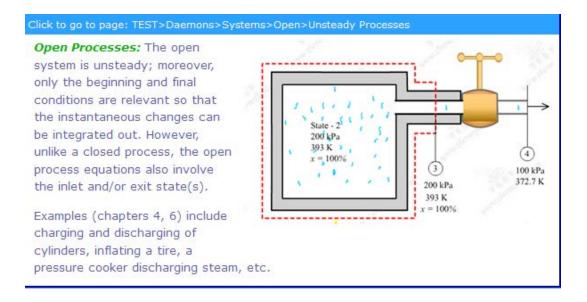
Device-A: i-State = State-1; e-State = State-2; Given: { Qdot= 0.0 kW; T_B= 298.15 K; } }

#-----End of TEST-code -----

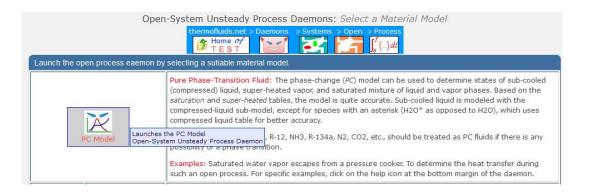
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	101.0	293.2	0.833	-89.13	-5.0	6.867
#	2	600.0	473.2	0.2263	42.29	178.08	6.842


#*****DETAILED OUTPUT:

Prob. 5.37. Steam at a pressure of 1.4 MPa, 300 C is flowing in a pipe. Connected to this pipe through a valve is an evacuated tank. The valve is opened and the tank fills with steam until the pressure is 1.4 MPa, and then the valve is closed. The process takes place adiabatically and K.E. and P.E. are negligible. Determine the final temp of steam. [Ref. 2]


TEST Solution:

This is a problem on charging a tank. i.e. Uniform State, Uniform Flow type of problem. See eqn. 5.14 at the beginning of this chapter.


1. Select System Analysis - Open - Unsteady Process daemon as shown below:

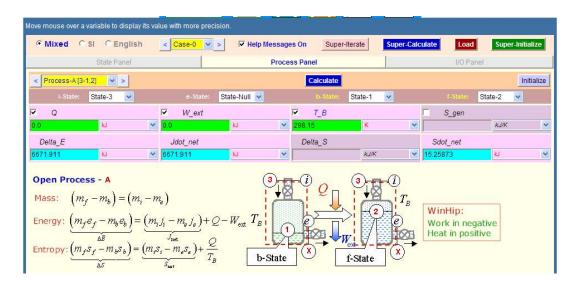
2. Hovering the mouse pointer on 'Unsteady Process' brings up the following message window:

3. Choose PC model for Material model since Steam is the working substance:

4. Select H2O as the substance and enter data, i.e. P1 = 0, m1 = 0 (since tank is evacuated), and Vol1, for State 1. Press Enter:

					O	pen Pr	ocess	5 Daemor	n: Phase-C	hang	e (PC)	Model					
		200000	1000	* ***	۵.	Home Ø	7	aemons >	Systems > 0		$\int_{a}^{f} () dt$	> PC-Mo	lel				
		a variable to	2	- 2		nore prei ie-0 🗸 🗸	1 mini	🔽 Help Mes	sages On	Super-	Iterate	Super-C	alculate	C	oad	Super-Initia	lize
		State	Panel					P	rocess Panel					1/0) Panel		
	< ©State	-1 💙 >		С	alculate		No-Plo	its 😽	Initialize		Saturated	d Solid		H2	0	×	•
₽	p1			Г	T1			□ x1			□ y1			Г	v1		
0.0		kPa	¥	-273.1	5	deg-C	~	0.0	fraction	*	0.0	fre	iction 💧	 Infin 	nity	m^3/kg	~
Г	u1			Г	h1			□ s1			🔽 Ve	11		•	z1		
0.0		kJ/kg	~	0.0		kJ/kg	*	0.0	kJ/kg.K	~	0.0	m/	s	• 0.0		m	*
Г	e1			Г	j1			phi1			psi1			~	m1		
0.0		kJ/kg	¥	0.0		kJ/kg	~	0.0	kJ/kg	*	0.0	kJ/	kg 💉	0.0		kg	×
V	Vol1			MM	11												
0.4		m^3	~	18.0		kg/kmol	*										

Download free eBooks at bookboon.com


5. For State 2, enter P2, and m2 = m3, not known yet. Press Enter:

e	Mixed	C SI C	Engl	ish <	©Case-0 🗸	>	Help Mess	sages On	Super-	-Iterate	Super-Calculate	Load	Super-Initialize
		State	Panel				Pr	ocess Panel				I/O Panel	
	< ©Stat	e-2 💙 >		Calcula	e	No-Plo	its 🔽	Initialize		Unknown Ph	ase	H20	~
~	p2			Γ T2			Γ x2			Γ y2		Γ v2	
140	0.0	kPa	~		deg-C	~		fraction	*		fraction	•	m^3/kg
~	u2			□ h2			□ s2			Vel2		∀ z2	
=h3		kJ/kg	~		kJ/kg	~		kJ/kg.K	~	0.0	m/s	✓ 0.0	m
	e2			Г j2			phi2			psi2		₩ m2	
1		kJ/kg	~		kJ/kg	~		kJ/kg	~		kJ/kg	✓ =m3	kg

6. Enter data for State 3, i.e. state of fluid in the pipe, P3, T3 and Vol3 = Vol1. Press Enter:

•	Mixed (SI CI	Engl	ish	< ©C:	ase-0 🗸	>	₩ Help Mes	sages On	Supe	r-Iterate	Super-Calo	culate	Load	Super-Initial	ize
		State	Pane	í.				P	rocess Panel					I/O Panel		
	< ©State	-3 💙 >		C	alculate	e 1	No-Plo	ots 🐱	Initialize		Superhe	ated Vapor		H20	~	
~	<i>p</i> 3			•	ТЗ			Г x3			Г уЗ		-	⊏ v3		
1400	.0	kPa	~	300.0		deg-C	~		fraction	~		fractio	n 🗸	0.18228	m^3/kg	•
	u3			Г	h3			⊏ s 3			Vel.	3		▼ z 3		
2785	.1409	kJ/kg	~	3040.	3276	kJ/kg	~	6.95326	kJ/kg.K	*	0.0	m/s	~	0.0	m	1
-	e3			Г	j3			phi3			psi3			□ m3		
2785	1409	kJ/kg	~	3040.	3276	kJ/kg	~		kJ/kg	*		kJ/kg	~	2.19447	kg	•
~	Vol3			MI	13											
=vol1		m^3	~	18.0		kg/kmol	~									

7. Go to Process Panel, enter i-state = State 3, e-state = Null, and State 1 and State 2 for b-state and f-state respectively, as shown. Also, Q = 0, W_ext = 0. Press Enter:

8. Click on SuperCalculate. Go to State Panel:

State 2:

Move	mouse ov	er a variable t	o disp	play its value with	more precisio)n.							
•	Mixed	C SI C	Engl	ish < OC	ase-0 💙 >	🔽 Help	Messages On	Super-Ite	erate Su	per-Calculate	Load	Super-Initial	ize
		State	Pane	i			Process Panel				I/O Panel		
	< ©Sta	ate-2 💙 >		Calculate	No	-Piots 💌	Initialize	5	Superheated V	apor	H2O	~	
•	p2			□ 72		□ x	2		y2		Γ v2		
140	0.0	kPa	*	452.10233	deg-C	~	fraction	*		fraction 🗸	0.23569	m^3/kg	*
	u2			□ h2		۲ s	2	•	Vel2		▼ z2		
=h3		kJ/kg	*	3370.2988	kJ/kg	✓ 7.45883	kJ/kg.K	× 0.	0	m/s 🗸	0.0	m	*
Г	e2			Γ j2		phi2			psi2		√ m2		
304	0.3276	kJ/kg	~	3370.2988	kJ/kg	*	kJ/kg	*		kJ/kg 💙	=m3	kg	*
Γ.	Vol2			MM2									
0.51	1722	m^3.	*	18.0	kg/kmol	*							

Thus, T2 = 452.1 deg. C Ans.

