Basic

Thermodynamics: Software Solutions Part II

Dr. M. Thirumaleshwar

Dr. M. Thirumaleshwar

Basic Thermodynamics:
 Software Solutions - Part II

(Work, Heat, I Law applied to Closed systems and Flow processes)

Basic Thermodynamics: Software Solutions - Part II $1^{\text {st }}$ edition
© 2014 Dr. M. Thirumaleshwar \& bookboon.com
ISBN 978-87-403-0673-6

Contents

To see Part-I, download: Basic Thermodynamics: Software Solutions - Part I

> Dedication Part I

Message by Rev.Fr. Joseph Lobo, Director, SJEC, Mangalore, India
Part I

Preface
Part I

About the Author
Part I

About the Software used
Part I

To the Student
Part I

$\mathbf{1}$	Introduction to Software used	Part I
1.1	Introduction	Part I
1.2	About the Software used	Part I
1.3	'Free' Software	Part I

DESTINATIONS	GATE	Abav/
INDUSTRY TMPACT	OW	R
GLÖBAL ASSIGNMENTS	OW	FASTER
SENT OR CLIENT CONTACT	OW	FASTER
CAREER DEVELOPMENT	OW	FASTER
MAKE PARTNER	OW	FASTER FASTER

(OLIVER WYMAN

GET THERE FASTER
Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.
Discover the world of Oliver Wyman at oliverwyman.com/careers

1.4	Summary	Part I
1.5	References	Part I

2 SI Units, Unit conversion, Pressure, Temperature etc.
Part I
2.1 Introduction Part I
2.2 Intl. System of Units (S.I.)
2.3 Conversion of Units
Part I
Part I
Part I
2.4 Examples of Unit conversion
2.5 Examples of Pressure measurements with Manometers
2.6 Examples of Temperature measurements with Thermocouples
2.7 Constant Volume gas Thermometer
2.8 Resistance Thermometer Detectors (RTD)
2.9 Summary
Part I
Part I
Part I
Part I
Part I
Part I
2.10 References
3. Properties of Pure Substances Part I
3.1 Introduction Part I
3.2 Property diagrams for Water: Part I
3.3 Property diagrams from Software: Part I
3.4 Property diagrams and Tables: Part I

3.5 Problems Part I
3.6 Determination of 'quality' of wet steam: Part I
3.7 Conclusion Part I
3.8 References Part I
3.9 Exercise problems Part I
4 Work, Heat and I Law of Thermodynamics applied to Closed systems 8
4.1 Formulas used: 9
4.2 Problems solved with EES 16
4.3 Problems solved with The Expert System for Thermodynamics (TEST) 49
4.4 References: 101
5 I Law of Thermodynamics applied to Flow Processes 102
5.1 Formulas used: 102
5.2 Problems solved with EES: 108
5.3 Problems solved with The Expert System for Thermodynamics (TEST): 151
5.4 References: 284

In the past four years we have drilled

81,000 km

That's more than twice around the world.

Who are we?

We are the world's leading oilfield services company. Working globally—often in remote and challenging locations-we invent, design, engineer, manufacture, apply, and maintain technology to help customers find and produce oil and gas safely.

Who are we looking for?
We offer countless opportunities in the following domains:

- Engineering, Research, and Operations
- Geoscience and Petrotechnical
- Commercial and Business

If you are a self-motivated graduate looking for a dynamic career, apply to join our team.

careers.slb.com

$\mathbf{6}$	II Law of Thermodynamics	
6.1	Formulas used	Part III
6.2	Problems (EES)	Part III
6.3	Problems (TEST)	Part III
6.4	References	Part III
7	Entropy	Part III
7.1	Formulas used	Part III
7.2	Problems	Part III
7.3	References	Part III
$\mathbf{8}$	Availability and Irreversibility	Part IV
8.1	Formulas used	Part IV
8.2	Problems	Part IV
8.3	References	Part IV
		Part IV
$\mathbf{9}$	Real and Ideal gases, and Gas mixtures	Part IV
9.1	Formulas used	Part IV
9.2	Problems	Part IV
9.3	References	

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research \& Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

4 Work, Heat and I Law of Thermodynamics applied to Closed systems

Learning objectives:

1. Total energy of a system is defined as the sum of internal energy, kinetic energy and potential energy. i.e. on a unit mass basis: $\mathrm{e}=\mathrm{u}+\mathrm{C}^{2} / 2+\mathrm{g} . \mathrm{z}$ where C is the velocity, z is the elevation from a datum.
2. Energy crosses the boundary of a closed system either as Work or Heat, or as both.
3. Both Work and Heat are 'path functions', i.e. inexact differentials.
4. In Thermodynamics, Work is said to be done by a system if the sole effect things external to the system can be reduced to the raising of a weight.
5. 'Boundary work' for a simple compressible system is given by:

$$
\mathrm{W}_{12}=\int_{\mathrm{V} 1}^{\mathrm{V} 2} \mathrm{pdV}
$$

6. Similarly, other types of work, viz. electrical work, shaft work, paddle work, flow work, work in stretching a wire, work due to surface tension, magnetization work, free expansion etc. have to be considered, if need be.
7. 'Heat transfer' is energy transfer due to temperature difference only.
8. Conduction, Convection and Radiation are the main modes of heat transfer. Heat transfer may occur in one of these modes or, in some cases, one or more modes may be present.

9. First Law is a statement of conservation of Energy.

10. First Law for a system undergoing a cycle, and for processes in a closed system are considered.
11. Different processes for an ideal gas in a closed system (as in a piston-cylinder device) are of special interest.

4.1 Formulas used:

4.1.1 Work:

Work $=$ Force \times distance, N.m (= 1 Joule)

Work is a 'path function' i.e. an inexact differential.
4.1.2 pdV- work or displacement work:
$d W=p \cdot d V$
$\mathrm{W}_{12}=\int_{\mathrm{V} 1}^{\mathrm{V} 2} \mathrm{pdV} \quad \ldots$. Integration performed on a quasi-static path
4.1.3 pdV- work in various quasi-static processes:
(a). Constant pressure (isobaric) process:

$$
\mathrm{w}_{12}=\mathrm{p} \cdot(\mathrm{~V} 2-\mathrm{V} 1)
$$

(b). Constant volume (isochoric) process:

$$
\mathrm{w}_{12}=0
$$

(c). For a process in which $\mathrm{pV}=$ const....Isothermal process:

$$
\mathrm{w}_{12}=\mathrm{p} 1 \cdot \cdot \mathrm{~V} 1 \cdot \ln \left(\frac{\mathrm{p} 1}{\mathrm{p} 2}\right)
$$

(d). For a process in which $\mathrm{p} \mathrm{V}^{\prime}=$ const....reversible adiabatic or isentropic process:

$$
\mathrm{w}_{12}=\frac{\mathrm{p} 1 \cdot \mathrm{~V} 1-\mathrm{p} 2 \cdot \mathrm{~V} 2}{\gamma-1}=\frac{\mathrm{R} \cdot(\mathrm{~T} 1-\mathrm{T} 2)}{\gamma-1}=\frac{\mathrm{p} 1 \cdot \mathrm{~V} 1}{\mathrm{n}-1} \cdot\left[1-\left(\frac{\mathrm{p} 2}{\mathrm{p} 1}\right)^{\frac{\gamma-1}{\gamma}}\right]
$$

Also, for a perfect gas:

$$
\mathrm{p} \cdot \mathrm{v}=\mathrm{R} \cdot \mathrm{~T}
$$

And for isentropic process, $\mathrm{pv}^{\prime}=$ const., we have:

$$
\begin{aligned}
& \mathrm{T} \cdot \mathrm{v}^{\gamma-1}=\text { constant } \\
& \frac{\mathrm{p} 2}{\mathrm{p} 1}=\left(\frac{\mathrm{v} 1}{\mathrm{v} 2}\right)^{\gamma}
\end{aligned}
$$

$$
\frac{\mathrm{T} 2}{\mathrm{~T} 1}=\left(\frac{\mathrm{v} 1}{\mathrm{v} 2}\right)^{\gamma-1}
$$

$$
\frac{\mathrm{T} 2}{\mathrm{~T} 1}=\left(\frac{\mathrm{p} 2}{\mathrm{p} 1}\right)^{\frac{\gamma-1}{\gamma}}
$$

(e). For a process in which $\mathrm{pV}^{\mathrm{n}}=$ const.... polytropic process:

$$
\begin{aligned}
& \mathrm{W}_{12}=\frac{\mathrm{p} 1 \cdot \mathrm{~V} 1-\mathrm{p} 2 \cdot \mathrm{~V} 2}{\mathrm{n}-1}=\frac{\mathrm{p} 1 \cdot \mathrm{~V} 1}{\mathrm{n}-1} \cdot\left[1-\left(\frac{\mathrm{p} 2}{\mathrm{p} 1}\right)^{\frac{\mathrm{n}-1}{\mathrm{n}}}\right] \\
& \text { i.e. } \quad \mathrm{W}_{12}=\frac{\mathrm{R} \cdot(\mathrm{~T} 1-\mathrm{T} 2)}{\mathrm{n}-1}
\end{aligned}
$$

Also: for a polytropic process:

$$
\begin{aligned}
& \frac{\mathrm{p} 2}{\mathrm{p} 1}=\left(\frac{\mathrm{v} 1}{\mathrm{v} 2}\right)^{\mathrm{n}} \\
& \frac{\mathrm{~T} 2}{\mathrm{~T} 1}=\left(\frac{\mathrm{v} 1}{\mathrm{v} 2}\right)^{\mathrm{n}-1} \\
& \frac{\mathrm{~T} 2}{\mathrm{~T} 1}=\left(\frac{\mathrm{p} 2}{\mathrm{p} 1}\right)^{\frac{\mathrm{n}-1}{\mathrm{n}}}
\end{aligned}
$$

For a perfect gas:

$$
\begin{aligned}
& \mathrm{p} \cdot \mathrm{v}=\mathrm{R} \cdot \mathrm{~T} \quad \mathrm{du}=\mathrm{cv} \cdot \mathrm{dT} \\
& \gamma=\frac{c_{p}}{c_{v}} \quad \quad c_{p}-c_{v}=\mathrm{R} \\
& \text { i.e. } \quad c_{v}=\frac{\mathrm{R}}{\gamma-1}
\end{aligned}
$$

Then, heat transfer during a polytropic process (for a perfect gas):

$$
\mathrm{Q}=(\mathrm{u} 2-\mathrm{u} 1)+\mathrm{W}=\mathrm{c}_{\mathrm{v}} \cdot(\mathrm{~T} 2-\mathrm{T} 1)+\mathrm{R} \cdot(\mathrm{~T} 1-\mathrm{T} 2)
$$

Simplifying, we get:

$$
\mathrm{Q}_{\mathrm{poly}}=\frac{\gamma-\mathrm{n}}{\gamma-1} \cdot \frac{\mathrm{R} \cdot(\mathrm{~T} 1-\mathrm{T} 2)}{\mathrm{n}-1}
$$

$$
\text { i.e. } \quad \mathrm{Q}_{\text {poly }}=\frac{\gamma-\mathrm{n}}{\gamma-1} \cdot \mathrm{~W}_{\text {poly }}
$$

Polytropic sp. heat:

$$
\text { Polytr. sp. heat: } \quad \mathrm{c}_{\mathrm{n}}=\mathrm{c}_{\mathrm{v}} \cdot \frac{\gamma-\mathrm{n}}{1-\mathrm{n}}
$$

Mean Effective Pressure (MEP, or p_{m}):

$$
\mathrm{MEP}=\frac{\text { Area_of_Indicator_diagram }}{\text { Stroke_length }} \cdot \mathrm{K} \quad \ldots \text { where } \mathrm{k}=\text { Spring constant. }
$$

Indicated Power (IP):

$$
\mathrm{IP}=\frac{\mathrm{p}_{\mathrm{m}} \cdot \mathrm{~A} \cdot \mathrm{~L} \cdot \mathrm{~N}}{60} \quad \mathrm{~kW} \ldots \text { for a two stroke engine...where } \mathrm{pm} \text { is in } \mathrm{kPa}, \mathrm{~A} \text { in }
$$

Note: Put $\mathrm{N}=\mathrm{N} / 2$ for four stroke engine

Brake Power (BP):

$$
\mathrm{BP}=\frac{2 \cdot \pi \cdot \mathrm{~N} \cdot \mathrm{~T}}{60} \quad \ldots \text { where } \mathrm{N} \text { is } \mathrm{RPM}, \mathrm{~T} \text { is Torque }
$$

Mech. efficiency:

$$
\eta_{\text {mech }}=\frac{\mathrm{BP}}{\mathrm{IP}}
$$

4.1.4 Other types of Work transfer:

1. Electrical Power:

$$
\mathrm{w}_{\mathrm{dot}}=\mathrm{E} \cdot \mathrm{I}
$$

2. Shaft Work:

$$
\mathrm{W}_{\text {shaft }}=\mathrm{T} \cdot \omega \quad \ldots \text { where } \mathrm{T} \text { is Torque, } \omega \text { is angular velocity }
$$

3. Paddle work or Stirring work:

$$
\mathrm{W}=\int_{1}^{2} \mathrm{~m} \cdot \mathrm{gdZ}=\int_{1}^{2} \mathrm{Td} \theta
$$

4. Flow Work:

$$
\mathrm{w}_{\text {flow }}=\mathrm{p} \cdot \mathrm{v} \quad \ldots \text { per unit mass }
$$

5. Work done in stretching a wire:

$$
\mathrm{W}=-\int_{1}^{2} \mathrm{JdL} \quad \text {..where } \mathrm{J} \text { is the tension, } \mathrm{dL} \text { is expansion of wire }
$$

6. Work done in changing the area of a surface film:

$$
\left.\mathrm{W}=-\int_{1}^{2} \sigma \mathrm{dA} \quad . . \text { where } \sigma \text { is the surface tension } \mathrm{N} / \mathrm{m}\right)
$$

7. Work done in magnetization of a paramagnetic solid:

$$
\mathrm{W}=-\int_{1}^{2} \mathrm{HdI} \quad \begin{aligned}
& \text {..where } \mathrm{H} \text { is the field strength and } \mathrm{I} \text { is the component of magnetization } \\
& \text { field in the direction of the field }
\end{aligned}
$$

8. Work done in Free expansion:

$\mathrm{W}_{\text {free_expn }}=0 \quad$...since there is no resistance to the fluid at boundary

4.1.5 Heat Transfer, Q:

Q is positive while flowing into the system;

W is positive if work is done by the system.

Heat Transfer Q_{12} :

Heat transfer is a path function.

$$
\mathrm{Q}_{12}=\int_{1}^{2} \mathrm{~T} \mathrm{ds} \quad \ldots \text { where } \mathrm{T} \text { is in } \mathrm{K}, \mathrm{~s} \text { is entropy }
$$

Specific heat, c:

It is the amount of heat required to raise a unit mass of substance through a unit rise in temperature.

$$
\mathrm{c}=\frac{\mathrm{Q}}{\mathrm{~m} \cdot \Delta \mathrm{t}} \quad \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}
$$

Deloitte.
Discover the truth at www.deloitte.ca/careers

For a gas, for a constant pressure, reversible non-flow process:

$$
\mathrm{dQ}=\mathrm{m} \cdot \mathrm{c}_{\mathrm{p}} \cdot \mathrm{dT}
$$

For a gas, for a constant volume, reversible non-flow process:

$$
d Q=m \cdot c_{v} \cdot d T
$$

4.1.6 First Law for a system undergoing a cycle:

$$
\Sigma \mathrm{W}=\mathrm{J} \cdot \Sigma \mathrm{Q} \quad \text {....for a cycle. } \mathrm{J}=1 \text { in S.I. Units.i.e. } 1 \mathrm{~N} . \mathrm{m}=1 \text { Joule. }
$$

4.1.7 First Law for a closed system undergoing a change of state:

$$
\begin{aligned}
& Q-W=\Delta E \\
& \text { or: } \\
& \qquad Q=\Delta E+W
\end{aligned}
$$

4.1.8 First Law is a statement of conservation of Energy.

Energy is a property of the system; it is therefore, a 'point function'.

Considering only the kinetic, potential and internal energies, Total energy is:

$$
\mathrm{E}=\mathrm{E}_{\mathrm{k}}+\mathrm{E}_{\mathrm{p}}+\mathrm{U}_{\mathrm{int}}
$$

4.1.9 For an Ideal gas:

Internal Energy U is a function of T only.