9. I/O panel gives TEST code etc:

#~~~~OUTPUT OF SUPER-CALCULATE:

Daemon Path: Systems>Open>Process>PC-Model; v-10.bb06

#-----Start of TEST-code -----

States {

State-1: H2O; Given: { p1= 0.0 kPa; Vel1= 0.0 m/s; z1= 0.0 m; m1= 0.0 kg; Vol1= 0.4 m^3; } State-2: H2O; Given: { p2= 1400.0 kPa; u2= "h3" kJ/kg; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m3" kg; } State-3: H2O; Given: { p3= 1400.0 kPa; T3= 300.0 deg-C; Vel3= 0.0 m/s; z3= 0.0 m; Vol3= "vol1" m^3; } }

Analysis {

Process-A: ie-State = State-3, State-Null; bf-State = State-1, State-2; Given: { Q= 0.0 kJ; W_ext= 0.0 kJ; T_B= 298.15 K; } }

#-----End of TEST-code -----

#	Property sprea	dsheet:					
# State	p(kPa)	T(K)	x	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	0.0	0.0	0.0	Infinity	0.0	0.0	0.0
# 02	1400.0	725.3		0.2357	3040.33	3370.3	7.459
# 03	1400.0	573.2		0.1823	2785.14	3040.33	6.953

Mass, Energy, and Entropy Analysis Results:

#	Process-A: ie-State = State-3, State-Null; bf-State = State-1, State-2;
#	Given: Q= 0.0 kJ; W_ext= 0.0 kJ; T_B= 298.15 K;
#	Calculated: S_gen= 1.1094596 kJ/K; Delta_E= 6671.911 kJ; Jdot_net= 6671.911 kJ;
Delta_	S= 16.368185 kJ/K;
#	Sdot_net= 15.258725 kJ;

Prob.5.38. A 1 m³ tank contains ammonia at 150 kPa, 25 C. The tank is attached to a line flowing ammonia at 12300 kPa, 60 C. The valve is opened, and mass flows in until the tank is half full of liquid, by volume at 25 C. Calculate the heat transferred from the tank during this process. [Ref. 2]

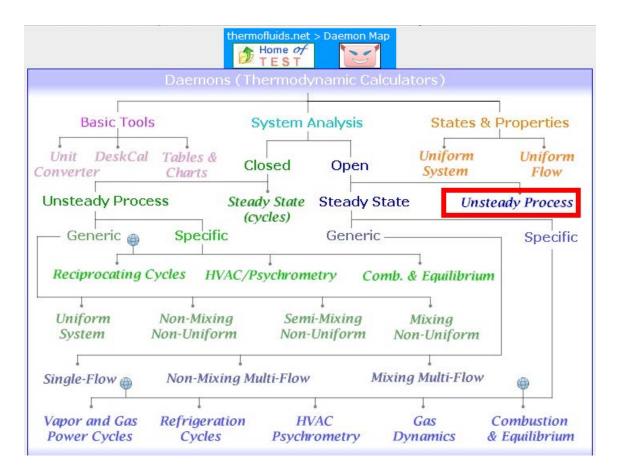
DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk


Click on the ad to read more

255

TEST Solution:

This is a problem on charging a tank. i.e. Uniform State, Uniform Flow type of problem. See eqn. 5.14 at the beginning of this chapter.

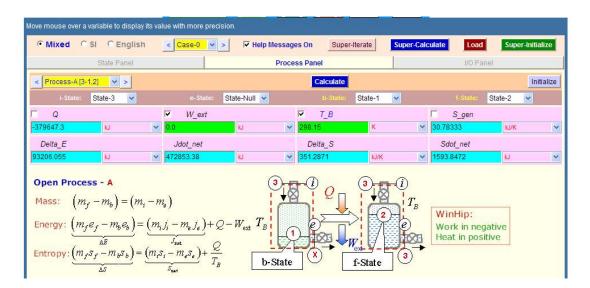
1. Select System Analysis - Open - Unsteady Process daemon as shown below:

2. Choose PC model for Material model since NH3 is the working substance:

Launch the open process	Open-System Unsteady Process Daemons: Select a Material Model thermofluids.net > Daemons > Systems > Open > Process Home of TEST eaemon by selecting a sutiable material model.
	Pure Phase-Transition Fluid: The phase-change (PC) model can be used to determine states of sub-cooled (compressed) liquid, super-heated vapor, and saturated mixture of liquid and vapor phases. Based on the saturation and super-heated tables, the model is quite accurate. Sub-cooled liquid is modeled with the compressed-liquid sub-model, except for species with an asterisk (H2O* as opposed to H2O), which uses compressed liquid table for better accuracy.
PC Model	Launches the PC Model Open-System Unsteady Process Daemon, R-12, NH3, R-134a, N2, CO2, etc., should be treated as PC fluids if there is any possibility of a prase transition.
	Examples: Saturated water vapor escapes from a pressure cooker. To determine the heat transfer during such an open process. For specific examples, click on the help icon at the bottom margin of the daemon.

3. Select Ammonia (NH3) as the substance and enter data, i.e. P1, T1and Vol1 for State 1. Press Enter:

					-			s Daemon aemons > S								
Move r	201150 010	er a variable i	to dise	alav ite ve		Home <i>of</i> TEST			2 1	ā	$\int_{\delta}^{f} () dt$	R				
Constraints.				and the second	- and the second second			₩ Help Mess	ages On	Super	r-Iterate	Super-Calcula	te	Load	Super-Initial	ize
		State	Pane					Pro	cess Panel					I/O Panel		
	< ©Stat	te-1 💙 >		Ca	Iculate		No-Plo	ots 🐱	Initialize		Superheat	ed Vapor		Ammonia(N	IH3) 🗸	
•	p1				F1			□ x1			□ y1			Γ v1		
150.	0	kPa	~	25.0		deg-C	~		fraction	~		fraction	~	0.95568	m^3/kg	~
П	u1			F /	1			□ s1			Vel1			▼ z1		
1380	.4265	kJ/kg	~	1523.7	781	kJ/kg	*	6.11308	kJ/kg.K	*	0.0	m/s	~	0.0	m	~
Г	e1			Γ j	1			phi1			psi1			□ m1		
1380	.4265	kJ/kg	~	1523.7	781	kJ/kg	~		kJ/kg	~		kJ/kg	~	1.04638	kg	~
•	Vol1			MM1												
1.0		m^3	~	17.031		kg/kmol	*									


4. Enter the data, viz. T2, Vol2 = Vol1, and y2 = volume fraction = 0.5 for State 2; press Enter:

• Mixed	C SI C E	Engl	ish < Cas	se-0 🗸	>	✓ Help Mes	sages On	Super	r-Iterate	Super-Calculate	Load	Super-Initia	lize
	State F	anel				Pr	ocess Panel				I/O Pane	el	
< ©State	-2 - >		Calculate		No-Plo	ts 😽	Initialize		Sat.Mixture	e: Liq.+Vap.	Ammonia	a(NH3) 🗸 🗸	
p2			₩ T2			Γ x2			∀ y2		Γ v2		
1003.20013	kPa	~	25.0	deg-C	~	0.01277	fraction	~	0.5	fraction	0.00327	m^3/kg	
u2			□ h2			r s2			Vel2		₩ z2		
309.85156	kJ/kg	~	313.13568	kJ/kg	~	1.17093	kJ/kg.K	~	0.0	m/s	0.0	m	
e2			Γ j2			phi2			psi2		□ m2	2	
309.85156	kJ/kg	~	313.13568	kJ/kg	~		kJ/kg	~	1	kJ/kg	305.4704	6 kg	
✓ Vol2			MM2										
=vol1	m*3	~	17.031	kg/kmol	~								

5. Enter data for State 3 (i.e. fluid flowing in the line), i.e. P3, T3; press Enter:

• Mixed	C SI C	Engl	lish < Ca	ise-0 🗸	>	🔽 Help Mes	sages On	Super-	Iterate	Super-Calculate		Load	Super-Initial	ize
	State	Pane	Ú.	1		Pr	ocess Panel					I/O Panel		
< ©Sta	ate-3 💙 >		Calculate		No-Plo	ots 💌	Initialize		Superhea	ted Vapor		Ammonia(N	H3) 🗸 🗸	
Γ ρ3			₩ 73			Г x3		J	— уЗ		Г	- v3		
1200.0	kPa	~	60.0	deg-C	*	[fraction	~		fraction	~).12377	m^3/kg	ŀ
u3			∏ h3			⊏ s 3		I	✓ Vel3		I.	z3		
1404.7422	kJ/kg	~	1553.2719	kJ/kg	*	5.23561	kJ/kg.K	~	0.0	m/s	~	0.0	m	ł
⊏ e3			Г ј3			phi3			psi3		F	m 3		
1404.7422	kJ/kg	~	1553.2719	kJ/kg	*	[kJ/kg	*		kJ/kg	•	304.42407	kg	1
Vol3			ММЗ											
	m^3	~	17.031	kg/kmol	~									

6. Go to Process panel, enter State 3 for i-state, Null for e-state, and State 1 and State 2 for b-state and f-state respectively. (See the fig. below). Press Enter, and click SuperCalculate:

Thus: Q = -379647.3 kJ Ans... (negative sign indicates that heat is rejected).