We write:

$$
\mathrm{dQ}=\mathrm{dE}+\mathrm{dW}
$$

```
i.e. }dQ=dU+d
```

i.e. $d Q=d U+p \cdot d V \quad \ldots$ when only $p d V$ work is present

Enthalpy, h:

$$
\mathrm{h}=\mathrm{u}+\mathrm{p} \cdot \mathrm{v} \quad \mathrm{~J} / \mathrm{kg}
$$

For a perfect gas:

$$
h=c_{v} \cdot T+R \cdot T=\left(c_{v}+R\right) \cdot T=c_{p} \cdot T
$$

4.1.10 Fist Law for non-flow processes or for Closed systems:

For reversible, const. volume process:

$$
\begin{aligned}
& Q=(u 2-u 1)+W \ldots \text { where } \quad W=\int p d v \\
& \ldots \text { But, } W=0 \text {, since } d V=0
\end{aligned}
$$

Therefore: $\quad \mathrm{Q}=\mathrm{u} 2-\mathrm{u} 1=\mathrm{c}_{\mathrm{V}} \cdot(\mathrm{T} 2-\mathrm{T} 1) \quad \ldots \mathrm{J} / \mathrm{kg}$
For reversible, const. pressure process:

$$
\begin{aligned}
& \mathrm{Q}=(\mathrm{u} 2-\mathrm{u} 1)+\mathrm{W} \ldots \text { where } \mathrm{W}=\int \mathrm{pdv} \\
& \ldots \text { But, } W=p .(\mathrm{v} 2-\mathrm{v} 1)
\end{aligned}
$$

Therefore: $\quad \mathrm{Q}=\mathrm{h} 2-\mathrm{h} 1=\mathrm{c}_{\mathrm{p}} \cdot(\mathrm{T} 2-\mathrm{T} 1) \quad \ldots \mathrm{J} / \mathrm{kg}$

For reversible, Isothermal process:

$$
\mathrm{Q}=(\mathrm{u} 2-\mathrm{u} 1)+\mathrm{W} \ldots \text { where } \quad \mathrm{W}=\int \mathrm{pdv}
$$

Therefore: $\quad \mathrm{Q}=\mathrm{c}_{\mathrm{v}} \cdot(\mathrm{T} 2-\mathrm{T} 1)+\mathrm{W}=0+\mathrm{W}$

$$
\text { i.e. } \quad \mathrm{Q}=\mathrm{p} 1 \cdot \mathrm{v} 1 \cdot \ln \left(\frac{\mathrm{v} 2}{\mathrm{v} 1}\right)=\mathrm{p} 1 \cdot \mathrm{v} 1 \cdot \ln \left(\frac{\mathrm{p} 1}{\mathrm{p} 2}\right)
$$

For reversible, adiabatic process:

$$
\mathrm{Q}=(\mathrm{u} 2-\mathrm{u} 1)+\mathrm{W} \ldots \text { where } \quad \mathrm{W}=\int \mathrm{pdv}
$$

But, $Q=0$ for adiabatic process.

Therefore: $\quad 0=(\mathrm{u} 2-\mathrm{u} 1)+\mathrm{W}$
i.e. $\quad W=u 1-u 2 \quad$....for any adiabatic process

And, for rev. adiab. process: $\mathrm{p} \cdot \mathrm{v}^{7}=$ const
And: $\quad \mathrm{W}=\frac{\mathrm{p}_{1} \cdot \mathrm{v}_{1}-\mathrm{p}_{2} \cdot \mathrm{v}_{2}}{\gamma-1}=\frac{\mathrm{R} \cdot(\mathrm{T} 1-\mathrm{T} 2)}{\gamma-1}$

4.2 Now, let us work out a few problems with EES:

"Prob.4.1. A perfect gas is undergoing a process in which T is proportional to $\mathrm{V}^{\wedge}(-2 / 5)$. Calculate the work done by the gas in going from state 1 in which pressure is 100 bar and volume is $4 \mathrm{~m} \wedge 3$ to the state 2 in which volume is $2 \mathrm{~m}^{\wedge} 3$. Also calculate the final pressure. [VTU-BTD-Dec-06-Jan-07]"

EES Solution:

"Data:"
$\mathrm{P} 1=100 \mathrm{E} 05[\mathrm{~Pa}]$
$\mathrm{V} 1=4\left[\mathrm{~m}^{\wedge} 3\right]$
$\mathrm{V} 2=2\left[\mathrm{~m}^{\wedge} 3\right]$

Grant Thornton-a Rengreat place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute ${ }^{\text {TM }}$ for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Audit •Tax • Advisory
www.GrantThornton.ca/Careers

An instinct for growth'

"Calculations:"

"We have:
$\mathrm{T}=\mathrm{k} 1^{\star} \mathrm{V}^{\wedge}(-2 / 5)$; But, $\mathrm{PV}=\mathrm{RT}$ for perfect gas.
i.e. $\mathrm{P} . \mathrm{V} / \mathrm{R}=\mathrm{k} 1^{\star} \mathrm{V}^{\wedge}(-2 / 5)$
i.e. $P . V^{\wedge}(7 / 5)=k$ where $\mathrm{k}=\mathrm{k} 1^{*} \mathrm{R}$, a const."
$\mathrm{P} 1^{\star} \mathrm{V} 1^{\wedge}(7 / 5)=\mathrm{P} 2{ }^{\star} \mathrm{V} 2^{\wedge}(7 / 5)$
$\mathrm{k}=\mathrm{P} 1^{\star} \mathrm{V} 1^{\wedge}(7 / 5)$
Work=integral($\left.\mathrm{k}^{\star} \mathrm{V}^{\wedge}(-7 / 5), \mathrm{V}, \mathrm{V} 1, \mathrm{~V} 2\right)$ " \ldots using the built-in integral function of EES"
"Note: In the above, we calculate Work as Integral of P.dV. So, P is expressed as a function of V. V1 and V2 are limits of integration, i.e. from V1 to V2."

Now, hit F2 to calculate.

Results:

Unit Settings: SI K Pa J mass deg

$\mathrm{k}=6.964 \mathrm{E}+07$	$\mathrm{P} 1=1.000 \mathrm{E}+07[\mathrm{~Pa}]$	$\mathrm{P} 2=2.639 \mathrm{E}+07[\mathrm{~Pa}]$
$\mathrm{V}=2\left[\mathrm{~m}^{3}\right]$	$\mathrm{V} 1=4\left[\mathrm{~m}^{3}\right]$	$\mathrm{V} 2=2\left[\mathrm{~m}^{3}\right]$
Work $=-3.195 \mathrm{E}+07[\mathrm{~J}]$		

Thus:

Work $=-3.195 \mathrm{E} 07 \mathrm{~W} \ldots$ negative sign indicates that work is done on the system...Ans.

Final pressure, $\mathrm{P} 2=2.639 \mathrm{E} 07 \mathrm{~Pa}=263.9 \mathrm{bar} .$. Ans.

Additionally, plot the variation of Work and P 2 as the final volume varies from $0.5 \mathrm{~m}^{\wedge} 3$ to $3 \mathrm{~m} \wedge 3$:

First, compute the Parametric Table:

(Note that we have written the absolute value of Work done, i.e. without the negative sign).

${ }_{\mathrm{F}_{\text {E }}}$ Parametric Table			$\square \square$
Table 1			
${ }_{1.6}$	$\begin{array}{r} \text { V2 } \\ {\left[\mathrm{m}^{3}\right]} \\ \hline \end{array}$	Work [J]	
Run 1	0.5	$1.297 \mathrm{E}+08$	$1.838 \mathrm{E}+08$
Run 2	1	$7.411 \mathrm{E}+07$	$6.964 \mathrm{E}+07$
Run 3	1.5	$4.804 \mathrm{E}+07$	$3.948 \mathrm{E}+07$
Run 4	2	$3.195 \mathrm{E}+07$	$2.639 \mathrm{E}+07$
Run 5	2.5	$2.068 \mathrm{E}+07$	$1.931 \mathrm{E}+07$
Run 6	3	$1.220 \mathrm{E}+07$	$1.496 \mathrm{E}+07$

Now, plot the results:

Software Solutions to Problems in Basic Thermodynamics: Part-II

The Wake

the only emission we want to leave behind

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ
The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel \& Turbo.
Power competencies are offered with the world's largest engine programme - having outputs spanning
from 450 to $87,220 \mathrm{~kW}$ per engine. Get up front!
Find out more at www.mandieselturbo.com
Engineering the Future - since 1758.
MAN Diesel \& Turbo
"Prob.4.2. An engine cylinder has a piston of area $0.12 \mathrm{~m}^{\wedge} 2$ and contains gas at a pressure of 1.5 MPa . The gas expands according to a process which is represented by a straight line on a $\mathrm{p}-\mathrm{V}$ diagram. The final pressure is 0.15 MPa . Calculate the work done by the gas if the piston stroke is 0.3 m . [VTU-BTD-July/Aug.2004-New-Scheme]"

Fig.Prob.4.2

EES Solution:

"Data:"
$\mathrm{P} 1=1.5 \mathrm{E} 03[\mathrm{kPa}]$
$\mathrm{P} 2=0.15 \mathrm{E} 03[\mathrm{kPa}]$
$\mathrm{A}=0.12\left[\mathrm{~m}^{\wedge} 2\right]$ "....piston area"
$\mathrm{L}=0.3$ [m] "...stroke"

"Calculations:"

DELTAV $=A * L^{\text {" }}$ [m^3]"
Work $=\mathrm{P} 2$ * DELTAV $+(\mathrm{P} 1-\mathrm{P} 2) *$ DELTAV $/ 2$ " $[\mathrm{kJ}]$ "

Solution:

Unit Settings: SI C kPa kJ mass deg
$A=0.12\left[\mathrm{~m}^{2}\right]$
$\Delta V=0.036\left[\mathrm{~m}^{3}\right]$
W ork $=29.7[\mathrm{k.j]}]$
$\mathrm{L}=0.3[\mathrm{~m}]$
$\mathrm{P} 1=1500[\mathrm{kPa}]$

Thus:
Work done by the gas $=29.7 \mathrm{~kJ} . .$. Ans.
(b) Plot the variation of Work as the final pressure P2 varies from 100 kPa to 1000 kPa :

First, compute the Parametric Table:

${ }^{\mathrm{F}_{\mathrm{S}}}$ Parametric Table		$\square \square$
Table 1		
$\underset{1.10}{\downarrow}$	$\left\|\begin{array}{cc} 1 & \mathrm{P} 2 \\ {[\mathrm{kPa}]} \end{array}\right\|$	Work [kJ]
Run 1	100	28.8
Run 2	200	30.6
Run 3	300	32.4
Run 4	400	34.2
Run 5	500	36
Run 6	600	37.8
Run 7	700	39.6
Run 8	800	41.4
Run 9	900	43.2
Run 10	1000	45

Now, plot the results:

"Prob.4.3. A spherical balloon of 1 m dia contains a gas at 200 kPa pressure. The gas inside the balloon is heated until the pressure reaches 500 kPa . During the process of heating, the pressure of gas inside the balloon is proportional to the cube of the diameter of the balloon. Determine the work done by the gas inside the balloon. [VTU-BTD-June-July-08]"

EES Solution:

"Data:"
$\mathrm{P} 1=200[\mathrm{kPa}]$
$\mathrm{D} 1=1\left[\mathrm{~m}^{\wedge} 3\right]$
$\mathrm{k}=200^{\prime} \ldots$...since $\mathrm{P} 1=\mathrm{k}^{*} \mathrm{D} 1^{\wedge} 3^{\prime \prime}$
$\mathrm{P} 2=500[\mathrm{kPa}]$

"Calculations:"

$\mathrm{P} 2=\mathrm{k}^{*} \mathrm{D} 2 \wedge 3$ " ...finds D2"
$\mathrm{V} 1=(\mathrm{pi} / 6)^{\star} \mathrm{D} 1 \wedge 3^{\prime \prime}\left[\mathrm{m}^{\wedge} 3\right] "$
$\mathrm{V} 2=(\mathrm{pi} / 6)^{\star} \mathrm{D} 2 \wedge 3^{\prime \prime}\left[\mathrm{m}^{\wedge} 3\right] "$
Work $=$ integral($\left.k^{*} 6^{*} \mathrm{~V} / \mathrm{pi}, \mathrm{V}, \mathrm{V} 1, \mathrm{~V} 2\right)$ " $[\mathrm{kJ}] \ldots .$. Note the use of built-in integral function of EES"
"Note: In the above, we calculate Work as Integral of P.dV. So, P is expressed as a function of V. V1 and V2 are limits of integration, i.e. from V1 to V2."

淡RBS Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder - whatever your level of education, degree subject or work experience.
And it's not just finance-focused either. That's because it's not about us. It's about you.
So download the app and you'll get everything you need to know to kickstart your career.
So what are you waiting for?
Click here to get started.

Download free eBooks at bookboon.com

Results:

Unit Settings: SI C kPa kJ mass deg
D1 $=1$ [$\left.\mathrm{m}^{3}\right]$
D2 $=1.357[\mathrm{~m}]$
$k=200$
$\mathrm{P} 1=200$ [kPa]
P2 $=500$ [kPa$]$
$V=1.309$
$\mathrm{V} 1=0.5236\left[\mathrm{~m}^{3}\right]$
$\mathrm{V} 2=1.309\left[\mathrm{~m}^{3}\right]$

Work $=274.9[\mathrm{kJ]}]$

Thus:
Work done by the gas $=274.9 \mathrm{~kJ} \ldots$. Ans.
(b) Plot the variation of Work as the final pressure P2 varies from 300 kPa to 750 kPa :

First, compute the Parametric Table:

${ }_{\text {Fes }}$ Parametric Table		-
Table 1		
D_{10}	$\begin{gathered} \mathrm{P} 2 \\ {[\mathrm{kPa}]} \end{gathered}$	Work [kJ]
Run 1	300	65.45
Run 2	350	108
Run 3	400	157.1
Run 4	450	212.7
Run 5	500	274.9
Run 6	550	343.6
Run 7	600	418.9
Run 8	650	500.7
Run 9	700	589
Run 10	750	684

Now, plot the results:

"Prob.4.4. A spherical balloon of 1 m dia contains a gas at 1.5 bar pressure. Due to heating, the pressure reaches 4.5 bar. During the process of heating, the pressure is proportional to the cube of the diameter of the balloon. Determine the work done by the gas inside the balloon. [VTU-BTD-Feb. 2002]"

EES Solution:

This is similar to the previous problem.
"Data:"
$\mathrm{P} 1=150[\mathrm{kPa}]$
$\mathrm{D} 1=1\left[\mathrm{~m}^{\wedge} 3\right]$
$\mathrm{k}=150$ "....since $\mathrm{P} 1=\mathrm{k}^{*} \mathrm{D} 1 \wedge 3^{\prime}$ "
$\mathrm{P} 2=450[\mathrm{kPa}]$

"Calculations:"

$\mathrm{P} 2=\mathrm{k}^{*} \mathrm{D} 2 \wedge 3$ " ...finds D2"
$\mathrm{V} 1=(\mathrm{pi} / 6)^{*} \mathrm{D} 1 \wedge 3^{"}\left[\mathrm{~m}^{\wedge} 3\right]$ "
$\mathrm{V} 2=(\mathrm{pi} / 6)^{*} \mathrm{D} 2 \wedge 3^{\prime \prime}\left[\mathrm{m}^{\wedge} 3\right]$ "
Work $=\operatorname{integral}\left(k^{*} 6^{*} \mathrm{~V} / \mathrm{pi}, \mathrm{V}, \mathrm{V} 1, \mathrm{~V} 2\right)$ " $[\mathrm{kJ}] \ldots .$. Note the use of built-in integral function of EES"
"Note: In the above, we are calculating Work as Integral of P.dV. So, P is expressed as a function of V.

V1 and V2 are limits of integration, i.e. from V1 to V2."

Results:

Unit Settings: SI C kPa kJ mass deg

$\mathrm{D} 1=1\left[\mathrm{~m}^{3}\right]$	$\mathrm{D} 2=1.442[\mathrm{~m}]$	$\mathrm{k}=150$	$\mathrm{P} 1=150[\mathrm{kPa}]$
$\mathrm{P} 2=450[\mathrm{kPa}]$	$\mathrm{V}=1.571$	$\mathrm{~V} 1=0.5236\left[\mathrm{~m}^{3}\right]$	$\mathrm{V} 2=1.571\left[\mathrm{~m}^{3}\right]$

Work $=314.2[\mathrm{kJJ}]$

Thus: Work done by the gas $=314.2 \mathrm{~kJ} . .$. Ans.
"Prob.4.5. A spherical balloon of dia 0.5 m is initially at a pressure of 100 kPa . Due to heating, pressure increases to 400 kPa during which the inside pressure varies directly proportional to the square of the diameter of the balloon. Determine the displacement work during this process. [VTU-BTD-July-2007]"

○RACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future,

Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE

ORACLE IS THE INFORMATION COMPANY

EES Solution:

"Data:"
$\mathrm{P} 1=100[\mathrm{kPa}]$
$\mathrm{D} 1=0.5\left[\mathrm{~m}^{\wedge} 3\right]$
$\mathrm{P} 1=\mathrm{k}^{*} \mathrm{D} 1 \wedge 2$ "...determines $\mathrm{k} "$
$\mathrm{P} 2=400[\mathrm{kPa}]$
$\mathrm{P} 2=\mathrm{k}^{*} \mathrm{D} 2 \wedge 2$ " \ldots. determines D 2 "
"Calculations:"
$\mathrm{V} 1=(\mathrm{pi} / 6)^{*} \mathrm{D} 1 \wedge 3^{\prime \prime} \mathrm{m} 3$ "
$\mathrm{V} 2=(\mathrm{pi} / 6)^{\star} \mathrm{D} 2 \wedge 3^{\prime \prime} \mathrm{m} 3$ "
Work $=$ integral $\left(\mathrm{k}^{\star}\left(6^{\star} \mathrm{V} / \mathrm{pi}\right)^{\wedge}(2 / 3), \mathrm{V}, \mathrm{V} 1, \mathrm{~V} 2\right)$ " $\mathrm{kJ} \ldots . .$. using the built-in function integral of EES"
"Note: In the above, we are calculating Work as Integral of P.dV. So, P is expressed as a function of V .

V1 and V2 are limits of integration, i.e. from V1 to V2."

Results:

Unit Settings: SI C kPa kJ mass deg
$\mathrm{D} 1=0.5\left[\mathrm{~m}^{3}\right]$
$\mathrm{D} 2=1[\mathrm{~m}]$
$k=400$
$\mathrm{P} 1=100[\mathrm{kPa}]$
$\mathrm{P} 2=400 \mathrm{kPa}]$
$V=0.5236\left[\mathrm{~m}^{3}\right]$
$\mathrm{V} 1=0.06545\left[\mathrm{~m}^{3}\right]$
$\mathrm{V} 2=0.5236\left[\mathrm{~m}^{3}\right]$
Work $=121.7$ [kJ]

Thus: Work done by the gas $=121.7 \mathrm{~kJ}$.... Ans.
"Prob.4.6. A quasi-static process occurs such that $\mathrm{P}=(\mathrm{V} \wedge 2+8 / \mathrm{V})$, where P is the pressure in bar and V is the volume in $\mathrm{m}^{\wedge} 3$. Find the work done when volume changes from $1 \mathrm{~m}^{\wedge} 3$ to $3 \mathrm{~m}^{\wedge}$ 3. [VTU-Jan.2004]"'

EES Solution:

"Data:"
$\mathrm{p}=(\mathrm{v} \wedge 2+8 / \mathrm{v})$ "bar"
$\mathrm{v}=1$ " $\mathrm{m} \wedge 3$ "
$\mathrm{v} 2=4$ " $\mathrm{m}^{\wedge} 3^{\prime \prime}$

"Calculation:"

$\mathrm{W}=10^{\wedge} 5^{\star}($ integral(p,v,v1,v2)) "J....uses the built-in integral function of EES"

Results:

Unit Settings: SI K kPa kJ molar deg
$\mathrm{p}=18$ [bar]
$v=4\left[\mathrm{~m}^{3}\right]$
$\mathrm{v} 1=1\left[\mathrm{~m}^{3}\right]$
$\mathrm{v} 2=4\left[\mathrm{~m}^{3}\right]$
$W=3.209 \mathrm{E}+06[\mathrm{~J}]$

Thus: Work done by the gas $=3.209 \mathrm{E} 06 \mathrm{~J} . .$. Ans.
(b) In addition, plot Work against V2, as V2 changes from $1.5 \mathrm{~m}^{\wedge} 3$ to $5 \mathrm{~m} \wedge 3$:

First, compute the Parametric Table:

${ }^{\mathrm{F}_{\text {ES }}}$ Parametric Table		$\square \square$
Table 1		
$\underset{1.8}{D}$		W [J]
Run 1	1.5	403540
Run 2	2	787857
Run 3	2.5	$1.221 \mathrm{E}+06$
Run 4	3	$1.746 \mathrm{E}+06$
Run 5	3.5	$2.398 \mathrm{E}+06$
Run 6	4	$3.209 \mathrm{E}+06$
Run 7	4.5	$4.207 \mathrm{E}+06$
Run 8	5	$5.421 \mathrm{E}+06$

Software Solutions to Problems in Basic Thermodynamics: Part-II

Now, plot the graph:

"Prob.4.7. 1 kg of air at 15 C and $100 \mathrm{kN} / \mathrm{m}^{\wedge} 2$ is compressed isentropically to $600 \mathrm{kN} / \mathrm{m} \wedge 2$. Determine the final temp and the work done. If the air is cooled to 15 C at constant pressure, calculate the heat transferred. Take gamma $=1.4, \mathrm{cp}=1.0213 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$. [VTU-Jan. 2005]"

EES Solution:

"Data:"
$\mathrm{m}=1$ " $[\mathrm{kg}]$ "
$\mathrm{T} 1=15+273$ " $[\mathrm{K}]$ "
$\mathrm{p} 1=10 \wedge 5$ " Pa$] "$
$\mathrm{p} 2=6^{*} 10^{\wedge} 5^{"}[\mathrm{~Pa}] "$
gamma $=1.4$ "...ratio of sp. heats,($c p / c v$) for air"
$\mathrm{cp}=1.0213^{\star} 10^{\wedge} 3^{"}[\mathrm{~J} / \mathrm{kg} . \mathrm{K}] \ldots$. sp. heat"
$\mathrm{R}=287$ "[J/kg.K]....gas const."

"Calculations:"

$\mathrm{T} 2 / \mathrm{T} 1=(\mathrm{p} 2 / \mathrm{p} 1)^{\wedge}(($ gamma-1)/gamma)"...temp ratio for an isentropic process.... determines T 2 " W_ad=R*(T1-T2)/(gamma-1) "Adiabatic work"
$\mathrm{Q}=\mathrm{m}^{*} \mathrm{cp}^{*}(\mathrm{~T} 2-\mathrm{T} 1)$ " $[\mathrm{J}] \ldots$...heat transferred, when cooled to T1 from T2, at const. pressure"

Results:

Unit Settings: SI K kPa kJ molar deg

$\mathrm{cp}=1021[\mathrm{~J} . \mathrm{kg}-\mathrm{K}]$	$\gamma=1.4$	$\mathrm{~m}=1[\mathrm{~kg}]$	$\mathrm{p} 1=100000[\mathrm{~Pa}]$
$\mathrm{p} 2=600000[\mathrm{~Pa}]$	$\mathrm{Q}=196632[\mathrm{~J}]$	$\mathrm{R}=287[\mathrm{~J} / \mathrm{kg} \mathrm{K}]$	$\mathrm{T} 1=288[\mathrm{~K}]$
$\mathrm{T} 2=480.5[\mathrm{~K}]$	$\mathrm{W}_{\mathrm{ad}}=-138141[\mathrm{~J}]$		

Thus:

Final temp T2 $=480.5 \mathrm{~K} \ldots$. Ans.

Work done $=-138141 \mathrm{~J} \ldots$. Ans. negative sign indicating work done on the system

Heat transferred in const. pressure cooling, $Q=196632 \mathrm{~J} .$. Ans.
(b) In addition, as $\mathbf{p} 2$ varies from 100 kPa to 1000 kPa , plot the variation of $\mathrm{T} 2, \mathrm{~W}$ and Q against p 2 :

First, compute the Parametric Table:

Table 1				
$\underset{1 . .10}{ }$	$\left\lvert\, \begin{array}{ccc} 1 & & \\ & \mathrm{p} 2 & \\ & {[\mathrm{~Pa}]} & \\ \hline \end{array}\right.$	$\begin{array}{cc} & \boldsymbol{V} 2 \\ \mathrm{~T} & \\ {[\mathrm{~K}]} & \\ \hline \end{array}$	$\begin{array}{cc} \mathrm{W}_{\mathrm{ad}} & \\ {[\mathrm{~J}]} & \\ \hline \end{array}$	Q [J]
Run 1	100000	288	0	0
Run 2	200000	351.1	45257	64419
Run 3	300000	394.2	76196	108459
Run 4	400000	428	100426	142948
Run 5	500000	456.1	120640	171721
Run 6	600000	480.5	138141	196632
Run 7	700000	502.2	153666	218730
Run 8	800000	521.7	167677	238675
Run 9	900000	539.6	180488	256910
Run 10	1000000	556	192319	273750

Note that in the above Table, we have taken the absolute value of Work, with the understanding that it is the work done on the gas during compression.

Now, plot the results:

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

London

Business
School

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni - a community that offers support and opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or give us a call on +44 (0)20 70007573 .

* Figures taken from London Business School's Masters in Management 2010 employment report

"Prob.4.8. 5 kg of Nitrogen at 100 C is heated in a reversible, non-flow, constant volume process till the pressure becomes three times the initial pressure. Determine: (i) final temp (ii) change in internal energy (iii) change in enthalpy, and (iv) heat transfer. Take $\mathrm{R}=0.297 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{cv}=0.7435 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$. [VTU-Jan. 2004]"

EES Solution:

"Data:"
$\mathrm{m}=5$ "kg"
PressureRatio $=3$ "pr. ratio $=\mathrm{p} 2 / \mathrm{p} 1$ "
$\mathrm{T} 1=100+273$ " K "
$\mathrm{cv}=743.5$ " J/kg.K"
$\mathrm{R}=297$ "J/kg.K"

"Calculations:"

$\mathrm{T} 2=$ PressureRatio * T 1 "..finds $\mathrm{T} 2 \ldots$ since $\mathrm{p} 1 / \mathrm{T} 1=\mathrm{p} 2 / \mathrm{T} 2$ at const. volume"
$c p-c v=R$ "..for Ideal gas...finds $c p^{\prime \prime}$
DELTAU $=\mathrm{m}^{*} \mathrm{cv}^{*}$ (T2-T1) "J... change in internal energy"
DELTAH $=\mathrm{m}^{*} \mathrm{cp}{ }^{*}$ (T2-T1) "J... change in enthalpy"
$\mathrm{W}=0$ "..since it is a const. volume process"
$\mathrm{Q}=\mathrm{DELTAU}+\mathrm{W}$ "J.. from I law for a closed system"

Results:

Unit Settings: SI K kPa kJ molar deg

$=1041[\mathrm{~J} / \mathrm{kg}-\mathrm{K}]$	$\mathrm{CV}=743.5[\mathrm{~J} / \mathrm{kg}-\mathrm{K}]$	$\Delta \mathrm{H}=3.881 \mathrm{E}+06[\mathrm{~J}]$
$\Delta \mathrm{U}=2.773 \mathrm{E}+06[\mathrm{~J}]$	$\mathrm{m}=5[\mathrm{~kg}]$	PressureRatio $=3$
$\mathrm{Q}=2.773 \mathrm{E}+06[\mathrm{~J}]$	$\mathrm{R}=297[\mathrm{~J} / \mathrm{kg}-\mathrm{K}]$	$\mathrm{T} 1=373[\mathrm{~K}]$
$\mathrm{T} 2=1119[\mathrm{~K}]$	$\mathrm{W}=0[\mathrm{~J}]$	

Thus:

Final temp, T2 $=1119 \mathrm{~K}$, Change in Int. energy, DELTAU $=2.773 \mathrm{E} 06 \mathrm{~J}$,

Change in enthalpy, DELTAH $=3.881 \mathrm{E} 06 \mathrm{~J}$, Heat transfer, $\mathrm{Q}=2.773 \mathrm{E} 06 \mathrm{~J} \ldots$. Ans.
"Prob.4.9. 1 kg of air contained in a closed system at 100 kPa and 300 K is compressed isothermally till the volume halves. During the process, it is also stirred with a Torque of 1 N.m at 400 RPM for 1 hour. Calculate the net work done on the system. Assume R $=0.285 \mathrm{~kJ} / \mathrm{kg}$.K. [VTU-July 2003]"

EES Solution:

"Data:"
$\mathrm{m}=1$ "kg"
$\mathrm{p} 1=100^{\star} 10^{\wedge} 3$ " Pa "
$\mathrm{T} 1=300$ " K "
$\mathrm{p} 1=0.5^{*} \mathrm{p} 2$ " \ldots since $\mathrm{p} 1 . \mathrm{V} 1=\mathrm{p} 2 . \mathrm{V} 2$ at constant T "
$\mathrm{N}=400^{*} 60$ "Revolutions in one hour"
$\mathrm{T}=1$ "N.m.... torque"
$\mathrm{R}=285$ " $\mathrm{J} / \mathrm{kg} . \mathrm{K} "$

"Calculations:"

W_iso $=\mathrm{R}^{*} \mathrm{~T} 1{ }^{*} \ln (\mathrm{p} 1 / \mathrm{p} 2)$ "J. ... isothermal work on the system"
$\mathrm{W} 1=-2^{*} \mathrm{pi}{ }^{*} \mathrm{~N}^{*} \mathrm{~T}$ "J.... stirring work on the system"
W_net=W_iso+W1 "J.... net work on the system"

Results:

Unit Settings: SI K kPa kJ molar deg

$m=1[\mathrm{~kg}]$	$\mathrm{N}=24000[\mathrm{rev}]$	$\mathrm{p} 1=100000[\mathrm{~Pa}]$	$\mathrm{p} 2=200000[\mathrm{~Pa}]$
$\mathrm{R}=285[\mathrm{~J} / \mathrm{kg}-\mathrm{K}]$	$\mathrm{T}=1[\mathrm{~N} . \mathrm{m}]$	$\mathrm{T} 1=300[\mathrm{~K}]$	$\mathrm{W} 1=-150796[\mathrm{~J}]$
$W_{\text {iso }}=-59264[\mathrm{~J}]$	$W_{\text {net }}=-210061[\mathrm{~J}]$		

Thus:

Net work done on the system $=-210061 \mathrm{~J} . . .$. Ans. Negative sign indicating that work is done on the system.
"Prob.4.10. 1.5 kg of a gas undergoes a quasi-static process, in which the pressure and sp. vol. are related by the equation: $\mathrm{p}=\mathrm{a}-\mathrm{b} . \mathrm{v}$, where a and b are constants. The initial and final pressures are 1000 kPa and 200 kPa respectively. The corresponding volumes are $0.2 \mathrm{~m}^{\wedge} 3$ and $1.2 \mathrm{~m} \wedge 3$. The specific internal energy of the gas is given by the relation: $u=1.5 \mathrm{pv}-35$, where u is in $k J / \mathrm{kg}, \mathrm{p}$ is in kPa , and v is in $\mathrm{m}^{\wedge} 3 / \mathrm{kg}$. Find the magnitude and direction of heat transfer and the max. internal energy of the gas during the process. [VTU-Jan. 2005]"

EES Solution:

"Data:"

$\mathrm{m}=1.5$ " kg "
$" \mathrm{u}=1.5^{\star} \mathrm{p} * \mathrm{v}-35 \ldots .$. internal energy"
$\mathrm{p} 1=1000$ " $\mathrm{kPa} \ldots$ initial pressure"
$\mathrm{vl}=0.2 / \mathrm{m}$ " $\mathrm{m} 3 / \mathrm{kg}$. initial sp. volume"
$\mathrm{p} 2=200$ " $\mathrm{kPa} \ldots$ final pressure"
$\mathrm{v} 2=1.2 / \mathrm{m}$ " $\mathrm{m} 3 / \mathrm{kg} \ldots$ final sp . volume"

"Calculations:"

"To find a and b:"
$\mathrm{P} 1=\mathrm{a}-\mathrm{b}^{*}$ v1"...initial pressure"
$\mathrm{P} 2=\mathrm{a}-\mathrm{b}^{*} \mathrm{v} 2$ "....final pressure"

"To find W, Q and DELTAU:"

DELTAU = U2-U1 "J change in internal energy"
$\mathrm{p}=\mathrm{a}-\mathrm{b}^{*} \mathrm{v}$ "..... reln. between p and v , by data"
$\mathrm{W}=\mathrm{m}^{\star} 10^{\wedge} 3^{\star}$ integral(p,v,v1,v2)"J..... using the built-in function 'integral' of EES"
$\mathrm{Q}=\mathrm{W}+(\mathrm{U} 2-\mathrm{U} 1)$ "J ... by I Law for a closed system"
$\mathrm{U} 1=\mathrm{m}^{*}\left(1.5^{*} \mathrm{p} 1^{*} \mathrm{v} 1-35\right)^{\star} 10^{\wedge} 3^{\text {"J..... internal energy at state } 1 "}$
$\mathrm{U} 2=\mathrm{m}^{\star}\left(1.5^{\star} \mathrm{p} 2{ }^{\star} \mathrm{v} 2-35\right)^{\star} 10^{\wedge} 3$ "J \ldots internal energy at state 2 "