7. I/O panel gives TEST code etc:

#~~~~~OUTPUT OF SUPER-CALCULATE :

Daemon Path: Systems>Open>Process>PC-Model; v-10.bb06

#-----Start of TEST-code -----

States {

State-1: Ammonia(NH3); Given: { p1= 150.0 kPa; T1= 25.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; Vol1= 1.0 m^3; } State-2: Ammonia(NH3); Given: { T2= 25.0 deg-C; y2= 0.5 fraction; Vel2= 0.0 m/s; z2= 0.0 m; Vol2= "vol1" m^3; } State-3: Ammonia(NH3); Given: { p3= 1200.0 kPa; T3= 60.0 deg-C; Vel3= 0.0 m/s; z3= 0.0 m; } }

Analysis {

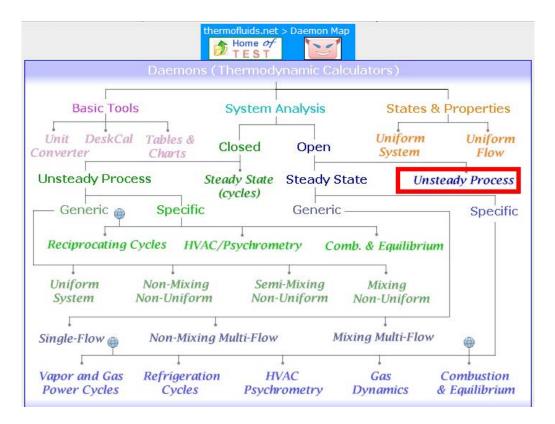
Process-A: ie-State = State-3, State-Null; bf-State = State-1, State-2; Given: { W_ext= 0.0 kJ; T_B= 298.15 K; } } #-----End of TEST-code ------

#Property	spreadsheet starts:	
-----------	---------------------	--

# State	p(kPa)	T(K)	х	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	150.0	298.2		0.9557	1380.43	1523.78	6.113
# 02	1003.2	298.2	0.0	0.0033	309.85	313.14	1.171
# 03	1200.0	333.2		0.1238	1404.74	1553.27	5.236

Mass, Energy, and Entropy Analysis Results:

# Proces	s-A: ie-State = State-3, State-Null; bf-State = State-1, State-2;
#	Given: W_ext= 0.0 kJ; T_B= 298.15 K;
#	Calculated: Q =- 379647.3 kJ; S_gen= 30.783335 kJ/K; Delta_E= 93206.055 kJ; Jdot_net=
472853.38 kJ;	
#	Delta_S= 351.2871 kJ/K; Sdot_net= 1593.847 kJ;


Click on the ad to read more

Prob. 5.39. A 0.12 m³ rigid tank initially contains refrigerant R134a at 1 MPa and 100% quality. The tank is connected by a valve to a supply line that carries R134a at 1.2 MPa and 36 C. Now the valve is opened and the refrigerant is allowed to enter the tank. The valve is closed when it is observed that the tank contains sat. liquid at 1.2 MPa. Determine (a) the mass of R134a that has entered the tank (b) the amount of heat transfer [Ref. 1]

TEST Solution:

This is a problem on charging a tank. i.e. Uniform State, Uniform Flow type of problem. See eqn. 5.14 at the beginning of this chapter.

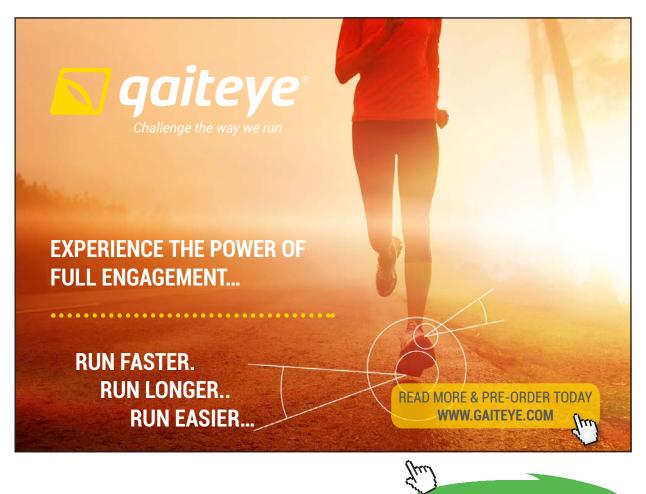
1. Select System Analysis - Open - Unsteady Process daemon as shown below:

2. Choose PC model for Material model since R134a is the working substance:

aunch the open process	Open-System Unsteady Process Daemons: Select a Material Model thermofluids.net > Daemons > Systems > Open > Process Pr
	Pure Phase-Transition Fluid: The phase-change (PC) model can be used to determine states of sub-cooled (compressed) liquid, super-heated vapor, and saturated mixture of liquid and vapor phases. Based on the saturation and super-heated tables, the model is quite accurate. Sub-cooled liquid is modeled with the compressed-liquid sub-model, except for species with an asterisk (H2O* as opposed to H2O), which uses compressed liquid table for better accuracy.
PC Model	Launches the PC Model Open-System Unsteady Process Daemon Possibility or a priase transition. Examples: Saturated water vapor escapes from a pressure cooker. To determine the heat transfer during such an open process. For specific examples, click on the help icon at the bottom margin of the daemon.

3. Select R134a as the substance and enter data, i.e. P1, x1and Vol1 for State 1. Press Enter:

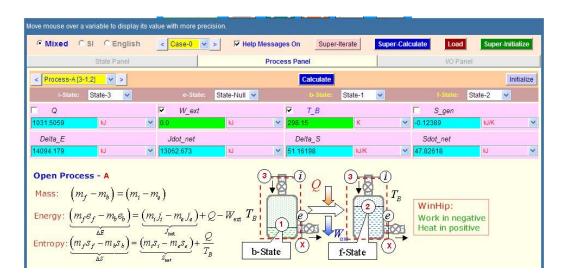
				therm	•			ange (PC) I en > Process J ^f ()dt			
		CSI CI	Engl		more precision.	₩ Help Mess		Super-Iterate	Super-Calculate	Load	Super-Initialize
	< ©Stat	State	Pane	Calculate	No-Pl	ots 💌	icess Panel	Saturated	Vapor	I/O Panel R-134a	×
₩ 100	р1 0.0	kPa	*	T1 39.35977	deg-C 😽	✓ x1 1.0	fraction	√ 1.0		√ 0.0204	m^3/kg 💉
250	u1 16635	kJ/kg	*	F h1 270.54553	kJ/kg 🗸	51 0.9134	kJ/kg.K	 ✓ Vel1 ✓ 0.0 		✓ z1	mv
	e1 16635	kJ/kg	*		kJ/kg 💌	phi1	kJ/kg	psi1	kJ/kg	√ m1 5.88298	kg 🖌
	Vol1	m^3	*	MM1 102.03	kg/kmol 💉						


Observe that mass m1 is immediately calculated.

4. Enter P2, x2 and Vol2 = Vol1 for State 2. Press Enter. Immediately, mass m2 is calculated:

¢	Mixed	C SI C	Engl	ish < <mark>Ca</mark>	se-0 🗸	>	🔽 Help Mes	sages On	Supe	r-Iterate	Super-Calculate	Load	Super-Initialize
		State	Pane				P	rocess Panel				I/O Panel	
	< ©Stat	e-2 💙 >		Calculate		No-Plo	ots 💌	Initialize		Saturated	d Liquid	R-134a	~
~	p2			Γ T2			∀ x2			Γ y2		Γ v2	
1200	0.0	kPa	~	46.29141	deg-C	~	0.0	fraction	*	0.0	fraction	8.9E-4	m^3/kg
	u2			□ h2			r s2			Vel.	2	₩ z2	
116.	.05018	kJ/kg	~	117.12393	kJ/kg	*	0.4215	kJ/kg.K	*	0.0	m/s 💉	0.0	m
	e2			Г j2			phi2			psi2		□ m2	
116.	.05018	kJ/kg	~	117.12393	kJ/kg	*		kJ/kg	*		kJ/kg	134.1308	kg
7	Vol2			MM2									
=vol	1	m^3	~	102.03	kg/kmol	~							