Get Internationally Connected at the University of Surrey
 MA Intercultural Communication with International Business MA Communication and International Marketing

Results:

Unit Settings: SI K kPa kJ molar deg
$\mathrm{a}=1160$
$\mathrm{p}=200$ [kPa]
$b=1200$
$\mathrm{p} 1=1000$ [kPa]
$\mathrm{U} 2=307500[\mathrm{~J}]$
$\mathrm{W}=600000[\mathrm{~J}]$
$\Delta \mathrm{U}=60000[\mathrm{~J} / \mathrm{kg}]$
$\mathrm{p} 2=200$ [kPa]
$\mathrm{v}=0.8\left[\mathrm{~m}^{3}\right]$
$\begin{aligned} \mathrm{m} & =1.5[\mathrm{~kg}] \\ \mathrm{Q} & =660000[\mathrm{~J}] \\ \mathrm{v} 1 & =0.1333\left[\mathrm{~m}^{3}\right]\end{aligned}$

Thus:
$Q=660000 \mathrm{~J} \ldots$. Ans. It is positive, indicating that heat is transferred to the system.
U2 $=$ max. int. energy $=307500 \mathrm{~J} . .$. Ans.
\qquad
(b) Plot Q, W and DELTAU as final pressure p 2 varies from 500 to 100 kPa :

First, compute the Parametric Table:

| Table 1
 $1 . .9$ | 1
 p 2
 $[\mathrm{kPa}]$ | W
 $[\mathrm{J}]$ | $\Delta \mathrm{U}$
 $[\mathrm{J} / \mathrm{kg}]$ | Q
 $[\mathrm{J}]$ |
| :---: | ---: | ---: | ---: | ---: | :---: |
| Run 1 | 500 | 468750 | 318750 | 787500 |
| Run 2 | 450 | 498438 | 299063 | 797500 |
| Run 3 | 400 | 525000 | 270000 | 795000 |
| Run 4 | 350 | 548438 | 231563 | 780000 |
| Run 5 | 300 | 568750 | 183750 | 752500 |
| Run 6 | 250 | 585938 | 126563 | 712500 |
| Run 7 | 200 | 600000 | 60000 | 660000 |
| Run 8 | 150 | 610938 | -15938 | 595000 |
| Run 9 | 100 | 618750 | -101250 | 517500 |

Next, plot the results:

Note that after p2 = approx. 160 kPa, DELTAU becomes negative.

Note that after p2 = approx. $425 \mathrm{kPa}, \mathrm{Q}$ decreases.

"Prob.4.11. A piston-cylinder mechanism containing a fluid has a stirring device as shown. The piston is frictionless and held against the fluid by atm. pressure of 101.325 kPa . The stirring device is turned 10000 revolutions with an average torque against the fluid, of $1.275 \mathrm{~N} . \mathrm{m}$. The piston is 0.6 m dia and it moves by 0.8 m . Calculate the net work transfer. [VTU-July 2002]"

EES Solution:

"Data:"

$\mathrm{N}=10000$ "revolutions"
$\mathrm{T}=1.275[\mathrm{~J}]$
$\mathrm{d}=0.6[\mathrm{~m}]$
$\mathrm{L}=0.8[\mathrm{~m}]$
$\mathrm{p}=101.325 \mathrm{E} 03[\mathrm{~Pa}]$

"Calculations:"

$\mathrm{W} 1=-2^{*} \mathrm{pi}^{*} \mathrm{~N} * \mathrm{~T}$ "J ... stirring work done on the system"
$\mathrm{W} 2=\mathrm{F}{ }^{*} \mathrm{~L}$ "J...boundary work done by the system"
$\mathrm{F}=\mathrm{p}^{*} \mathrm{~A}$ "N...force exerted on the piston by atm."
$\mathrm{A}=(\mathrm{pi} / 4)^{*}(\mathrm{~d}) \wedge 2$ " $\mathrm{m} \wedge 2 \ldots$ area of piston"
W_tot $=\mathrm{W} 1+\mathrm{W} 2$ "J... net work"

Results:

Unit Settings: SI K kPa kJ molar deg

$\mathrm{A}=0.2827\left[\mathrm{~m}^{2}\right]$	$\mathrm{d}=0.6[\mathrm{~m}]$	$F=28649[\mathrm{~N}]$	$L=0.8[\mathrm{~m}]$
$\mathrm{N}=10000[\mathrm{Rev}]$	$\mathrm{p}=101325[\mathrm{~Pa}]$	$T=1.275[\mathrm{~J}]$	$W 1=-80111[\mathrm{~J}]$
$W 2=22919[\mathrm{~J}]$	$W_{\text {tot }}=-57191[\mathrm{~J}]$		

Thus: Net work done $=-57191 \mathrm{~J}$, negative sign indicating work done on the system.
"Prob.4.12. A closed system undergoes a cycle composed of 4 processes 1-2, 2-3, 3-4 and 4-1. The energy transfers are as tabulated:

Process	$\mathbf{Q}(\mathbf{k J} / \mathbf{m i n})$.	$\mathbf{W}(\mathbf{k J} / \mathbf{m i n})$.	$\mathbf{\Delta U}(\mathbf{k J} / \mathbf{m i n})$.
$1-2$	400	150	-
$2-3$	200	-	300
$3-4$	-200	-	-
$4-1$	0	75	-

(i) complete the Table (ii) determine the rate of work in kW
[VTU-Jan. 2004]"

EES Solution:

"Data:"
"Process 1-2:"
Q_12=W_12+DELTAU_12 " $\mathrm{kJ} / \mathrm{min}$ "
$\mathrm{Q} _12=400$ " $\mathrm{kJ} / \mathrm{min}$ "
W_12=150"kJ/min"
"Process 2-3:"
$\mathrm{Q} _23=\mathrm{W} _23+\mathrm{DELTAU} _23$ " $\mathrm{kJ} / \mathrm{min}$ "
Q_23=200 "kJ/min"
DELTAU_23=300 "kJ/min"
"Process 3-4:"
Q_34=W_34+DELTAU_34 " $\mathrm{kJ} / \mathrm{min}$ "
Q_34=-200 "kJ/min"
"Process 4-1:"
Q_41=W_41+DELTAU_41" $\mathrm{kJ} / \mathrm{min}$ "
Q_41=0 " $\mathrm{kJ} / \mathrm{min}$ "
$\mathrm{W} _41=75$ " $\mathrm{kJ} / \mathrm{min}$ "

Q_12+Q_23+Q_34+Q_41=W_12+W_23+W_34+W_41 "...First Law for the whole cycle"

"Net Heat and Work in cycle:"

Q_net $=\left(\mathrm{W} _12+\mathrm{W} _23+\mathrm{W} _34+\mathrm{W} _41\right) / 60$ " $[\mathrm{kJ} / \mathrm{s}]$ "
W_net $=\left(W _12+W _23+W _34+W _41\right) / 60 "[k J / s] "$

Results:

Unit Settings: SI K kPa kJ molar deg

$\Delta \mathrm{U}_{12}=250[\mathrm{~kJ} / \mathrm{min}]$	$\Delta \mathrm{U}_{23}=300[\mathrm{~kJ} / \mathrm{min}]$	$\Delta \mathrm{U}_{34}=-475[\mathrm{~kJ} / \mathrm{min}]$
$\Delta \mathrm{U}_{41}=-75[\mathrm{~kJ} / \mathrm{min}]$	$\mathrm{Q}_{12}=400[\mathrm{~kJ} / \mathrm{min}]$	$\mathrm{Q}_{23}=200[\mathrm{~kJ} / \mathrm{min}]$
$\mathrm{Q}_{34}=-200[\mathrm{~kJ} / \mathrm{min}]$	$\mathrm{Q}_{41}=0[\mathrm{~kJ} / \mathrm{min}]$	$\mathrm{Q}_{\text {net }}=6.667[\mathrm{~kW}]$
$\mathrm{W}_{12}=150[\mathrm{~kJ} / \mathrm{min}]$	$\mathrm{W}_{23}=-100[\mathrm{~kJ} / \mathrm{min}]$	$\mathrm{W}_{34}=275[\mathrm{~kJ} / \mathrm{min}]$
$\mathrm{W}_{41}=75[\mathrm{~kJ} / \mathrm{min}]$	$\mathrm{W}_{\text {net }}=6.667[\mathrm{~kW}]$	

Thus:

Following is the completed Table:

Process	$\mathbf{Q (k J / m i n})$.	$\mathbf{W}(\mathbf{k J} / \mathbf{m i n})$.	$\mathbf{\Delta U}(\mathbf{k J} / \mathbf{m i n})$.
$1-2$	400	150	$\mathbf{2 5 0}$
$2-3$	200	-100	300
$3-4$	-200	275	-475
$4-1$	0	75	-75

And, W _net $=6.667 \mathrm{~kW} \ldots$. Ans.

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers
"Prob.4.13. During a reversible, constant pressure process in a closed system with $\mathrm{p}=105 \mathrm{kPa}$, properties of the system change from $\mathrm{V} 1=0.25 \mathrm{~m}^{\wedge} 3, \mathrm{t} 1=10 \mathrm{C}$ to $\mathrm{V} 2=0.45 \mathrm{~m} \wedge 3, \mathrm{t} 2=240 \mathrm{C}$. Specific heat at const. pressure, cp is given by: $\mathrm{cp}=(0.4+18 /(\mathrm{t}+40)) \mathrm{kJ} / \mathrm{kg}$.C. Assuming the mass of the system as 1 kg , determine: (i) heat transfer (ii) work transfer (iii) change in internal energy, and (iv) change in enthalpy. [VTU-Jan. 2003]"

EES Solution:

"Data:"
$\mathrm{p}=105^{*} 10^{\wedge} 3^{\prime \prime} \mathrm{Pa}$ "
$\mathrm{V} 1=0.25$ " m 3 "
$\mathrm{V} 2=0.45$ " m 3 "
$\mathrm{tl}=10$ "C"
$\mathrm{t} 2=240$ " C "
$\mathrm{Cp}=(0.4+18 /(\mathrm{t}+40))^{*} 10^{\wedge} 3^{\prime \prime} \mathrm{J} / \mathrm{kg} . \mathrm{C}^{\prime}$

"Calculations:"

$\mathrm{Q}=$ integral(Cp,t,t1,t2) "J....finds heat transfer"
$\mathrm{W}=\mathrm{p}^{*}(\mathrm{~V} 2-\mathrm{V} 1)$ "J..... finds work transfer"
$\mathrm{Q}=\mathrm{W}+\mathrm{DELTAU}$ ".... by I Law for a closed system"
DELTAH $=$ Q "J. . .change in enthalpy for const. pressure process"

Results:

Unit Settings: SI K kPa kJ molar deg

$\mathrm{Cp}=464.3[\mathrm{~J} / \mathrm{kg}-\mathrm{C}]$	$\Delta \mathrm{H}=123011[\mathrm{~J} / \mathrm{kg}]$	$\Delta \mathrm{U}=102011[\mathrm{~J} / \mathrm{kg}]$	$\mathrm{p}=105000[\mathrm{~Pa}]$
$\mathrm{Q}=123011[\mathrm{~J} / \mathrm{kg}]$	$\mathrm{t}=240[\mathrm{C}]$	$\mathrm{t} 1=10[\mathrm{C}]$	$\mathrm{t} 2=240[\mathrm{C}]$
$\mathrm{V} 1=0.25\left[\mathrm{~m}^{3}\right]$	$\mathrm{V} 2=0.45[\mathrm{~m}]$	$\mathrm{W}=21000[\mathrm{~J} / \mathrm{kg}]$	

Thus:

$\mathrm{Q}=123011 \mathrm{~J} / \mathrm{kg}, \mathrm{W}=21000 \mathrm{~J} / \mathrm{kg}, \Delta \mathrm{U}=102011 \mathrm{~J} / \mathrm{kg}, \Delta \mathrm{H}=123011 \mathrm{~J} / \mathrm{kg} \ldots .$. Ans.
(b) As t2 varies from 200 C to 400 C , plot the variation of Q :

First, compute the Parametric Table:

Table 1		
$\underset{1 . .11}{ }$	t2 [C]	
Run 1	200	104236
Run 2	220	113677
Run 3	240	123011
Run 4	260	132253
Run 5	280	141414
Run 6	300	150506
Run 7	320	159535
Run 8	340	168508
Run 9	360	177431
Run 10	380	186309
Run 11	400	195147

Now, plot the results:

"Prob.4.14. A system receives 200 kJ of heat at constant volume. Then, it rejects 70 kJ of heat at constant pressure and work done on the system being 50 kJ . If the system is restored to the initial state by an adiabatic process, how much work will be done during the adiabatic process? Calculate the change in internal energy for the above mentioned processes and draw the p-V diagram. [VTU-Feb. 2002]"

EES Solution:

"Let:
process 1-2 : constant vol. process,
process 2-3: constant pr. process, process 3-1: adiabatic process."

"Process 1-2:"

Q_12 = 200"kJ... heat transfer, by data"
W_12 = 0 " $k J . .$. for const. vol. process"
Q_12 = W_12 + DELTAU_12 "... by First Law for the process"

"Process 2-3:"

$Q _23=-70$ " $k J \ldots$. heat rejected, by data"
$\mathrm{W} _23=-50$ " $\mathrm{kJ} . .$. work done on the system, by data"
Q_23 = W $\quad 23$ + DELTAU_23 "...by First Law for the process"

"Process 3-1:"

Q_31 $=0$ " $k J . \ldots$. since adiabatic, by data"
Q_31 = W_31 + DELTAU_31 "...by First Law for the process"
DELTAU_12 + DELTAU_23 + DELTAU_31 = 0 "....since it is a closed cylce"

Results:

Unit Settings: SI K kPa kJ molar deg

$\Delta \mathrm{U}_{12}=200[\mathrm{~kJ}]$	$\Delta \mathrm{U}_{23}=-20[\mathrm{kJ]}$	$\mathrm{U}_{31}=-180[\mathrm{kJ]}$	$\mathrm{Q}_{12}=200[\mathrm{kJ]}]$
$\mathrm{Q}_{23}=-70[\mathrm{~kJ}]$	$\mathrm{Q}_{31}=0[\mathrm{kJJ}]$	$\mathrm{W}_{12}=0[\mathrm{~kJ}]$	$\mathrm{W}_{23}=-50[\mathrm{~kJ}]$

$W_{31}=180[\mathrm{kJJ}]$

Thus:
Work done in adiabatic process, $\mathrm{W} _31=180 \mathrm{~kJ} .$. Ans.

Change in internal energies: $\Delta \mathbf{U}_{12}=200 \mathrm{~kJ}, \Delta \mathrm{U}_{23}=\mathbf{- 2 0} \mathbf{k J}, \Delta \mathrm{U}_{31}=\mathbf{- 1 8 0} \mathbf{k J} \ldots$. Ans.
"Prob. 4.15. Consider the system shown in fig. Initial conditions of the gas are: V1 $=0.1 \mathrm{~m} \wedge 3, \mathrm{p} 1=200$ kPa . Ambient pressure: 100 kPa and the spring exerts a force which is proportional to the displacement from its equilibrium position. The gas is heated until the volume is doubled, at which point $\mathrm{p} 2=600$ kPa . Determine the work done by the gas. [VTU-Aug. 2001]"

PLAY.
The stuff that makes life worth living

WWW.STUDYINNORWAY.NO FACEBOOK.COM/STUDYINNORWAY

EES Solution:

"Data:"
$\mathrm{p} 1=200$ " kPa "
$\mathrm{V} 1=0.1^{\prime m} 3$ "
$\mathrm{V} 2=2^{*} \mathrm{~V} 1$ " m 3 "
$\mathrm{p} 2=600$ " kPa "

"Calculations:"

W_tot $=((\mathrm{p} 1+\mathrm{p} 2) / 2)$ * $(\mathrm{V} 2-\mathrm{V} 1)$ "kJ"

Results:

Unit Settings: SI K kPa kJ molar deg
$\begin{array}{lll}\mathrm{p} 1=200[\mathrm{kPa}] & \mathrm{p} 2=600[\mathrm{kPa}] & \mathrm{V} 1=0.1\left[\mathrm{~m}^{3}\right]\end{array} \mathrm{V} 2=0.2\left[\mathrm{~m}^{3}\right]$

Thus:

Work done by the gas $=40 \mathrm{~kJ} \ldots$. Ans.
"Prob.4.16. A fluid is heated reversibly at a constant pressure of 1.03 bar until it has a specific volume of $0.1 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$. It is then compressed reversibly according to the law $\mathrm{pv}=$ constant to a pressure of 4.2 bar, then allowed to expand reversibly according to the law: $\mathrm{pv}^{\wedge} 1.2=$ constant to the initial conditions. The work done in the constant pressure process is 820 J and the mass of the fluid present is 0.2 kg . Calculate the net work done on or by the fluid in the process and sketch cycle on a p-v diagram."

EES Solution:

Data:

$\mathrm{p} 1=1.03 \mathrm{E} 05$ "Pa"
$\mathrm{p} 2=\mathrm{p} 1^{"} . .$. const. pr."
$\mathrm{v} 2=0.1$ " $\mathrm{m} \wedge 3 \ldots$ sp. volume"
$\mathrm{w} _12=820$ " J"
$\mathrm{p} 3=4.2 \mathrm{E} 05$ "Pa"
mass $=0.2^{" k g "}$

"Calculations:"

$\mathrm{p} 2^{*}(\mathrm{v} 2-\mathrm{v} 1)=\mathrm{w} _12$ "gives v 1 "
$\mathrm{p} 3^{*} \mathrm{v} 3=\mathrm{p} 2^{*} \mathrm{v} 2$ "gives v3"
$\mathrm{w} _23=\left(\mathrm{p} 2{ }^{*} \mathrm{v} 2\right)^{*} \ln (\mathrm{v} 3 / \mathrm{v} 2)^{" J} \ldots$. work done in isothermal process $2-3$ "
$\mathrm{w} _31=\left(\mathrm{p} 3^{*} \mathrm{v} 3-\mathrm{p} 1^{*} \mathrm{v} 1\right) /(1.2-1)$ "J... work done in polytropic process $3-1$ "
$\mathrm{w} _$net $=\mathrm{w} _12+\mathrm{w} _23+\mathrm{w} _31$ "J. . . net work done in the cycle, per kg "
Work_net $=W _$net ${ }^{*}$ mass"J...net work done in the cycle for mass $=0.2 \mathrm{~kg}$ "

Results:

Unit Settings: SI C kPa kJ mass deg

$$
\begin{array}{lll}
\text { mass }=0.2[\mathrm{~kg}] & \mathrm{p} 1=103000[\mathrm{~Pa}] & \mathrm{p} 2=103000[\mathrm{pA}] \\
\mathrm{p} 3=420000[\mathrm{~Pa}] & \mathrm{v} 1=0.09204\left[\mathrm{~m}^{3}\right] & \mathrm{v} 2=0.1\left[\mathrm{~m}^{3}\right] \\
\mathrm{V} 3=0.02452\left[\mathrm{~m}^{3}\right] & \text { Worknet }=-1911[\mathrm{~J}] & \mathrm{w}_{12}=820[\mathrm{~J}] \\
\mathrm{w}_{23}=-14477[\mathrm{~J}] & \mathrm{W}_{31}=4100[\mathrm{~J}] & \mathrm{w}_{\text {net }}=-9557[\mathrm{~J}]
\end{array}
$$

Thus:

Net work done $=-1911 \mathrm{~J} .$. negative sign indicating work done $o n$ the system....Ans.
"Prob.4.17. A fluid system undergoes a non flow frictionless process from $\mathrm{V} 1=6 \mathrm{~m} \wedge 3$ and $\mathrm{V} 2=2 \mathrm{~m} \wedge 3$. The pressure and volume relation during the process is given by following relation, P in $\mathrm{N} / \mathrm{m} 2$ where V is in $\mathrm{m} \wedge 3$. Determine the magnitude and direction of work transfer during the process.[VTU-Sept. 2009]"

EES Solution:

"Data:"
$\mathrm{P}=(15 / \mathrm{V})+2$ "...relation between P and V "
$\mathrm{V} 1=6$ " $\mathrm{m} \wedge 3$ "
$\mathrm{V} 2=2$ " $\mathrm{m} \wedge 3$ "

"Calculation:"

$\mathrm{W}=$ integral (P, V, V1, V2) "J....work done ...using the built-in integral function of EES"

Results:

Unit Settings: SI C kPakJ mass deg

$$
P=9.5[\mathrm{~Pa}] \quad V=2\left[\mathrm{~m}^{3}\right] \quad V 1=6\left[\mathrm{~m}^{3}\right] \quad \mathrm{V} 2=2\left[\mathrm{~m}^{3}\right] \quad W=-24.48[\mathrm{~J}]
$$

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering
training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.
Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.
We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.
For a no obligation proposal, contact us today
OIL \& GAS ENGINEERING ELECTRONICS

AUTOMATION \& PROCESS CONTROL MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS
ELECTRICAL POWER at training@idc-online.com or visit our website

Thus:

Work done $=-24.48 \mathrm{~J} . .$. negative sign indicating work done on the system.....Ans.

4.3 Now, let us solve a few problems with TEST:

Prob. 4.18. Nitrogen at an initial state of $300 \mathrm{~K}, 150 \mathrm{kPa}$, and $0.2 \mathrm{~m} \wedge 3$ is compressed slowly in an isothermal process to a final pressure of 800 kPa . Determine the work done during the process. [Ref.1]

TEST Solution:

Let us solve this problem with The Expert System for Thermodynamics (TEST):

Following are the steps:

1. Start TEST after logging in to www.thermofluids.net. We get the following Greeting screen:

2. Click on Daemons at the menu bar at the bottom to get the following Daemons Map:

3. We can choose the States and Properties - Uniform system to get the states 1 and 2, and then calculate the work for Isothermal process, OR: go to System Analysis - Closed Generic - Uniform system to make the direct analysis of the process. Choosing the States \& Properties - Uniform System, we get:

4. We choose for the Material model: the PG Model, i.e. $\mathrm{cp}=$ const. Clicking on it, we get the following screen. Now, choose State 1, Enter p1, T1, Voll in proper units as given in data:

System State Daemon: Perfect Gas (PG) Model
ang Mane

5. Click on Calculate and state 1 is calculated:

6. Similarly, choose State 2 , enter $\mathrm{p} 2, \mathrm{~T} 2$ and m 2 . Note that we wrote $\mathrm{T} 2=\mathrm{T} 1, \mathrm{~m} 2=\mathrm{m} 1$.

Work, Heat and I Law of Thermodynamics applied to Closed systems
7. Click on Calculate. State 2 is calculated:

8. Draw the $\mathrm{p}-\mathrm{V}$ diagram: Select Plots-p-V diagram:

And, immediately, following plot with the two states marked, is presented:

You can format it further, connect the states, draw different lines such as $\mathrm{p}=\mathrm{c}, \mathrm{v}=\mathrm{c}, \mathrm{T}=\mathrm{c}$ etc. (see the top line in the above screen shot), and change the axes limits too if required. In the following $\mathrm{T}=\mathrm{c}$ is executed:

9. Now, that States 1 and 2 are fully known, we can calculate Isothermal work by going to the I/O panel: Click on Super Calculate and go to I/O panel:

Clicking on I/O panel, we get:

States \{
State-1: N2;
Given: $\{\mathrm{p} 1=150.0 \mathrm{kPa} ; \mathrm{T} 1=300.0 \mathrm{~K} ; \operatorname{Vel} 1=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \operatorname{Vol} 1=0.2 \mathrm{~m} \wedge 3 ;\}$
State-2: N2;
Given: $\{\mathrm{p} 2=800.0 \mathrm{kPa} ; \mathrm{T} 2=$ "T1" $\mathrm{K} ; \mathrm{Vel} 2=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{m} 2=" \mathrm{ml} " \mathrm{~kg} ;\}$
\}
\#-
End of TEST-code -
\# Evaluated States:
\# State-1: N2 > PG-Model;
\# Given: $\mathrm{p} 1=150.0 \mathrm{kPa} ; \mathrm{T} 1=300.0 \mathrm{~K} ; \mathrm{Vel} 1=0.0 \mathrm{~m} / \mathrm{s}$;
\#-------- Property spreadsheet starts: The following property table can be copied onto a spreadsheet (such as Excel) for further analysis or plots.

```
\begin{tabular}{llllllll}
\(\#\) & State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & \(\mathrm{v}\left(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\(\#\) & 1 & 150.0 & 300.0 & 0.5939 & -87.17 & 1.91 & 6.731 \\
\(\#\) & 2 & 800.0 & 300.0 & 0.1113 & -87.17 & 1.91 & 6.234
\end{tabular}
#
#--------Property spreadsheet ends
```

\qquad

```
#
#******CALCULATE VARIABLES: Type in an expression starting with an '=' sign (`= mdot1* (h2-h1)',
`= sqrt(4*A1/PI)', etc.) and press the Enter key)**********
#
#Isothermal Work done: W = p1*Vol1 * ln (Vol2/Vol1)
=p1*Vol1 * ln (Vol2/Vol1)
    p1`Vol1 * ln (Vol2/Vol1) =-50.21929300715014 kJ = -50.22 kJ .... Ans.
# Alternatively:
=m1*R1*T1* ln(vol2/vol1)
    m1*R1*T1* ln (vol2/vol1) =-50.21929300715015 ... same as above.
```


"I studied English for 16 years but...
 ...I finally learned to speak it in just six lessons" Jane, Chinese architect

Click to hear me talking before and after my unique course download

Alternatively:

Use the System Analysis - Closed - Generic - Uniform System Daemon for the Process analysis.

This is direct method, and is preferable since in addition to work and heat, it calculates exergy and 'lost work' too.

1. Select the appropriate daemon for process analysis as shown below:

2. Clicking on Uniform System, and choosing the Perfect Gas Model with $\mathrm{cp}=$ const. gives following window. Fill up the known parameters viz, p1, T1, Voll for State 1, and click on Calculate. We get:

3. Fill up known parameters for State 2, click on Calculate:

4. Go to Process Panel. T_B is already checked there; also check W_O (i.e. other work) as zero. Click on Calculate and get the following results:

Note that we get: $\mathrm{W} _\mathrm{B}=$ Boundary work for this Isothermal process as $\mathbf{- 5 0 . 2 2} \mathbf{~ k J}$;

Also, the Heat rejected $\mathrm{Q}=\mathrm{W} _\mathrm{B}=-50.22 \mathrm{~kJ}$ for Isothermal process, as it should be.
5. To make exergy analysis, we should first choose 'dead state'. This is State ' 0 ', take it as $\mathrm{p} 0=100 \mathrm{kPa}, \mathrm{T} _0=25 \mathrm{C}$. Go to States Panel and fill up these parameters for State 0 , and click on Calculate:

6. Now, go to Exergy Panel:

Observe that $\mathrm{I}=\mathrm{T} 0 * \Delta \mathrm{~S}=0.30969$ is the 'lost work'.
7. Click on SuperCalculate to generate the TEST Code and to get a record of all calculations, and go to I/O Panel to get TEST code etc:

\#

\qquad OUTPUT OF SUPER-CALCULATE:
\#-
-Start of TEST-code \qquad

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work
closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

States \{

State-0: N2;
Given: $\{\mathrm{p} 0=100.0 \mathrm{kPa} ; \mathrm{T} 0=25.0$ deg-C; Vel0 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 0=0.0 \mathrm{~m} ;\}$

State-1: N2;
Given: $\{\mathrm{pl}=150.0 \mathrm{kPa} ; \mathrm{Tl}=300.0 \mathrm{~K} ;$ Vell $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{Vol1}=0.2 \mathrm{~m} \wedge 3 ;\}$

State-2: N2;
Given: $\left\{\mathrm{p} 2=800.0 \mathrm{kPa} ; \mathrm{T} 2=\right.$ "T1" $\mathrm{K} ; \mathrm{Vel} 2=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{m} 2=$ " $\left.\mathrm{ml}{ }^{\prime} \mathrm{kg} ;\right\}$ \}

Analysis \{

```
Process-A: b-State = State-1; f-State = State-2;
Given: { W_O= 0.0 kJ; T_B= 298.15 K; }
}
```

End ofTEST-code
\#******DETAILED OUTPUT: All the computed properties and variables are displayed on this block. ${ }^{* * * * * * * * * * * * * ~}$

\# Evaluated States:

$$
\begin{aligned}
& \text { State-0: N2 > PG-Model; } \\
& \text { Given: } \mathrm{p} 0=100.0 \mathrm{kPa} ; \mathrm{T} 0=25.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vel} 0=0.0 \mathrm{~m} / \mathrm{s} \text {; } \\
& \mathrm{z} 0=0.0 \mathrm{~m} \text {; } \\
& \text { Calculated: } \mathrm{v} 0=0.8853 \mathrm{~m} \wedge 3 / \mathrm{kg} ; \mathrm{u} 0=-88.5292 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 0=0.0 \mathrm{~kJ} / \mathrm{kg} \text {; } \\
& \mathrm{s} 0=6.8453 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{e} 0=-88.5292 \mathrm{~kJ} / \mathrm{kg} ; j 0=0.0 \mathrm{~kJ} / \mathrm{kg} ; \\
& \text { phi0 }=0.0 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{psi} 0=0.0 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{MM} 0=28.0 \mathrm{~kg} / \mathrm{kmol} \text {; } \\
& \text { R } 0=0.2969 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{c} _\mathrm{p} 0=1.0311 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{c} _\mathrm{v} 0=0.7342 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} \text {; } \\
& \mathrm{k} 0=1.4044 \text { UnitLess; } \\
& \text { State-1: N2 > PG-Model; } \\
& \text { Given: } \mathrm{pl}=150.0 \mathrm{kPa} ; \mathrm{T} 1=300.0 \mathrm{~K} ; \text { Vel1 }=0.0 \mathrm{~m} / \mathrm{s} \text {; } \\
& \mathrm{zl}=0.0 \mathrm{~m} \text {; Vol1 }=0.2 \mathrm{~m}{ }^{\wedge} 3 \text {; } \\
& \text { Calculated: } \mathrm{vl}=0.5939 \mathrm{~m} \wedge 3 / \mathrm{kg} ; \mathrm{ul}=-87.171 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{hl}=1.9075 \mathrm{~kJ} / \mathrm{kg} \text {; } \\
& \mathrm{sl}=6.7313 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{el}=-87.171 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{jl}=1.9075 \mathrm{~kJ} / \mathrm{kg} ; \\
& \text { phil }=6.2086 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{psil}=35.9014 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{ml}=0.3368 \mathrm{~kg} \text {; } \\
& \mathrm{MM} 1=28.0 \mathrm{~kg} / \mathrm{kmol} ; \mathrm{R} 1=0.2969 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{c} _\mathrm{p} 1=1.0311 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ;
\end{aligned}
$$

\# c_vl= $0.7342 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{kl}=1.4044$ UnitLess;
\# State-2: N2 > PG-Model;
\# Given: p2= $800.0 \mathrm{kPa} ; \mathrm{T} 2=$ "T1" K; Vel2 $=0.0 \mathrm{~m} / \mathrm{s}$;
\# $\quad \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{m} 2=$ " ml " kg ;
\# Calculated: v2= $0.1114 \mathrm{~m}^{\wedge} 3 / \mathrm{kg} ; \mathrm{u} 2=-87.171 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 2=1.9075 \mathrm{~kJ} / \mathrm{kg}$;
\# $\mathrm{s} 2=6.2342 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{e} 2=-87.171 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{j} 2=1.9075 \mathrm{~kJ} / \mathrm{kg}$;
\# $\quad \mathrm{phi} 2=106.1536 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{psi} 2=184.0973 \mathrm{~kJ} / \mathrm{kg} ; \operatorname{Vol} 2=0.0375 \mathrm{~m} \wedge 3$;
\# MM2 $=28.0 \mathrm{~kg} / \mathrm{kmol} ; \mathrm{R} 2=0.2969 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{c} _\mathrm{p} 2=1.0311 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$;
\#
$\mathrm{c} _\mathrm{v} 2=0.7342 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{k} 2=1.4044$ UnitLess;
\#--------Property spreadsheet starts: The following property table can be copied onto a spreadsheet (such as Excel) for further analysis or plots. \qquad

\#	State	$\mathrm{p}(\mathrm{kPa})$	T(K)	$\mathrm{v}(\mathrm{m} \wedge 3 / \mathrm{kg})$	$\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg})$
\#	0	100.0	298.2	0.8853	-88.53	0.0	6.845
\#	1	150.0	300.0	0.5939	-87.17	1.91	6.731
\#	2	800.0	300.0	0.1113	-87.17	1.91	6.234
\#							

\# Mass, Energy, and Entropy Analysis Results:
\# \quad Process-A: b-State $=$ State-1; f-State $=$ State-2;
\# Given: W_O= $0.0 \mathrm{~kJ} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K}$;
\# Calculated: $\mathbf{Q}=\mathbf{- 5 0 . 2 1 9 2 9} \mathbf{k J} ; \mathbf{W} _\mathbf{B}=\mathbf{- 5 0 . 2 1 9 2 9} \mathbf{k J} ;$ S_gen= $0.0010386907 \mathrm{~kJ} / \mathrm{K} ; \mathrm{n}=1.0$ UnitLess;
\#
Delta_E $=-0.0 \mathrm{~kJ}$; Delta_S $=-0.16739765 \mathrm{~kJ} / \mathrm{K}$;

\# Exergy Analysis Results:

\# Exergy Analysis for Process - A (Dead state: State-0)
\# Given: $\mathrm{Q}=-50.21929 \mathrm{~kJ} ; \mathrm{T} _0=298.15 \mathrm{~K} ; \mathrm{Q} _1=0.0 \mathrm{~kJ}$;
\# \quad T_1 $=298.15 \mathrm{~K}$;
\# Calculated: Delta_Phi=33.65961 kJ; W_u $=-33.96929 \mathrm{~kJ}$; $\mathrm{I}=\mathbf{0 . 3 0 9 6 9} \mathbf{k J}$;
\#
\#
S_gen.univ $=0.00104 \mathrm{~kJ} / \mathrm{K} ; \mathrm{W} _$rev $=-33.65961 \mathrm{~kJ} ; \mathrm{W}=-50.21929 \mathrm{~kJ}$;
W_atm $=-16.25 \mathrm{~kJ} ; \mathrm{Q} _0=-50.21929 \mathrm{~kJ}$;

Prob.4.19. A mass of 1.2 kg of Air at 150 kPa and 12 C is contained in a gas-tight friction-less pistoncylinder device. The air is now compressed to a final pressure of 600 kPa . During the process heat is transferred from air such that the temp inside the cylinder remains constant. Calculate the work done during this process. [Ref. 1].