5. Enter data i.e. P3, T3 and m3 = (m2-m1) for the State 3, i.e. the R134a flowing in the line. Press Enter:


• Mixed	C SI C	Engl	ish < Ca	ise-0 🗸	>	✓ Help Mes	sages On	Super	r-Iterate	Super-Calculate		Load	Super-Initia	lize
	State	Pane	E.			Pr	ocess Panel					I/O Panel		
< <mark>©St</mark>	tate-3 💙 >		Calculate		No-Plo	ts 🖌	Initialize		Subcoole	d Liquid		R-134a	~]
7 p3			₩ T3			Г x3			Г уЗ		ſ			
1200.0	kPa	~	36.0	deg-C	~		fraction	~		fraction	~	8.6E-4	m^3/kg	
U3			⊏ h3			⊏ s 3			Vel:	3	Ţ	₹ z3		
100.82269	kJ/kg	~	101.85493	kJ/kg	~	0.37292	kJ/kg.K	*	0.0	m/s	~	0.0	m	
e3			⊏ <i>j</i> 3			phi3			psi3		F	✓ m3		
100.02269	kJ/kg	*	101.05493	kJ/kg	*		kJ/kg	*		kJ/kg	~	=m2-m1	kg	
Vol3			ММЗ											
0.11032	m^3	~		kg/kmol	~									

262

Click on the ad to read more

 Go to Process panel, enter i-state = State 3, e-state = Null; and enter State 1 and State 2 for b-state and f-state respectively. Also, W_ext = 0, and press Calculate and SuperCalculate. We get:

Thus: Q = 1031.51 kJ (going in to the system), $m3 = mi = (m2 - m1) = 128.25 \text{ kg} \dots$ Ans.

7. Get TEST code etc from the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE:

Daemon Path: Systems>Open>Process>PC-Model; v-10.bb06

#-----Start of TEST-code -----

States {

State-1: R-134a; Given: { p1= 1000.0 kPa; x1= 1.0 fraction; Vel1= 0.0 m/s; z1= 0.0 m; Vol1= 0.12 m^3; } State-2: R-134a; Given: { p2= 1200.0 kPa; x2= 0.0 fraction; Vel2= 0.0 m/s; z2= 0.0 m; Vol2= "vol1" m^3; } State-3: R-134a; Given: { p3= 1200.0 kPa; T3= 36.0 deg-C; Vel3= 0.0 m/s; z3= 0.0 m; m3= "m2-m1" kg; } }

Analysis {

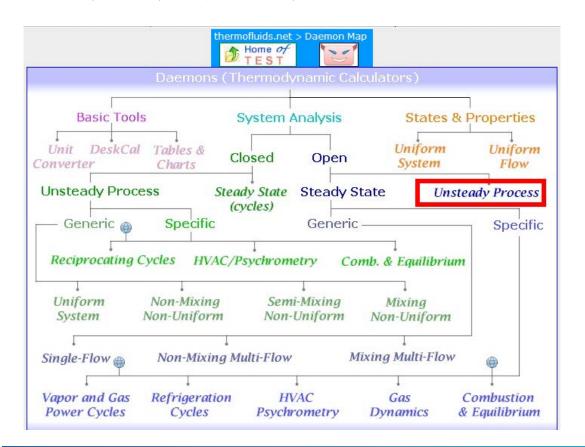
Process-A: ie-State = State-3, State-Null; bf-State = State-1, State-2; Given: { W_ext= 0.0 kJ; T_B= 298.15 K; } } #-----End of TEST-code ------

#-----Property spreadsheet starts:

# State	p(kPa)	T(K)	х	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	1000.0	312.5	1.0	0.0204	250.17	270.55	0.913
# 02	1200.0	319.4	0.0	9.0E-4	116.05	117.12	0.421
# 03	1200.0	309.2		9.0E-4	100.82	101.85	0.373

Mass, Energy, and Entropy Analysis Results:

#	Process-A: ie-State = State-3, State-Null; bf-State = State-1, State-2;
#	Given: W_ext= 0.0 kJ; T_B= 298.15 K;
#	Calculated: Q= 1031.5059 kJ; S_gen= -0.12388586 kJ/K; Delta_E= 14094.179 kJ; Jdot_
net= 130	062.673 kJ;
#	Delta_S= 51.161983 kJ/K; Sdot_net= 47.826183 kJ;


Prob.5.40. A 100-L rigid tank contains carbon dioxide gas at 1 MPa, 300 K. A valve is cracked open, and carbon dioxide escapes slowly until the tank pressure has dropped to 500 kPa. At this point the valve is closed. The gas remaining inside the tank may be assumed to have undergone a polytropic expansion, with polytropic exponent n =1.15. Find the final mass inside and the heat transferred to the tank during the process. [Ref:2]

Note that this problem is the same as Prob.5.19, which was solved earlier with EES.

Now, we shall solve it with TEST:

TEST Solution:

This is a problem on discharging a tank. i.e. Uniform State, Uniform Flow type of problem. See eqn. 5.14 at the beginning of this chapter.

1. Select System Analysis - Open - Unsteady Process daemon as shown below:

CLIVER WYMAN

an is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk usep inclusity knowledge with specialized expension and adding operations, is knowledge and a special OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

Click on the ad to read more

Download free eBooks at bookboon.com

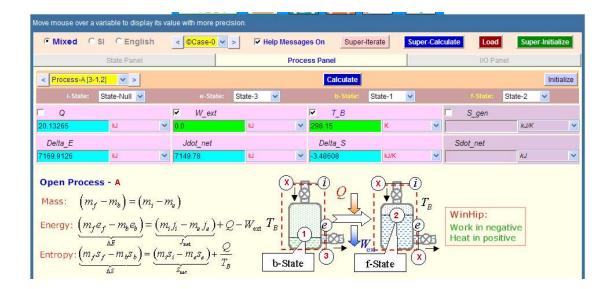
265

2. Choose PG model for Material model since CO2 is the working substance. Select CO2 as the working substance and enter data, i.e. P1, T1 and Vol1 for State 1. Press Enter:

				Open Pro	cess l	aemon:	Perfect	Gas	(PG) Mo	del				
ove mouse over	a variable to	displ	٢	ofluids.net Home of TEST	2	ons > Syst	ems > Or	pen >		$\frac{PG-Model}{c_p = \mathrm{const.}}$				
• Mixed				se-0 💙 >		lelp Message	s On	Super-I	terate	Super-Calculat	e	Load	Super-Initial	ize
	State F	anel				Proces	s Panel					I/O Panel		
< ©State-	1 💙 >		Calculate	No-Plot	s 💌	Initialize	, r	ormatio	on Enthalpy:	O No • Yes	в	<mark>C02</mark>		~
✓ p1			▼ T1		Г	v1			□ u1			□ h1		
1000.0	kPa	~	300.0	к	× 0.	05667	m^3/kg	*	-8996.771	kJ/kg	*	-8940.098	kJ/kg	~
s 1			Vel1		1	z1			⊏ e1			⊏ jt		
4.43043	kJ/kg.K	*	0.0	m/s	× 0.)	m	*	-8996.771	kJ/kg	~	-8940.098	kJ/kg	*
phi1			psi1		Г	m1			Vol1			MM1		
6	kJ/kg	~		kJ/kg	× 1.	76449	kg	*	0.1	m^3	~	44.01	kg/kmol	•
R1			c_p1			c_v1			k1					
0.18891	kJ/kg.K	~	0.84367	kJ/kg.K	× 0.	65476	kJ/kg.K	~	1.28852	UnitLess	~			

Note that m1 is calculated as 1.76449 kg.

3. Enter P2, T2, Vol2 = Vol1 for State 2; press Enter:


• Mixed	C SI C E	Ingli	sh <mark>< Cas</mark>	e-0 💙 >	F	Help Messages	On	Super-	Iterate	Super-Calculate		Load	Super-Initial	lize
	State F	anel		L.		Process	Panel			1		I/O Panel		
< ©State	e-2 💙 >		Calculate	No-Plots	*	Initialize		Formati	on Enthalpy:	O No 🔍 Yes		CO2		~
			₩ 72			Γ v2			□ u2					
500.0	kPa	~	=T1*(P2/P1)^((1	. <mark>1</mark> K	~	0.10355	m^3/kg	~	-9013.751	kJ/kg	~	-8961.977	kJ/kg	
⊏ s 2			Vel2			⊽ z2			⊏ e2			Γ j2		
4.48509	kJ/kg.K	*	0.0	m/s	~	0.0	m	*	-9013.751	kJ/kg	~	-8961.977	kJ/kg	1
phi2			psi2			Γ m2			Vol:	2		MM2		
	kJ/kg	~		kJ/kg	~	0.96573	kg	~	=Vol1	m^3	~	44.01	kg/kmol	
R2			c_p2			c_v2			k2					
0.18891	kJ/kg.K	~	0.84367	kJ/kg.K	~	0.65476	kJ/kg.K	~	1.28852	UnitLess	~			

Note that m2 is calculated as 0.96573 kg.

4. State 3 is the state of gas flowing out. Its enthalpy goes on changing during the 'flowing out' process. Let us take the enthalpy as the average of that at the beginning and end of flow, i.e. h3 is average of h1 and h2. And m3 is equal to (m1 – m2). Press Enter:

• Mixed	SI CEI	nglis	sh <mark><</mark> @Cas	se-0 🗙 >	•	lelp Messages	On	Super-	Iterate	Super-Calculate		Load	Super-Initial	ize
	State Pa	anel				Process	Panel					I/O Panel		
< ©State-3	v >	1	Calculate	No-Plots 🗸		Initialize				⊙No ⊙Yes		C02		•
p3			Г <u>Т</u> З		Г	v3			Г u3			₩ h3		
	kPa	~	287.03342	К	1		m^3/kg	*	-9005.262	kJ/kg	۷	=(h1+h2)/2	kJ/kg	1
s3			Vel3		V	z3			Г e3			Г j3		
	kJ/kg.K	*	0.0	m/s 💉		0	m	*	-9005.262	kJ/kg	*	-8951.037	kJ/kg	2
phi3			psi3		V	m3			□ Vol	3		MM3		
	kJ/kg	~		kJ/kg	/ 0	7987655	kg	~		m^3	~	44.01	kg/kmol	

 Go to Process panel, enter i-state = Null, e-state = State 3; and enter State 1 and State 2 for b-state and f-state respectively. Also, W_ext = 0. Click on Calculate and SuperCalculate. We get:

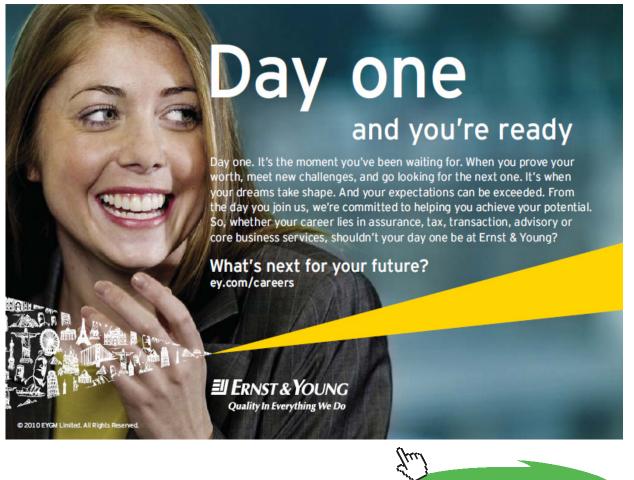
Thus: Q = 20.13 kJ (heat transferred in to the tank), m2 = 0.966 kg, T2 = 274.1 K Ans.

6. TEST code and other details can be seen in the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE:

Daemon Path: Systems>Open>Process>PG-Model; v-10.bb05

#-----Start of TEST-code -----


States {

State-1: CO2; Given: { p1= 1000.0 kPa; T1= 300.0 K; Vel1= 0.0 m/s; z1= 0.0 m; Vol1= 0.1 m^3; } State-2: CO2; Given: { p2= 500.0 kPa; T2= "T1*(P2/P1)^((1.15 - 1)/1.15)" K; Vel2= 0.0 m/s; z2= 0.0 m; Vol2= "Vol1" m^3; } State-3: CO2; Given: { h3= "(h1+h2)/2" kJ/kg; Vel3= 0.0 m/s; z3= 0.0 m; } }

Analysis {

Process-A: ie-State = State-Null, State-3; bf-State = State-1, State-2; Given: { W_ext= 0.0 kJ; T_B= 298.15 K; }

#-----End of TEST-code -----

268

Click on the ad to read more

#*****DETAILED OUTPUT:

Evaluated States:

#	State-	1: CO2 > PG-1	Model;									
#		Given: p1=	1000.0 kPa	a; T1= 300.0 K;	Vel1= 0.0 m/s;							
#		z1=	0.0 m; Vol	1= 0.1 m^3;								
#		Calculated:	v1= 0.0567	7 m^3/kg; u1=	-8996.771 kJ/kg	g; h1= -8940.098	kJ/kg;					
#		s1= 4	4.4304 kJ/l	kg.K; e1= -8996	5.771 kJ/kg; j1=	-8940.098 kJ/kg	;					
#		m1=	1.7645 kg	; MM1= 44.01	kg/kmol; R1= ().1889 kJ/kg.K;						
#		c_p1	= 0.8437 1	cJ/kg.K; c_v1=	0.6548 kJ/kg.K;	k1= 1.2885 Unit	tLess;					
#	State-	2: CO2 > PG-1	Model;									
#		Given: p2=	500.0 kPa;	T2= "T1*(P2/I	21)^((1.15 - 1)/	(1.15)" K; Vel2=	0.0 m/s;					
#		z2=	0.0 m; Vol	2= "Vol1" m^3	;							
#	Calculated: v2= 0.1036 m^3/kg; u2= -9013.751 kJ/kg; h2= -8961.977 kJ/kg;											
#		s2= 4	4.4851 kJ/l	kg.K; e2= -9013	.751 kJ/kg; j2=	-8961.977 kJ/kg	;					
#		m2=	0.9657 kg	g; MM2= 44.01	kg/kmol; R2=	0.1889 kJ/kg.K;						
#		c_p2	= 0.8437 1	cJ/kg.K; c_v2=	0.6548 kJ/kg.K;	k2= 1.2885 Unit	tLess;					
#												
#	State-	3: CO2 > PG-1	Model;									
#		Given: h3=	"(h1+h2)/2	2" kJ/kg; Vel3=	0.0 m/s; z3= 0.	0 m;						
#		Calculated:	T3 = 287.0	334 K; u3= -90	05.262 kJ/kg; e3	3= -9005.262 kJ/l	kg;					
#	j3= -8951.037 kJ/kg; m3= 0.7988 kg; MM3= 44.01 kg/kmol;											
#		R3=	0.1889 kJ/	kg.K; c_p3= 0.8	8437 kJ/kg.K; c <u></u>	_v3= 0.6548 kJ/k	cg.K;					
#		k3=	1.2885 Un	itLess;								
#	Prope	rty spreadsheet	starts:									
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)					
#	1	1000.0	300.0	0.0567	-8996.77	-8940.1	4.43					
#	2	500.0	274.1	0.1035	-9013.75	-8961.98	4.485					
#	3		287.0		-9005.26	-8951.04						
#	Prope	rty spreadsheet	ends									
# Mass	s, Energ	y, and Entrop	y Analysis	Results:								
#	Proce	ss-A: ie-State =	State-Nu	ll, State-3; bf-St	ate = State-1, S	tate-2;						
#		Given: W_e	xt= 0.0 kJ;	T_B= 298.15 k	ζ;							
#		Calculated:	Q= 20.132	.648 kJ; Delta_1	E= 7169.9126 k	J; Jdot_net= 7149	9.78 kJ; Delta_S=					
-3.4860	0783 kJ/	К;										

Prob.5.41. A rigid tank has a volume of 0.06 m³ and initially contains two phase liquid-vapour mixture of H2O at a pressure of 15 bar and a quality of 20%. As the tank contents are heated, a pressure regulating valve keeps the pressure constant in the tank by allowing sat. vap. to escape. Neglecting KE and PE changes (a) determine the total mass in the tank, in kg and the amount of heat transfer, in kJ, if heating continues until the final quality is 0.5 (b) plot the total mass in the tank, and the amount of heat transfer versus final quality, x, ranging from x = 0.2 to 1. [Ref. 3]

TEST Solution:

This is a problem on discharging a tank. i.e. Uniform State, Uniform Flow type of problem. See eqn. 5.14 at the beginning of this chapter.

	th	ermofluids.ne	t > Daemon M	ap	
	Daemons	(Thermod	ynamic Ca	lculators)	
Basic Too	ls	System	Analysis	States	& Properties
Unit DeskCa Converter	l Tables & Charts	Closed	Open	Uniform System	Uniform Flow
Unsteady Proc	ess Si	teady State (cycles)	Steady S	State Un	steady Process
Generic @	Specific		Generic	2	Specific
Reciprocating Uniform	Non-Mixing		l ni-Mixing	mb. & Equilibriu Mixing	m
System	Non-Uniform	Non	-Uniform	Non-Uniform	
1				1	
Single-Flow 🌐	Non-Mixing	g Multi-Flow	· •	lixing Multi-Flow	′ @
	1			1	1
Vapor and Gas Power Cycles	Refrigeratio Cycles		VAC rometry	Gas Dynamics	Combustion & Equilibrium