TEST Solution:

Use the System Analysis - Closed - Generic - Uniform System Daemon for the Process analysis.

Following are the steps:

1. Select the appropriate daemon for process analysis as shown below:

2. Clicking on Uniform System, and choosing the Perfect Gas Model with $\mathrm{cp}=$ const. gives following window. Select the gas as N2, Fill up the known parameters viz, p1, T1, Voll for State 1, and click on Calculate. We get:

$\mathrm{M}_{\S}^{-} \mathrm{M}$

MAASTRICHT SCHOOL OF MANAGEMENT

For almost 60 years Maastricht School of Management has been enhancing the management capacity of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open Enrollment Executive Programs offers you a unique interactive, stimulating and multicultural learning experience.

Be prepared for tomorrow's management challenges and apply today.
For more information, visit www.msm.nl or contact us at +3143 3870808 or via admissions@msm.nl
the globally networked management school

Download free eBooks at bookboon.com
3. Select State 2, enter the known parameters, i.e. p2, T2, m2. Click on Calculate:

4. Go to Process Panel, enter W_O (i.e. works other than boundary works) as zero, click on Calculate:

Note that for this Isothermal process, Boundary work, $\mathbf{W} _\mathbf{O}$ is calculated as $\mathbf{- 1 4 0 . 8 5} \mathbf{k J}$. (Ans.)

Negative work indicates work done on the system. Obviously, heat transfer Q is equal to $\mathrm{W} _\mathrm{B}$ and is negative, i.e. heat is leaving the system in this Isothermal process.
5. Plot below shows the States 1 and 2 on a T-s diagram:

6. Click on SuperCalculate to produce the TEST code, (with which we can regenerate these calculations later by loading this TEST code in the I/O Panel and clicking SuperCalculate). Now, go to I/O panel to view the TEST code and other calculated States. Only part of the I/O output is shown below:
\#~~~~~~~~~~~~~~~~~~~~~~ OUTPUT OF SUPER-CALCULATE: (
\# Daemon Path: Systems>Closed>Process>Generic>Uniform>PG-Model; v-10.bb05
\#--------------------Start of TEST-code \qquad

States \{
State-1: N2;
Given: $\{\mathrm{pl}=150.0 \mathrm{kPa} ; \mathrm{Tl}=12.0$ deg-C; Vel1 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{ml}=1.2 \mathrm{~kg} ;\}$
State-2: N2;
Given: $\{\mathrm{p} 2=600.0 \mathrm{kPa} ; \mathrm{T} 2=$ "T1" deg-C; Vel2 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{m} 2=$ " ml " kg;
\}

Analysis \{
Process-A: b-State $=$ State-1; f-State $=$ State-2;
Given: $\left\{\right.$ W_O $\left.=0.0 \mathrm{~kJ} ; \mathrm{T} _\mathrm{B}=298.15 \mathrm{~K} ;\right\}$
\}

\#--------Property spreadsheet starts:.

$\#$	State	$\mathrm{p}(\mathrm{kPa})$	$\mathrm{T}(\mathrm{K})$	$\mathrm{v}\left(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)$	$\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg})$
$\#$	1	150.0	285.2	0.5645	-98.07	-13.4	6.679
$\#$	2	600.0	285.2	0.1411	-98.07	-13.4	6.267

Prob. 4.20. A vessel having a volume of $5 \mathrm{~m}^{\wedge} 3$ contains $0.05 \mathrm{~m}^{\wedge} 3$ of sat. liquid water and $4.95 \mathrm{~m}^{\wedge} 3$ of sat. water vapour at 0.1 MPa . Heat is transferred until the vessel is filled with sat. vapour. Determine the heat transfer for this process. [Ref:2]

TEST Solution:

We shall use the States \& Properties - Uniform System, with PC (i.e. Phase Change) Material model for Water, and then calculate the heat transferred in the I/O panel, using it as a calculator:

Following are the steps:

1. Select the System State daemon:

2. Choose the PC model for Material model. Following daemon presents itself. We shall call the sat. liq. As State 1, sat. vapour as State 2, and the combined liq + vapour as State 3. So, Fill up the known parameters $\mathrm{p} 1, \mathrm{x} 1$ and Vollfor State 1:

Note that in the above dryness fraction x 1 is zero since it is sat. liq. state. Now, click on Calculate and we get:

DESTINATIONS

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.
Discover the world of Oliver Wyman at oliverwyman.com/careers

Observe that $\mathrm{m} 1, \mathrm{~T} 1$ etc are immediately calculated for Sat. water at 100 kPa .

3. Now, enter known parameters, i.e. $\mathrm{p} 2, \mathrm{x} 2$ and $\operatorname{Vol} 2$ for State 2:

Here, $\mathrm{x} 2=1$ since we are dealing with sat. vapour. Click on Calculate, and we get:

Note that $\mathrm{m} 2, \mathrm{u} 2, \mathrm{~h} 2$ etc. are immediately calculated for sat. water vap at 100 kPa .
4. Now, enter State 3. This is when the entire tank is filled with sat. water vap. i.e. $\mathrm{x} 3=1$, and of course, Vol $3=$ Vol1 + Vol2, and total mass $\mathrm{m} 3=\mathrm{m} 1+\mathrm{m} 2$. Enter these parameters for State 3:

5. Click on Calculate and we get:

6. Get the T-s plot where States 1,2 and 3 are shown:

T, K
(-3.637, 809.792)
712.02
209.83

7. Click on SuperCalculate to produce the TEST code and other calculated results. Go to I/O panel to see them. Part of the output is shown below:
\#~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:
\# Daemon Path: States>System>PC-Model; v-10.bb06
\qquad

States \{

State-1: H2O;
Given: $\left\{\mathrm{pl}=100.0 \mathrm{kPa} ; \mathrm{x} 1=0.0\right.$ fraction; Vell $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ;$ Voll $\left.=0.05 \mathrm{~m}^{\wedge} 3 ;\right\}$
State-2: H2O;
Given: $\left\{\mathrm{p} 2=100.0 \mathrm{kPa} ; \mathrm{x} 2=1.0\right.$ fraction; Vel2 $\left.=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{Vol} 2=4.95 \mathrm{~m}^{\wedge} 3 ;\right\}$
State-3: H2O;
Given: $\{\mathrm{x} 3=1.0$ fraction; Vel3 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 3=0.0 \mathrm{~m} ; \mathrm{m} 3=" \mathrm{~m} 1+\mathrm{m} 2 " \mathrm{~kg} ; \mathrm{Vol} 3=" \operatorname{vol} 1+\mathrm{vol} 2 " \mathrm{~m} \wedge 3 ;\}$ \}
\qquad

\#--------Property spreadsheet :

\# State	$\mathrm{p}(\mathrm{kPa})$	$\mathrm{T}(\mathrm{K})$	x	$\mathrm{v}(\mathrm{m} 3 / \mathrm{kg})$	$\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg})$
\# 01	100.0	372.8	0.0	0.001	417.34	417.44	1.303
\# 02	100.0	372.8	1.0	1.694	2506.06	2675.46	7.359
\# 03	2026.13	486.2	1.0	0.0983	2600.47	2799.74	6.336
\#							

$\#^{* * * * * * *}$ CALCULATE VARIABLES: Type in an expression starting with an ' $=$ ' $\operatorname{sign}(‘=m \operatorname{dot} 1 *(\mathrm{~h} 2-\mathrm{h} 1)$ ', $'=\operatorname{sqrt}\left(4^{\star} \mathrm{A} 1 / \mathrm{PI}\right)$ ', etc. $)$ and press the Enter key $)^{* * * * * * * * *}$
\# Calculate the heat transferred in the I/O panel, using it as a calculator:
$\mathrm{Q}=\left[\left(\mathrm{m} 3^{*} \mathrm{u} 3\right)-\left(\mathrm{m} 1^{*} \mathrm{u} 1+\mathrm{m} 2^{*} \mathrm{u} 2\right)\right] \ldots$....heat transferred, since it is at constant volume
$\mathrm{m} 1^{\star} \mathrm{u} 1+\mathrm{m} 2^{\star} \mathrm{u} 2=27329.407721629643 \mathrm{~kJ}$
$\mathrm{m} 3^{*} \mathrm{u} 3=132261.66395801632 \mathrm{~kJ}$
\#Therefore:
$Q=m 3^{\star} \mathbf{u} 3-\left(m 1^{\star} u 1+m 2^{\star} u 2\right)=104932.25623638667 \mathrm{~kJ}=104932.26 \mathrm{~kJ} \ldots$. Ans.
In addition, note that the masses of sat. liq. and vapour are:
$\mathrm{ml}=47.938637362598115=47.94 \mathrm{~kg} \ldots$. Mass of sat. liq.
$\mathrm{m} 2=2.922078117838602 \mathrm{~kg}=2.92 \mathrm{~kg} \ldots$. Mass of sat. vap.

And, total mass m3 is:

$\mathrm{m} 3=50.86071548043672=50.86 \mathrm{~kg} \ldots$. Total mass

Prob.4.21. A cylinder fitted with a piston has a volume of $0.1 \mathrm{~m}^{\wedge} 3$ and contains 0.5 kg of steam at 0.4 MPa. Heat is transferred to the steam until the temp is 300 C , while the pressure remains constant. Determine the heat transfer and work for this process. [Ref: 2]

TEST Solution:

We use the System Analysis - Closed - Generic - Uniform System Daemon for the Process analysis.

Following are the steps:

1. Select the appropriate daemon for process analysis as shown below:

2. Clicking on Uniform System, choose the PhaseChange (PC) Model for Material Model since we are dealing with Steam/Water.

Generic, Uniform System, Closed Process Daemons: Select a Material Model
Select a material model to launch the daemon.
Pure Phase-Transition Fluid: The phase-change ($P C$) model can be used to determine states of sub-cooled (compressed) liquid, super-heated vapor, and saturated mixture of liquid and vapor phases. Based on the saturation and super-heated tables, the model is quite accurate. Sub-cooled liquid is modeled with the compressed-liquid sub-model, except for species with an asterisk ($\mathrm{H} 2 \mathrm{O}^{*}$ as opposed to H2O), which uses compressed liquid table for better accuracy. Working fluids such as H2O, R-12, NH3, R-134a, N2, CO2, etc., should be treated as PC fluids if there is any possibility of a phase transition. Examples: R -134a vapor is compressed in a piston-cylinder device from a beginning-state to a final-state. To find the work transfer if compression is assumed isentropic. For specific examples, click on the help icon at the bottom margin of the daemon.

3. Fill up the known parameters viz, p1, m1, Vol1 for State 1. Click on Calculate. We get:

4. Select State 2, enter known parameters, i.e. p2, T2, m2, and click on Calculate:

5. Go to Process Panel, enter b-state and f-state, enter W_O $=0$ (i.e. works other than pdV work), and click on Calculate. We get:

Thus: Boundary work, $W_{-} B=90.9656 \mathrm{~kJ}$ and the heat transferred $\mathrm{Q}=771.41 \mathrm{~kJ} . .$. Ans.
Note that Work is positive, i.e. work done by the system.

Heat transfer q is positive, i.e. Heat transferred into the system.
6. On a T-s diagram, the State points are shown as follows:

-1.69
$\mathrm{s}, \mathrm{kJ} / \mathrm{kg} . \mathrm{K}$
11.71

In the past four years we have drilled

$81,000 \mathrm{~km}$

That's more than twice around the world.

Who are we?

We are the world's leading oilfield services company. Working globally-often in remote and challenging locations-we invent, design, engineer, manufacture, apply, and maintain technology to help customers find and produce oil and gas safely.

Who are we looking for?

We offer countless opportunities in the following domains:

- Engineering, Research, and Operations
- Geoscience and Petrotechnical
- Commercial and Business

If you are a self-motivated graduate looking for a dynamic career, apply to join our team.

What will you be?
careers.slb.com
Sathlumheryger
7. Click on SuperCalculate to produce the TEST code, calculated State properties etc. Go to I/O panel to see the code. Part of I/O output is shown below:

```
#
# Daemon Path: Systems>Closed>Process>Generic>Uniform>PC-Model; v-10.bb06
#
```


\qquad

```
States {
            State-1: H2O;
            Given: { pl= 400.0 kPa; Vel1= 0.0 m/s; zl= 0.0 m; ml= 0.5 kg; Vol1= 0.1 m^3;}
            State-2: H2O;
            Given: { p2= "p1" kPa; T2= 300.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; }
            }
Analysis {
            Process-A: b-State = State-1; f-State = State-2;
            Given: { W_O= 0.0 kJ; T_B=298.15 K; }
            }
#----------------------End ofTEST-code
```

\qquad

```
# Mass, Energy, and Entropy Analysis Results:
# Process-A: b-State = State-1; f-State = State-2;
# Given: W_O= 0.0 kJ; T_B= 298.15 K;
# Calculated: Q= 771.41223 kJ; W_B= 90.9656 kJ; S_gen= -0.7952037 kJ/K;
# Delta_E= 680.44666 kJ; Delta_S= 1.7921257 kJ/K;
```

Prob.4.22. Air at 1.02 bar, 22 C, initially occupying a cylinder volume of 0.015 m 3 , is compressed reversibly and adiabatically to a pressure of 6.8 bar. Calculate: (i) Final volume (ii) Final temp, and (iii) Work done. [Ref: 4]
(b) In addition: If State 2 is reached by a polytropic process ($\mathrm{n}=1.3$) instead of by isentropic process, find out the values of Work and Heat transfers and their direction.

TEST Solution:

We use the System Analysis - Closed - Generic - Uniform System Daemon for the Process analysis.

Following are the steps:

1. Select the appropriate daemon for process analysis as shown below:

2. Clicking on Uniform System, choose the Permanent Gas (PG) Model for Material Model since we are dealing with Air. Enter parameters p1, T1 and Vollfor State 1, click on Calculate. We get:

3. Select State 2, enter $\mathrm{p} 2, \mathrm{~m} 2=\mathrm{m} 1$, and $\mathrm{s} 2=\mathrm{s} 1$ since it is an isentropic (i.e. reversible, adiabatic) process. Click on Calculate. We get:

4. Now, go to Process Panel, enter b_state $=$ State $1, \mathrm{f}$-state $=$ State 2 , and $\mathrm{Q}=0$ since it is adiabatic process; click on Calculate. We get:

Thus:

Final volume, $\operatorname{Vol} 2=0.00387 \mathrm{~m}^{\wedge} 3$, Final temp, $\mathrm{T} 2=234.62 \mathrm{C} \ldots$. Ans.
$W _B=$ boundary work $=-2.752 \mathrm{~kJ} \ldots$. Ans. Negative sign means that work is done on the system.