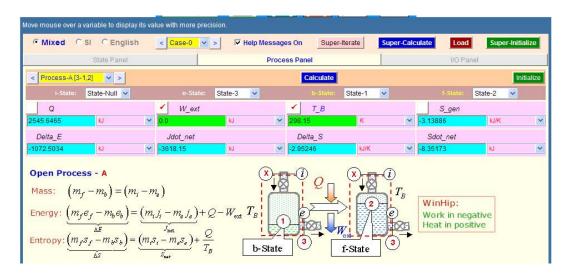
1. Select System Analysis – Open – Unsteady Process daemon as shown below:

2. Choose PC model for Material model since H2O is the working substance.

A A	Pure Phase-Transition Fluid: The phase-change (PC) model can be used to determine states of sub-cooled (compressed) liquid, super-heated vapor, and saturated mixture of liquid and vapor phases. Based on the saturation and super-heated tables, the model is quite accurate. Sub-cooled liquid is modeled with the compressed-liquid sub-model, except for species with an asterisk (H2O* as opposed to H2O), which uses compressed liquid table for better accuracy.
	ne PC Model 100, R-12, NH3, R-134a, N2, CO2, etc., should be treated as PC fluids if there is any possibility or a prosecularistical Examples: Analyze a steady steam turbine with one inlet and one exit. For specific examples, click on the help icon at the bottom margin of the daemon.
p= 0 SL Model	Pure Solid and Pure Liquid: Constant density and constant specific heats ($c_p = c_v = c$) characterize the solid/liquid (SL) model. Beside a wide selection to choose from, a new solid or liquid can be created by assigning custom material properties. Working substances such as steel, iron, copper, aluminum, wood, water, oil, etc., which can be assumed to maintain their condensed (solid or liquid) phase when a system undergoes other changes, can be analyzed with the SL model. Examples: Liquid water is pumped steadily from a given inlet-state to a given exit-state with no possibility of a phase change. For specific examples, click on the help icon at the bottom margin of the daemon.
PG Model	Pure Gas: A pure gas has a fixed chemical composition across space and time. Oxygen, nitrogen, and air are examples of a pure gas. The PG (perfect gas) model is the simplest gas model which obeyes the ideal gas equation (<i>pv</i> = <i>RT</i>) and assumes specific heats to be constant. In the IG (ideal gas) model, specific heats are assumed to be function of temperature only. The RG (real gas) model uses generalized compressibility charts and is useful for gases near the critical or super-critical conditions for which PC-model data are not avaiable.

3. Select H2O as the working substance and enter data, i.e. P1, x1 and Vol1 for State 1. Press Enter:

			thermo	ofluids.net > I Home <i>of</i>	ss Daemon: Daemons > Sys							
Move mouse over	r a variable t	o disp	play its value with i	TEST more precision			Jo VI					
• Mixed	C SI C	Engl	ish <mark><</mark> Cas	se-0 💙 >	🔽 Help Messa	ges On Su	iper-Iterate	Super-Calcula	te	Load	Super-Initiali	ze
	State	Pane			Proc	ess Panel				I/O Panel		
< ©State	-1 ▼ >		Calculate	No-P	lots 💌	Initialize	Sat.Mixtu	re: Liq.+Vap.		H20	~	
🖌 p1			T1		✓ x1		y1			v1		
15.0	bar	~	198.3066	deg-C 💉	0.2	fraction	♥ 0.96617	fraction	*	0.0273	m^3/kg	~
ut			ht		s1		< V	el1		✓ z1		
1193.3645	kJ/kg	~	1234.291	kJ/kg 💊	3.14088	kJ/kg.K	✓ 0.0	m/s	~	0.0	m	~
e1			j1		phi1		psit			m1		
1193.3645	kJ/kg	*	1234.291	kJ/kg		kJ/kg	~	kJ/kg	~	2.19789	kg	~
Vol1			MM1									
0.06	m^3	*	18.0	kg/kmol 💊								


4. Enter P2 = P1, x2 and Vol2=Vol1 for State 2, press Enter:

Panel
v2
652 m^3/kg *
z2
m.
m2
204 kg i

5. For the fluid flowing out, it is State 3. Enter P3 = P1, x3 = 1 (since, by data, it is sat. vap.) and m3 = (m1-m2). Press Enter:

Mixed CSI CI	Engi	ish < Cas	se-0 💙 >	Help M	essages On	Super-Ite	super-Calcul	ate	Load	Super-Initial	ize
State	Pane	ĺ			Process Panel				1/0 Panel		
< ©State-3 🗸 >		Calculate	No	-Plots 💌	Initialize	S	Saturated Vapor		H20	~	
p3	-	T3		🖌 x3			y3	1	v3		
p1 bar	~	198.3066	deg-C	✓ 1.0	fraction	× 1	.0 fraction	~	0.13188	m^3/kg	1
u3		h3		\$3			Vel3		🖌 z3		
594.395 kJ/kg	~	2792.101	kJ/kg	♥ 6.44497	kJ/kg.K	× 0	.0 m/s	~	0.0	m	
e3		j3		phi3			psi3		🖌 m3		
594.395 kJ/kg	~	2792.101	kJ/kg	~	kJ/kg	~	kJ/kg	~	=m1-m2	kg	

6. Go to Process panel. Enter i-state = Null, e-state = State 3 (i.e. fluid flowing out). Also, enter States 1 and 2 for b-state and f-state respectively. Enter W_ext = 0. Press Enter. We get:

Note that Q is calculated as: Q = 2545.65 kJ ... = heat supplied.... Ans.

7. Click on SuperCalculate: Go to I/O panel to see TEST code etc:

#~~~~OUTPUT OF SUPER-CALCULATE :

#	Daemon Path: Systems>Open>Process>PC-Model; v-10.cb01
#	Start of TEST-code
States	{
	State-1: H2O;
	Given: { p1= 15.0 bar; x1= 0.2 fraction; Vel1= 0.0 m/s; z1= 0.0 m; Vol1= 0.06 m^3; }
	State-2: H2O;
	Given: { p2= "p1" bar; x2= 0.5 fraction; Vel2= 0.0 m/s; z2= 0.0 m; Vol2= "vol1" m^3; }
	State-3: H2O;
	Given: { p3= "p1" bar; x3= 1.0 fraction; Vel3= 0.0 m/s; z3= 0.0 m; m3= "m1-m2" kg; }
	}
Analysi	is {
	Process-A: ie-State = State-Null, State-3; bf-State = State-1, State-2;
	Given: { W_ext= 0.0 kJ; T_B= 298.15 K; }
	}
#	End of TEST-code

#

#*****DETAILED OUTPUT:

Evaluated States:

#	State-1: H2O > Saturated Mixture;
#	Given: p1= 15.0 bar; x1= 0.2 fraction; Vel1= 0.0 m/s;
#	z1= 0.0 m; Vol1= 0.06 m^3;
#	Calculated: T1= 198.3066 deg-C; y1= 0.9662 fraction; v1= 0.0273 m^3/kg;
#	u1= 1193.3645 kJ/kg; h1= 1234.291 kJ/kg; s1= 3.1409 kJ/kg.K;
#	e1= 1193.3645 kJ/kg; j1= 1234.291 kJ/kg; m1= 2.1979 kg;
#	MM1= 18.0 kg/kmol;
#	State-2: H2O > Saturated Mixture;
# #	State-2: H2O > Saturated Mixture; Given: p2= "p1" bar; x2= 0.5 fraction; Vel2= 0.0 m/s;
#	Given: p2= "p1" bar; x2= 0.5 fraction; Vel2= 0.0 m/s;
#	Given: p2= "p1" bar; x2= 0.5 fraction; Vel2= 0.0 m/s; z2= 0.0 m; Vol2= "vol1" m^3;
# # #	Given: p2= "p1" bar; x2= 0.5 fraction; Vel2= 0.0 m/s; z2= 0.0 m; Vol2= "vol1" m^3; Calculated: T2= 198.3066 deg-C; y2= 0.9913 fraction; v2= 0.0665 m^3/kg;
# # #	Given: p2= "p1" bar; x2= 0.5 fraction; Vel2= 0.0 m/s; z2= 0.0 m; Vol2= "vol1" m^3; Calculated: T2= 198.3066 deg-C; y2= 0.9913 fraction; v2= 0.0665 m^3/kg; u2= 1718.751 kJ/kg; h2= 1818.4697 kJ/kg; s2= 4.3799 kJ/kg.K;