1. Plot the States 1 and 2 on the T-s diagram:

(b) If State 2 is reached by a polytropic process $(n=1.3)$, what are the values of Q and $W _B$?

Let the state after the polytropic process be designated as State 3. Note that State 2 and State 3 are identical:

1. Select State 3 and enter $\mathrm{p} 3, \mathrm{~T} 3$ and m 1 . These are essentially the same as for State 2 . Click on Calculate. We get:

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research \& Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Hilumins Dove.

2. Now, go to Process Panel. Enter b-state $=$ State $1, \mathrm{f}$-state $=$ State $3, \mathrm{n}=1.3$ and Other Works, W_O $=0$. Click on Calculate. We get:

Note that $Q=-0.922 \mathrm{~kJ}, W_{-} B=-3.674 \mathrm{~kJ} . . .$. Ans. Negative sign means: Q leaving the system, W_B done on the system.

3. Click on SuperCalculate to generate TEST code and get all calculated results. See them on the I/O panel. Part of the output is given below:

\# Daemon Path: Systems>Closed>Process>Generic>Uniform>PG-Model; v-10.bb05

\qquad

States \{
State-1: Air;
Given: $\{\mathrm{pl}=102.0 \mathrm{kPa} ; \mathrm{Tl}=22.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vell}=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ;$ Vol1 $=0.015 \mathrm{~m} \wedge 3 ;\}$
State-2: Air;
Given: $\{\mathrm{p} 2=680.0 \mathrm{kPa} ; \mathrm{s} 2=$ " s 1 " $\mathrm{kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{Vel2}=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{m} 2=" \mathrm{~m} 1$ " kg; \}
State-3: Air;
Given: $\{\mathrm{p} 3=$ "p2" kPa; T3= "T2" K; Vel3 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z3}=0.0 \mathrm{~m} ; \mathrm{m} 3=$ " m 1 " kg; \}
\}

Analysis \{
Process-A: b-State $=$ State-1; f-State $=$ State-3;
Given: $\left\{\mathrm{W} _\mathrm{O}=0.0 \mathrm{~kJ} ; \mathrm{T} _\mathrm{B}=298.15 \mathrm{~K} ; \mathrm{n}=1.3\right.$ UnitLess; $\}$
\}
\#-------------------------End of TEST-code \qquad

\#DETAILED OUTPUT:

\# Evaluated States:
\# State-1: Air > PG-Model;
\# Given: $\mathrm{pl}=102.0 \mathrm{kPa} ; \mathrm{Tl}=22.0 \mathrm{deg}$-C; Vel1 $=0.0 \mathrm{~m} / \mathrm{s}$;
\# $\quad \mathrm{zl}=0.0 \mathrm{~m}$; Voll $=0.015 \mathrm{~m}^{\wedge} 3$;
\# Calculated: $\mathrm{vl}=0.8304 \mathrm{~m} \wedge 3 / \mathrm{kg} ; \mathrm{ul}=-87.7146 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 1=-3.0105 \mathrm{~kJ} / \mathrm{kg}$;
\# $\quad \mathrm{sl}=6.8709 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{e} 1=-87.7146 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{jl}=-3.0105 \mathrm{~kJ} / \mathrm{kg}$;
\# $\quad \mathrm{ml}=0.0181 \mathrm{~kg} ; \mathrm{MM1}=28.97 \mathrm{~kg} / \mathrm{kmol} ; \mathrm{Rl}=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$;
\# c_pl= $1.0035 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{c} _v 1=0.7165 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{kl}=1.4005$ UnitLess;
\# State-2: Air > PG-Model;
\# Given: $\mathrm{p} 2=680.0 \mathrm{kPa} ; \mathrm{s} 2=$ " s 1 " kJ/kg.K; Vel2 $=0.0 \mathrm{~m} / \mathrm{s}$;
\# $\quad \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{m} 2=$ " m 1 " kg ;
\# Calculated: T2 = $507.7737 \mathrm{~K} ; \mathrm{v} 2=0.2143 \mathrm{~m} \wedge 3 / \mathrm{kg} ; \mathrm{u} 2=64.6319 \mathrm{~kJ} / \mathrm{kg}$;
\# $\quad \mathrm{h} 2=210.3562 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{e} 2=64.6319 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{j} 2=210.3562 \mathrm{~kJ} / \mathrm{kg}$;
\# Vol2 $=0.0039 \mathrm{~m}^{\wedge} 3 ; \mathrm{MM} 2=28.97 \mathrm{~kg} / \mathrm{kmol} ; \mathrm{R} 2=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$;
\# c_p2= $1.0035 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{c} _\mathrm{v} 2=0.7165 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{k} 2=1.4005$ UnitLess;
\# State-3: Air > PG-Model;
\# Given: p3= "p2" kPa; T3= "T2" K; Vel3= $0.0 \mathrm{~m} / \mathrm{s}$;
\# \quad z3 $=0.0 \mathrm{~m} ; \mathrm{m} 3=$ " ml " kg;
\# Calculated: v3= $0.2143 \mathrm{~m} \wedge 3 / \mathrm{kg} ; \mathrm{u} 3=64.6319 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 3=210.3562 \mathrm{~kJ} / \mathrm{kg}$;
\#
\# Vol3 $=0.0039 \mathrm{~m} \wedge 3 ; \mathrm{MM} 3=28.97 \mathrm{~kg} / \mathrm{kmol} ; \mathrm{R} 3=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$;
\# c_p3= $1.0035 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{c} _\mathrm{v} 3=0.7165 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{k} 3=1.4005$ UnitLess;
\#

$\#$	State	$\mathrm{p}(\mathrm{kPa})$	$\mathrm{T}(\mathrm{K})$	$\mathrm{v}\left(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)$	$\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg})$
$\#$	1	102.0	295.2	0.8304	-87.71	-3.01	6.871
$\#$	2	680.0	507.8	0.2143	64.63	210.36	6.871
$\#$	3	680.0	507.8	0.2143	64.63	210.36	6.871

\#--------Property spreadsheet ends- \qquad
\# Mass, Energy, and Entropy Analysis Results:
\# \quad Process-A: b-State $=$ State-1; f-State $=$ State-3;
\# Given: W_O= $0.0 \mathrm{~kJ} ; \mathrm{T}$ _B= 298.15 K; n= 1.3 UnitLess;
\#
Calculated: $\mathbf{Q}=\mathbf{- 0 . 9 2 2 1 8 2 5 6} \mathbf{k J} ; \mathbf{W} _\mathbf{B}=\mathbf{- 3 . 6 7 3 9 9 9 5} \mathbf{k J}$; S_gen= $0.0030930154 \mathrm{~kJ} / \mathrm{K}$;
Delta_E= 2.751817 kJ;
\#
Delta_S $=-0.0 \mathrm{~kJ} / \mathrm{K}$;
"Prob.4.23. 5 kg of Nitrogen at 100 C is heated in a reversible, non-flow, constant volume process till the pressure becomes three times the initial pressure. Determine: (i) final temp (ii) change in internal energy (iii) change in enthalpy, and (iv) heat transfer. Take $\mathrm{R}=0.297 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \mathrm{cv}=0.7435 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$. [VTU-Jan. 2004]"

Note that this is the same as Prob. 4.8 which was solved with EES.

Now, let us solve it with TEST:

TEST Solution:

We use the System Analysis - Closed - Generic - Uniform System Daemon for the Process analysis.

Deloitte.
© Deloitte \& Touche LLP and affiliated entities.

Following are the steps:

1. Select the appropriate daemon for process analysis as shown below:

2. Clicking on Uniform System, choose the Permanent Gas (PG) Model for Material Model since we are dealing with Air. Enter parameters m1, T1 and Vol1 ($=1 \mathrm{~m} \wedge 3 \ldots$.assumed) for State 1, click on Calculate. We get:

Note that, in calculations, we will be using the built-in properties for $R, c p$ and $c v$, as seen in the above screenshot.
3. Select State 2, enter $\mathrm{p} 2=3^{*} \mathrm{p} 1, \operatorname{Vol} 2=$ Vol1, $\mathrm{m} 2=\mathrm{m} 1$. Click on Calculate. We get:

Move mouse over a variable to display its value with more precision.																
- Mixed C	C si English			<	-0	\checkmark Help Messages On				Super-Iterate		Super-Calculate		Load	Super-Initialize	
State Panel				Process Panel						Exergy Panel			$1 / 0$ Panel			
< ©State-2	$v>$	Calculate			T-s	\checkmark	Initialize			Formation Enthalpy:		CNo - Yes		N2	\checkmark	
$\checkmark \quad \mathrm{p} 2$			Γ	T2			Γ	v2			$\Gamma \quad u 2$			$\Gamma \quad h 2$		
$=3^{*} \mathrm{p} 1$	kPa	\checkmark	846.3		deg-C	\checkmark	0.2		$\mathrm{m}^{\wedge} 3 / \mathrm{kg}$	\checkmark	514.44714	kJ/kg	\checkmark	846.8438	k./lkg	\checkmark
Γ s2				Vel2				z2			「 e2			「 12		
7.37488	kJ/kg.K	\checkmark	0.0		m / s	\checkmark	0.0		m	\checkmark		$\mathrm{kJ} / \mathrm{kg}$	\checkmark	846.8438	kJ/kg	\checkmark
phi2			psi2				$\checkmark \quad m 2$				\checkmark Vol2			MM2		
1	kJ/kg	\checkmark			kJ/kg	\checkmark	$=\mathrm{m} 1$		kg	\checkmark	=Vol1	$\mathrm{m}^{n 3}$	\checkmark	28.0	$\mathrm{kg} / \mathrm{kmol}$	\checkmark
R2			c_p2				c_v2				k2					
0.29693	kJ/kg.K	\checkmark	1.0311		kJ/kg.K	\checkmark	0.73417		kJ/kg.K	\checkmark	1.40444	Unitless	\checkmark			

4. Go to Process Panel, enter $W_{-} B=0$ since it is const. vol. process, $W_{-} \mathrm{O}=0$, since there is no other work interaction. Click on Calculate. We get:

5. States 1 and 2 are shown in the $\mathrm{p}-\mathrm{V}$ diagram:

Thus:

Final temp, $\mathrm{T} 2=846.3 \mathrm{C}=1119.4 \mathrm{~K} \ldots$. Ans.,
Heat transfer, $\mathrm{Q}=\mathbf{2 7 3 9 . 5 7 \mathrm { kJ }} \ldots .$. Ans. Work is done by the system.
6. Click on SuperCalculate to get TEST code and calculated results. Also, calculate the change in internal energy and enthalpy in the I/O panel. Go to I/O panel. Part of the output is::
\#~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:
\# Daemon Path: Systems>Closed>Process>Generic>Uniform>PG-Model; v-10.bb05
\#--------------------Start of TEST-code --

States

\{
State-1: N2;
Given: $\{\mathrm{T} 1=100.0 \mathrm{deg}-\mathrm{C} ;$ Vel1 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{ml}=5.0 \mathrm{~kg} ;$ Vol1 $=1.0 \mathrm{~m} \wedge 3 ;\}$
State-2: N2;
Given: $\left\{\mathrm{p} 2=\right.$ " $3^{*} \mathrm{p} 1$ " kPa; Vel2 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{m} 2=$ " $\mathrm{ml}{ }^{\prime} \mathrm{kg} ;$ Vol2= "Vol1" $\mathrm{m} \wedge 3$; \}
\}

Grant Thornton-a ${ }^{\text {Renly }}$ great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute ${ }^{\text {TM }}$ for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Audit •Tax • Advisory
www.GrantThornton.ca/Careers

- Grant Thornton

An instinct for growth'

Download free eBooks at bookboon.com

Analysis \{

Process-A: b-State $=$ State-1; f-State $=$ State -2 ;
Given: $\left\{\mathrm{W} _\mathrm{B}=0.0 \mathrm{~kJ} ; \mathrm{W} _\mathrm{O}=0.0 \mathrm{~kJ} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K} ;\right\}$
\}
\#------------------------End of TEST-code
\#---------Property spreadsheet starts:

$\#$	State	$\mathrm{p}(\mathrm{kPa})$	$\mathrm{T}(\mathrm{K})$	$\mathrm{v}(\mathrm{m} \wedge 3 / \mathrm{kg})$	$\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg})$
$\#$	1	553.99	$\mathbf{3 7 3 . 2}$	0.2	-33.47	77.33	6.568
$\#$	2	1661.98	$\mathbf{1 1 1 9 . 4}$	0.2	514.45	846.84	7.375

\#--------Property spreadsheet ends \qquad
\# Mass, Energy, and Entropy Analysis Results:
$\# \quad$ Process-A: b-State $=$ State-1; f-State $=$ State-2;
\# Given: W_B= $0.0 \mathrm{~kJ} ; \mathrm{W} _\mathrm{O}=0.0 \mathrm{~kJ} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K}$;
\# Calculated: $\mathbf{Q}=\mathbf{2 7 3 9 . 5 7} \mathbf{~ k J}$; S_gen $=-5.155695 \mathrm{~kJ} / \mathrm{K}$; Delta_E= 2739.5671 kJ ; Delta_S= $4.0328584 \mathrm{~kJ} / \mathrm{K}$;
$\#^{\# * * * * * *}$ CALCULATE VARIABLES: Type in an expression starting with an ' $=$ ' sign ($‘=\operatorname{mdot} 1 *(\mathrm{~h} 2-\mathrm{h} 1)$),
$'=\operatorname{sqrt}\left(4^{\star} \mathrm{A} 1 / \mathrm{PI}\right)$ ', etc. $)$ and press the Enter key $)^{* * * * * * * * * *}$
\# Change in Internal Energy: $\Delta \mathbf{U}=\mathbf{m 1}$ * ($\mathbf{u} \mathbf{2} \mathbf{- u} \mathbf{u}$)
i.e. $\Delta \mathrm{U}=\mathrm{ml} 1^{*}(\mathrm{u} 2-\mathrm{u} 1)=2739.5670715475585=2739.57 \mathbf{k J} . .$. Ans.
\# Change in Enthalpy: $\Delta \mathbf{H}=\mathbf{m 1}$ * (h2 - h1)
i.e. $\Delta \mathrm{H}=\mathrm{ml}{ }^{*}(\mathrm{~h} 2-\mathrm{h} 1)=3847.5560358332727=3847.56 \mathrm{~kJ} \ldots$. Ans.

Compare the above results with those obtained with EES:

Unit Settings: SI K kPa kJ molar deg

$\mathrm{cp}=1041 \quad[\mathrm{~J} / \mathrm{kg}-\mathrm{K}]$
$\Delta \mathrm{U}=2.773 \mathrm{E}+06[\mathrm{~J}]$
$\mathrm{Q}=2.773 \mathrm{E}+06[\mathrm{~J}]$
$\mathrm{T} 2=1119[\mathrm{~K}]$

$$
\begin{aligned}
& \mathrm{cv}=743.5[\mathrm{~J} / \mathrm{kg}-\mathrm{K}] \\
& \mathrm{m}=5[\mathrm{~kg}] \\
& \mathrm{R}=297[\mathrm{~J} / \mathrm{kg}-\mathrm{K}] \\
& \mathrm{W}=0[\mathrm{~J}]
\end{aligned}
$$

$\Delta H=3.881 \mathrm{E}+06[\mathrm{~J}]$
PressureRatio $=3$
$\mathrm{T} 1=373[\mathrm{~K}]$

It is observed that results match very well.

Prob.4.24.A piston-cylinder device contains 0.8 kg of Nitrogen initially at 100 kPa and 27 C . The nitrogen is now compressed slowly in a polytropic process ($\mathrm{P} \cdot \mathrm{V}^{\wedge} 1.3=$ const.) until the volume is reduced by onehalf. Determine the work done and the heat transfer.[Ref: 1]

TEST Solution:

We use: System Analysis - Closed - Generic - Uniform System Daemon for the Process analysis.

Following are the steps:

1. Select the appropriate daemon for process analysis as shown below:

2. Clicking on Uniform System, choose the Permanent Gas (PG) Model for Material Model since we are dealing with N2. Enter parameters p1, T1, m1 for State 1, click on Calculate. We get:

The Wake

the only emission we want to leave behind

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ
The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel \& Turbo.
Power competencies are offered with the world's largest engine programme - having outputs spanning
from 450 to $87,220 \mathrm{~kW}$ per engine. Get up front!
Find out more at www.mandieselturbo.com
Engineering the Future - since 1758.
MAN Diesel \& Turbo
3. Enter known quantities for State 2. We have: $\mathrm{m} 2=\mathrm{m} 1$ and Vol2 $=0.5^{*}$ Vol1. Click on Calculate, but the entered data is not sufficient to make all calculations:

4. Let us proceed to the Process Panel and enter $\mathrm{n}=1.3$ (i.e, polytropic index), Other Works, $\mathrm{W} _\mathrm{O}=0$. Click on Calculate. We get:

5. Since iteration has to be done with reference to other states, we have to click on

SuperCalculate to complete the calculations. Then, we get:

Thus:

Work done, W_{-}B = -54.93 kJ.... Ans. (Negative sign means work done on the system)

Heat transfer, $\mathrm{Q}=-14.19 \mathrm{~kJ} \ldots .$. Ans. (Negative sign means heat rejected by the system).
6. Now, go back to State Panel and examine State 2:

We see that values of p 2 and T 2 are now posted for State 2.