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

GJERRY'S

Dove

Click on the ad to read more

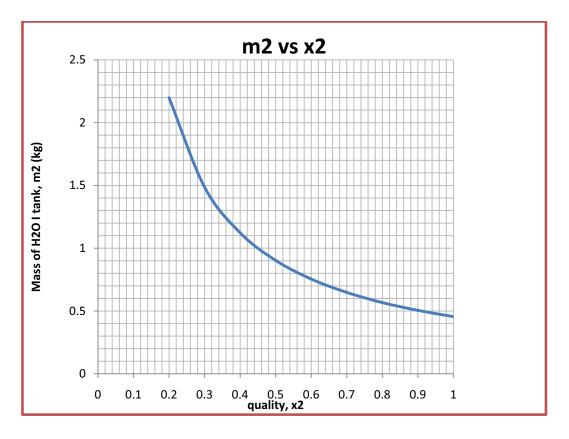
#	State-3: H2O > Saturated Mixture;
#	Given: p3= "p1" bar; x3= 1.0 fraction; Vel3= 0.0 m/s;
#	z3= 0.0 m; m3= "m1-m2" kg;
#	Calculated: T3= 198.3066 deg-C; y3= 1.0 fraction; v3= 0.1319 m^3/kg;
#	u3= 2594.395 kJ/kg; h3= 2792.101 kJ/kg; s3= 6.445 kJ/kg.K;
#	e3= 2594.395 kJ/kg; j3= 2792.101 kJ/kg; Vol3= 0.1709 m^3;
#	MM3= 18.0 kg/kmol;

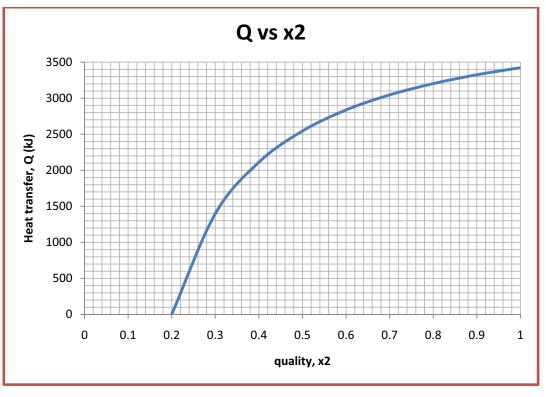
#-----Property spreadsheet starts:

# State	p(kPa)	T(K)	х	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	1500.0	471.5	0.2	0.0273	1193.36	1234.29	3.141
# 02	1500.0	471.5	0.5	0.0665	1718.75	1818.47	4.38
# 03	1500.0	471.5	1.0	0.1319	2594.4	2792.1	6.445

Mass, Energy, and Entropy Analysis Results:

#	Process-A: ie-State = State-Null, State-3; bf-State = State-1, State-2;
#	Given: W_ext= 0.0 kJ; T_B= 298.15 K;
#	Calculated: Q= 2545.6465 kJ; S_gen= -3.1388645 kJ/K; Delta_E= -1072.5034 kJ; Jdot_
net= -3	3618.15 kJ;
#	Delta_S= -2.9524584 kJ/K; Sdot_net= -8.351734 kJ;

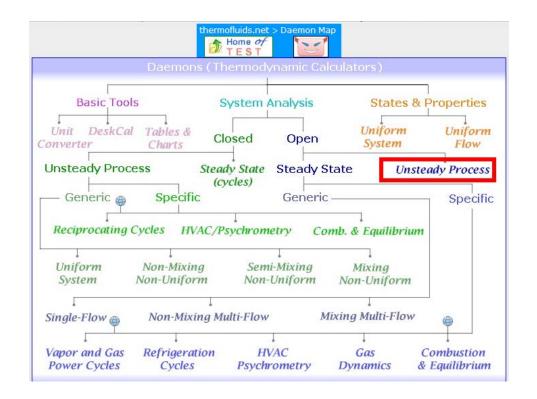



(b) Plot m2, Q against final quality, x2:

The procedure is simple: Go to State 2, change x2 to desired value, press Calculate, and then SuperCalculate. All calculations are immediately up-dated. Read the values of m2 from State 2, and Q from the Process panel. Do this for all desired values of x2 and tabulate as shown below:

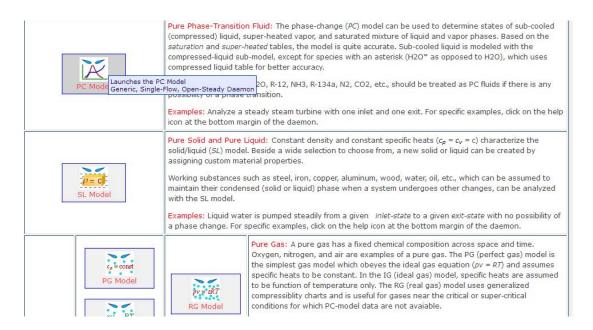
x2	m2 (kg)	Q (kJ)
0.2	2.19789	0
0.3	1.486	1398.07
0.4	1.123	2112.21
0.5	0.902	2545.65
0.6	0.754	2836.7
0.7	0.648	3045.63
0.8	0.567	3202.9
0.9	0.505	3325.56
1	0.455	3423.9

Now, plot the results in EXCEL:



Prob.5.42. A well insulated rigid tank of volume 10 m³ is connected to a large steam line through which steam flows at 15 bar and 280 C. The tank is initially evacuated. Steam is allowed to flow into the tank until the pressure inside is P. (a) Determine the amount of mass in the tank, and the temp in the tank , when P = 15 bar (b) Plot the quantities in part (a) versus P ranging from 0.1 to 15 bar. [Ref. 3]

TEST Solution:

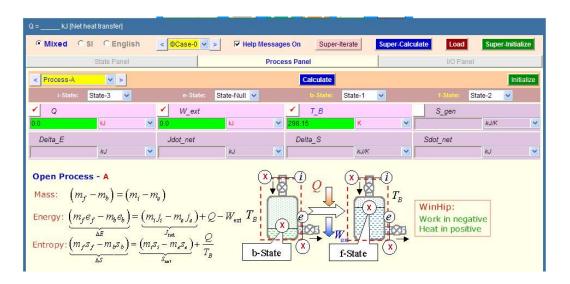

This is a problem on charging a tank. i.e. Uniform State, Uniform Flow type of problem. See eqn. 5.14 at the beginning of this chapter.

1. Select System Analysis - Open - Unsteady Process daemon as shown below:

2. Choose PC model for Material model since H2O is the working substance.

3. Select H2O as the working substance and enter data, i.e. P1=0, m1=0 (since evacuated tank), and Vol1 = 10 m^3 for State 1. Press Enter:

			therm		ss Daemon Daemons > S		·	PC) Model cess > PC-Model)dt				
		o disp Engl	play its value with lish < Ca	more precision	Help Mess	ages On	Super-Itera	te Super-Calcu	late	Load	Super-Initiali	ize
	State	1			Pro	- ocess Panel				I/O Panel		
< ©State	<mark>-1 ∨</mark> >		Calculate	No-P	Plots 🔽	Initialize	Sa	urated Solid		H2O	~	
✓ p1	bar	~	71	deg-C 💊	x1	fraction	✓ 0.0	y1 fraction	*	v1	m^3/kg	*
u1			h1		s1		/	Vel1		✓ z1		
0.0	kJ/kg	*	0.0	kJ/kg 💊	0.0	kJ/kg.K	✓ 0.0	m/s	~	0.0	m	*
et			j1		phi1		p	si1		🖌 m1		
0.0	kJ/kg	~	0.0	kJ/kg 💊	× 0.0	kJ/kg	✓ 0.0	kJ/kg	*	0.0	kg	~
✓ Vol1			MM1									
10.0	m^3	~	18.0	kg/kmol 💊	*							


4. For State 2, enter P2, Vol2, and u2 = h3 for filling an evacuated tank (see eqn. 5.14 at the beginning of this chapter). Press Enter:

• Mixed	SI C En	glish	< ©Ca	se-0 🗸	>	🔽 Help Mess	ages On	Super-	Iterate	Super-Calculate		Load	Super-Initiali	ze
	State Pa	nel				Pro	cess Panel			5		I/O Panel		
< ©State-2	¥ >		Calculate		No-Plot	s 🗸	Initialize		Unknown P	hase	1	H20	~	
p2			T2			x2			y2			v2		
5.0	bar	•	- Alexandria	deg-C	*		fraction	*		fraction	~		m^3/kg	1
u2			h2			s2			✓ Vel2			✓ z2		
h3 k	J/kg	~		kJ/kg	~		kJ/kg.K	*	0.0	m/s	*	0.0	m	1
e2			j2			phi2			psi2			m2		
k	J/kg	×		kJ/kg	*		kJ/kg	*		kJ/kg	~		kg	1

5. State 3 refers to the fluid in the line. Enter P3, T3 and m3 = m2. Press Enter:

Move mouse over	a variable to	o disp	olay its value with	more preci	sion.									
• Mixed	C SI C I	Engl	ish < <mark>©C</mark>	ase-0 🗸	>	🔽 Help Mes	sages On	Super-	-Iterate	Super-Calculate		Load	Super-Initia	lize
	State	Pane	1			Pr	ocess Panel					I/O Panel		
< ©State	-3 💙 >		Calculate	j.	No-Pio	s 💌	Initialize		Superheated	l Vapor		H2O	~	
🖌 p3			🖌 T3			x3			y3			v3		
15.0	bar	~	280.0	deg-C	~		fraction	~		fraction	~	0.16257	m^3/kg	~
u3			h3			<i>s</i> 3			✓ Vel3			🖌 z3		
2747.9565	kJ/kg	~	2991.815	kJ/kg	~	6.83407	kJ/kg.K	~	0.0	m/s	~	0.0	m	*
e3			j3			phi3			psi3			🖌 m3		
2747.9565	kJ/kg	*	2991.815	kJ/kg	~		kJ/kg	*		kJ/kg	~	=m2	kg	1
Vol3			ММЗ											
	<i>m</i> ^3	*	18.0	kg/kmol	~									

6. Now, go to Process Panel. Enter i-state = State 3, e-state = Null, and enter States 1 and 2 for b-state and f-state respectively. Also, enter Q = o (since the tank is insulated) and W_ext = o (since no external work). Press Calculate:

7. Now, click on SuperCalculate. Go to States panel. We get:

State	1:	

Move n	Nove mouse over a variable to display its value with more precision.																
•	Mixed	C SI C	Engl	ish	< 003	ase-0 💙 🗦	>	🔽 Help Messa	iges On	Supe	r-Iterate	Super-Calcu	ilate	L	oad	Super-Initia	lize
		State	Panel	1				Pro	cess Panel					1/0) Panel		
	< ©Stat	te-1 💙 >			Calculate	N	lo-Plo	ots 💌	Initialize		Satura	ated Mixture		H2	0	~	
<u> </u>	p1				T1			x1	10			/1			vt		
0.0		bar	~	-27	3.15	deg-C	*	0.0	fraction	*	0.0	fraction	~	Infin	nity	m^3/kg	*
	u1				h1			s1			×	Vel1		1	z1		
0.0		kJ/kg	~	0.0		kJ/kg	~	0.0	kJ/kg.K	~	0.0	m/s	*	0.0		m	*
	et				j1			phit			psit			1	<i>m</i> 1		
0.0		kJ/kg	~	0.0		kJ/kg	~	0.0	kJ/kg	*	0.0	kJ/kg	*	0.0		kg	*
1	Vol1			1	MM1												
10.0		m^3	~	18.	0	kg/kmol	~										

State 2:

• Mixed	C SI C	Engl	ish < OC	ase-0 🗸	>	₩ Help Mes	sages On	Super	-Iterate	Super-Calculate		Load	Super-Initia	lize
	State	Pane	i	1		Pr	ocess Panel				L	/O Panel		
< ©Stat	e-2 💙 >		Calculate		No-Plo	its 🐱	Initialize		Superhea	ated Vapor	Н	20	~	
🖌 p2			T2			x2			y2			v2		
15.0	bar	*	423.98807	deg-C	*		fraction	*		fraction	✓ 0.2	21071	m^3/kg	
u2			h2			s2			🖌 Ve	12	1	z2		
:h3	kJ/kg	~	3307.8813	kJ/kg	*	7.34096	kJ/kg.K	*	0.0	m/s	~ 0.C)	m	
e2			j2			phi2			psi2			m2		
991.815	kJ/kg	*	3307.8813	kJ/kg	*		kJ/kg	*		kJ/kg	× 47	45839	kg	
Vol2			MM2			e.								
=vol1	m^3	~	18.0	kg/kmol	Y									

We see that: T2 = 423.99 C, m2 = 46.46 kg ... Ans.

8. I/O panel gives TEST code etc:

#~~~~OUTPUT OF SUPER-CALCULATE:

Daemon Path: Systems>Open>Process>PC-Model; v-10.cb01

#-----Start of TEST-code -----

States {

State-1: H2O; Given: { p1= 0.0 bar; Vel1= 0.0 m/s; z1= 0.0 m; m1= 0.0 kg; Vol1= 10.0 m^3; } State-2: H2O; Given: { p2= 15.0 bar; u2= "h3" kJ/kg; Vel2= 0.0 m/s; z2= 0.0 m; Vol2= "vol1" m^3; } State-3: H2O; Given: { p3= 15.0 bar; T3= 280.0 deg-C; Vel3= 0.0 m/s; z3= 0.0 m; m3= "m2" kg; } }

#-----End of TEST-code -----

*#-----*Property spreadsheet starts:

# State	p(kPa)	T(K)	Х	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 01	0.0	0.0	0.0	Infinity	0.0	0.0	0.0
# 02	1500.0	697.1		0.2107	2991.81	3307.88	7.341
# 03	1500.0	553.2		0.1626	2747.96	2991.81	6.834

(b) Plot m2, T2 against final pressure P2:

Procedure: Go o State 2, change P2 to desired value, and click on Calculate, and SuperCalculate. Immediately, all calculations are updated. Read the values of T2 and m2. Repeat this procedure for all desired values of P2. Tabulate the results as shown below:

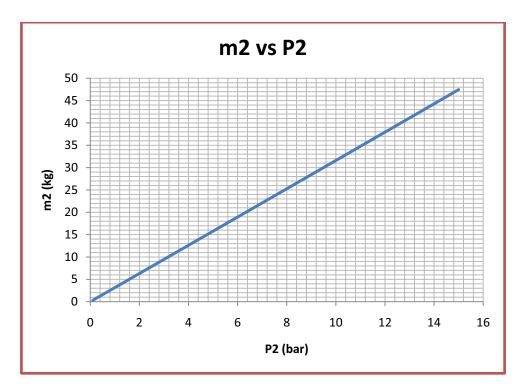
P2(bar)	m2 (kg)	T2 (deg.C)
0.1	0.315	414.05
0.5	1.577	414.31
1	3.154	414.65
2	6.31	415.32
4	12.63	416.67
6	18.95	418.01
8	25.27	419.35
10	31.60	420.68
12	37.94	422.0
13	41.11	422.67
15	47.46	423.99

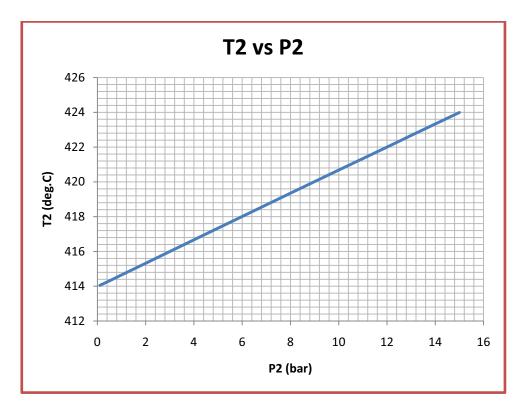
Grant Thornton $-a^{really}$ great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers


© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd



Download free eBooks at bookboon.com

282

Now, plot the results in EXCEL:

5.4 References:

- 1. *Yunus A. Cengel & Michael A. Boles*, Thermodynamics, An Engineering Approach, 7th Ed. McGraw Hill, 2011.
- 2. *Sonntag, Borgnakke & Van Wylen*, Fundamentals of Thermodynamics, 6th Ed. John Wiley & Sons, 2005.
- 3. *Michel J. Moran & Howard N. Shapiro*, Fundamentals of Engineering Thermodynamics, 4th Ed. John Wiley & Sons, 2000.
- 4. P.K. Nag, Engineering Thermodynamics, 2nd Ed. Tata McGraw Hill Publishing Co., 1995.
- 5. *R.K. Rajput*, A Text Book of Engineering Thermodynamics, Laxmi Publications, New Delhi, 1998.

To see Part III, download: Basic Thermodynamics: Software Solutions – Part III