Thus:

$P 2=246.23 \mathrm{kPa}, \mathrm{T} 2=96.38 \mathrm{C} \ldots$. Ans.
7. T-s diagram showing States 1 and 2 is easily obtained:

8. Go to I/O panel to see the TEST Code and the calculated values:
\#~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE (starts from your inputs)
\# Daemon Path: Systems>Closed>Process>Generic>Uniform>PG-Model; v-10.bb05
\#--------------------Start of TEST-code ---

States \{
State-1: N2;
Given: $\{\mathrm{pl}=100.0 \mathrm{kPa} ; \mathrm{Tl}=27.0$ deg-C; Vel1 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{ml}=0.8 \mathrm{~kg} ;\}$
State-2: N2;
Given: $\left\{\right.$ Vel2 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{m} 2=$ " $\mathrm{ml}{ }^{\prime} \mathrm{kg} ;$ Vol2 $=" 0.5^{*}$ Vol1" $\left.\mathrm{m}^{\wedge} 3 ;\right\}$
\}
Analysis \{
Process-A: b-State $=$ State-1; f-State $=$ State-2;
Given: $\left\{\mathrm{W} _\mathrm{O}=0.0 \mathrm{~kJ} ; \mathrm{T}\right.$ _B $=298.15 \mathrm{~K} ; \mathrm{n}=1.3$ UnitLess; $\}$
\}
\#----------------------End ofTEST-code
\#

买RBS Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder - whatever your level of education, degree subject or work experience.
And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?
Click here to get started.

Download free eBooks at bookboon.com
\#--------Property spreadsheet starts: The following property table can be copied onto a spreadsheet (such as Excel) for further analysis or plots.
\#

$\#$	State	$\mathrm{p}(\mathrm{kPa})$	$\mathrm{T}(\mathrm{K})$	$\mathrm{v}\left(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)$	$\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg})$
$\#$	1	$\mathbf{1 0 0 . 0}$	$\mathbf{3 0 0 . 2}$	0.8912	-87.06	2.06	6.852
$\#$	2	$\mathbf{2 4 6 . 2 3}$	$\mathbf{3 6 9 . 5}$	0.4456	-36.13	73.6	6.799

\#--------Property spreadsheet ends \qquad

\# Mass, Energy, and Entropy Analysis Results:

\# \quad Process-A: b-State $=$ State-1; f-State $=$ State- 2 ;
\# Given: W_O= $0.0 \mathrm{~kJ} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K} ; \mathrm{n}=1.3$ UnitLess;
\# Calculated: $\mathrm{Q}=\mathbf{- 1 4 . 1 8 5 7 8 9} \mathbf{k J} ; \mathrm{W}_{-} \mathrm{B}=\mathbf{- 5 4 . 9 3 4 1 6 \mathrm { kJ } \text { ; }}$
\# S_gen $=0.0050608176 \mathrm{~kJ} / \mathrm{K} ;$ Delta_E $=40.748367 \mathrm{~kJ}$;
\# Delta_S = -0.042518552 kJ/K;

Prob.4.25. A quantity of air at a pressure of $100 \mathrm{kPa}, 27 \mathrm{C}$ occupying a volume of $0.5 \mathrm{~m} \wedge 3$ is compressed to a pressure of 500 kPa and volume of $0.12 \mathrm{~m} \wedge 3$ according to the law $\mathrm{pv} \wedge \mathrm{n}=$ const. Find: (i) the value of index n (ii) the mass of air (iii) work transfer (iv) heat transferred during the process, and (v) change in entropy. [VTU-BTD-July 2007]

TEST Solution:

Following are the steps:

1. Select System Analysis-Generic-Uniform System:

2. For Material Model, select 'Perfect Gas' (PG) Model:

3. State 1: Enter p1, T1, Vol1. Hit Enter (or click Calculate).

4. State 2: Enter p2, Vol2, and m2 = m1. Hit Enter (or click Calculate).

5. Go to Process Panel. Enter b-state and f-state. Click W_O and enter W_O=0. Click on Calculate:

6. Now, click on SuperCalculate. Go to States Panel and see:

○RACLE*

Be brave

enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future,

Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE

ORACLE IS THE INFORMATION COMPANY

Download free eBooks at bookboon.com

And State 2:

Thus:

Index, $\mathbf{n}=\mathbf{1 . 1 2 7 7 6}$
Mass of air $=\mathrm{m} 1=\mathrm{m} 2=0.58046 \mathrm{~kg}$
Work transfer $=\mathbf{W} _B=-78.27 \mathrm{~kJ}$ (Work done on the system, therefore negative)
Heat transfer $=-53.3081 \mathrm{~kJ}$
Entropy change $=(s 2-s 1)=-0.2789284256081599=-0.2789 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
Total change in entropy of system $=$ Delta_S $=-0.16191 \mathrm{~kJ} / \mathrm{K} \ldots$. Ans.
\qquad

T_s diagram:

And the I/O panel shows:

\# Daemon Path: Systems>Closed>Process>Generic>Uniform>PG-Model; v-10.bb05
\#---------------------Start of TEST-code \qquad

States \{
State-1: Air;
Given: $\{\mathrm{p} 1=100.0 \mathrm{kPa} ; \mathrm{T} 1=27.0 \mathrm{deg}-\mathrm{C} ;$ Vel1 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ;$ Vol1 $=0.5 \mathrm{~m} \wedge 3 ;\}$
State-2: Air;
Given: $\{\mathrm{p} 2=500.0 \mathrm{kPa} ; \mathrm{Vel} 2=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{m} 2=$ " m 1 " kg; Vol2 $=0.12 \mathrm{~m} \wedge 3 ;\}$ \}

Analysis \{
Process-A: b-State $=$ State-1; f-State $=$ State-2;
Given: $\left\{\mathrm{W} _\mathrm{O}=0.0 \mathrm{~kJ} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K} ;\right\}$
\}

\#	State	$\mathrm{p}(\mathrm{kPa})$	T(K)	$\mathrm{v}(\mathrm{m} \wedge 3 / \mathrm{kg})$	$\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg})$
\#	1	100.0	300.2	0.8614	-84.13	2.01	6.893
\#	2	500.0	360.2	0.2067	-41.12	62.25	6.614

\# Mass, Energy, and Entropy Analysis Results:

$\# \quad$ Process-A: b-State $=$ State-1; f-State $=$ State-2;
\# Given: W_O= $0.0 \mathrm{~kJ} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K}$;
\# Calculated: $\mathrm{Q}=-53.3081 \mathrm{~kJ} ; \mathrm{W} _\mathrm{B}=-78.27469 \mathrm{~kJ}$; S_gen= $0.016890267 \mathrm{~kJ} / \mathrm{K}$; $\mathbf{n}=1.1277552$ UnitLess;

Delta_E= 24.966587 kJ ; Delta_S= -0.16190599 kJ/K;

Prob.4.26. Determine the amount of heat which should be supplied to 2 kg of water at 25 C to convert it in to steam at 5 bar and 0.9 dry. [VTU-BTD-Dec. 2007-Jan.2008]

TEST Solution:

Following are the steps:

1. Select System analysis - Generic - Uniform System from the Daemon tree:

2. Select Phase Change (PC) for Material model, since we are dealing with Water:

3. Enter parameters $\mathrm{p} 1, \mathrm{~T} 1, \mathrm{~m} 1$ for State 1 ; click on Calculate. We get:

4. Similarly for State 2 : enter $\mathrm{p} 2, \mathrm{x} 2, \mathrm{~m} 2=\mathrm{m} 1$, and click on Calculate. We get:

5. Go o Process Panel. Enter b-state and f-state, and $\mathrm{W} _\mathrm{B}=0$ and $\mathrm{W} _\mathrm{O}=0$; click on Calculate. We get:

Note that: Delta_E = 4528.298 kJ Ans.
6. Draw the T-s diagram. Constant pressure lines are also shown (in blue):

$s, k J / k g . K$

7. Click on Super Calculate. TEST code is produced, and see it in I/O panel:
\# Daemon Path: Systems>Closed>Process>Generic>Uniform>PC-Model; v-10.bb06
\#- \qquad Start of TEST-code \qquad
States \{

State-1: H2O;
Given: $\{\mathrm{pl}=100.0 \mathrm{kPa} ; \mathrm{Tl}=25.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vell}=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{ml}=2.0 \mathrm{~kg} ;\}$
State-2: H2O;
Given: $\{\mathrm{p} 2=500.0 \mathrm{kPa} ; \mathrm{x} 2=0.9$ fraction; Vel2 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{m} 2=" \mathrm{~m} 1$ " kg; \} \}

Analysis \{
Process-A: b-State $=$ State-1; f-State $=$ State-2;
Given: $\left\{\mathrm{W} _\mathrm{B}=0.0 \mathrm{~kJ}\right.$; W_O= $\left.0.0 \mathrm{~kJ} ; \mathrm{T} _\mathrm{B}=298.15 \mathrm{~K} ;\right\}$
\}
\#----------------------End of TEST-code \qquad

\# State	$\mathrm{p}(\mathrm{kPa})$	$\mathrm{T}(\mathrm{K})$	x	$\mathrm{v}(\mathrm{m} 3 / \mathrm{kg})$	$\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg})$
\# 01	100.0	298.2		0.001	104.88	104.98	0.367
\# 02	500.0	425.0	0.9	0.3385	2369.03	2537.75	6.326

\# Mass, Energy, and Entropy Analysis Results:
\# \quad Process-A: b-State $=$ State-1; f-State $=$ State-2;
\# Given: W_B= $0.0 \mathrm{~kJ} ;$ W_O= $0.0 \mathrm{~kJ} ; \mathrm{T} _\mathrm{B}=298.15 \mathrm{~K} ;$
\# Calculated: $\mathrm{Q}=4528.298 \mathrm{~kJ}$; S_gen= $-3.2710671 \mathrm{~kJ} / \mathrm{K} ;$ Delta_E= $\mathbf{4 5 2 8 . 2 9 8} \mathbf{~ k J ;}$
Delta_S= $11.916918 \mathrm{~kJ} / \mathrm{K}$;

\# Verify:

$$
\mathrm{ml}^{\star}(\mathrm{u} 2-\mathrm{u} 1)=4528.298 \mathrm{~kJ} .
$$

4.4 References:

1. Yunus A. Cengel \& Michael A. Boles, Thermodynamics, An Engineering Approach, $7^{\text {th }}$ Ed. McGraw Hill, 2011.
2. Sonntag, Borgnakke \& Van Wylen, Fundamentals of Thermodynamics, $6^{\text {th }}$ Ed. John Wiley \& Sons, 2005.
3. Michel J. Moran \& Howard N. Shapiro, Fundamentals of Engineering Thermodynamics, $4^{\text {th }}$ Ed. John Wiley \& Sons, 2000.
4. P.K. Nag, Engineering Thermodynamics, $2^{\text {nd }}$ Ed. Tata McGraw Hill Publishing Co., 1995.
5. R.K. Rajput, A Text Book of Engineering Thermodynamics, Laxmi Publications, New Delhi, 1998.

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni - a community that offers support and opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or give us a call on +44 (0)20 70007573 .

* Figures taken from London Business School's Masters in Management 2010 employment report

5 I Law of Thermodynamics applied to Flow Processes

Learning objectives:

1. In this chapter, we consider 'Steady Flow Energy Equation (SFEE)' and 'conservation of mass' for a control volume.
2. These two principles, viz. Conservation of mass (i.e. continuity equation) and the conservation of energy (i.e. First Law) are applied to a number of practically important devices such as Nozzles and Diffusers, Turbines and Compressors, Throttling devices, Heat Exchangers and Mixing chambers etc.
3. Transient processes such as filling a tank with a fluid or discharging from a tank are also considered. These are known as Uniform State, Uniform Flow (USUF) processes.

5.1 Formulas used:

5.1.1 Steady Flow Energy Equation (SFEE) for a control volume:

For unit mass flow, i.e. $\mathrm{m}=1 \mathrm{~kg} / \mathrm{s}$:
Let: 1 - inlets, 2 - exits
$\mathrm{h}=$ enthalpy $\mathrm{kJ} / \mathrm{kg} \quad \mathrm{V}=$ velocity m / s
$z=$ height_above_datum $m \quad A=$ area_of_flow $m^{\wedge} 2$
$q=$ heat_transfer $k J \quad w=$ work_transfer $k J$

Heat going in to the system is positive, work done by the system is positive.

Easier way is to remember: Energy going in = Energy going out, in steady state:

$$
\begin{align*}
& q_{1}+h_{1}+\frac{v_{1}^{2}}{2}+g \cdot z_{1}=w_{1}+h_{2}+\frac{v_{2}^{2}}{2}+g \cdot z_{2} \quad \ldots . e q n .(5.1) \tag{5.1}\\
& \text { i.e. } q_{1}-w_{1}=\left(h_{2}-h_{1}\right)+\left(\frac{v_{2}^{2}-v_{1}^{2}}{2}\right)+g \cdot\left(z_{2}-z_{1}\right) \quad \text {..eqn. (5.2) } \tag{5.2}\\
& \text { i.e. } \quad q_{1}-w_{1}=\Delta h+\Delta k e+\Delta p e \quad . \text { where all terms are for unit mass flow rate ...eqn. (5.3) }
\end{align*}
$$

When mass flow rate of stream is $\mathbf{m}_{1} \mathbf{~ k g} / \mathrm{s}$:

$$
\mathrm{Q}+\mathrm{m}_{1} \cdot\left(\mathrm{~h}_{1}+\frac{\mathrm{v}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}\right)=\mathrm{W}+\mathrm{m}_{1} \cdot\left(\mathrm{~h}_{2}+\frac{\mathrm{v}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}\right) \quad \begin{gathered}
\text { if there is one stream } \\
\text { only } \ldots \text { eqn. }(5 \cdot 3-\mathrm{a})
\end{gathered}
$$

Note: If there are more than one stream, add additional terms for each stream to take in to account respective enthalpies, K.E. and P.E.
5.1.2 Mass balance:

$$
\rho_{1} \cdot A_{1} \cdot V_{1}=\rho_{2} \cdot A_{2} \cdot \mathrm{~V} 2 \quad \ldots \mathrm{~kg} / \mathrm{s} \ldots . . . \mathrm{eqn} .(5.4)
$$

or: $\quad \frac{\mathrm{A}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{v}_{1}}=\frac{\mathrm{A}_{2} \cdot \mathrm{~V}_{2}}{\mathrm{v}_{2}}$
$\ldots \mathrm{kg} / \mathrm{s} / \ldots$ where $\mathrm{v}=\mathrm{sp}$. volume.... eqn.(5.5)

5.1.3 Examples of Steady flow processes:

1. Nozzle and Diffuser:

From eqn. (5.1), we have:
$\mathrm{q}_{1}+\mathrm{h}_{1}+\frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{1}=\mathrm{w}_{1}+\mathrm{h}_{2}+\frac{\mathrm{v}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{2}$
Here, q1 $=0, w 1=0$.

Therefore: If change in P.E. is zero and velocity of approach $\mathrm{V} 1=0$, we get:

$$
\begin{gathered}
\mathrm{h}_{1}=\mathrm{h}_{2}+\frac{\mathrm{V}_{2}^{2}}{2} \quad \ldots \text { eqn. }(5.6) \\
\text { Or: } \quad \mathrm{V}_{2}=\sqrt{2 \cdot\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)} \quad \mathrm{m} / \mathrm{s} \ldots \text { exit velocity }
\end{gathered}
$$

2. Turbines and compressors:

For Turbine, it can be taken as insulated, flow velocities small, and K.E. and P.E. terms neglected:

Then, SFEE for a turbine becomes:

$$
\begin{gathered}
h_{1}=h_{2}+w \quad \ldots \text { for unit mass flow } \\
\text { i.e. } w=\frac{W}{m}=h_{1}-h_{2} \quad \text { for unit mass flow rate...eqn.(5.7) }
\end{gathered}
$$

Similarly, SFEE for an adiabatic pump or compressor:

$$
\mathrm{h}_{1}=\mathrm{h}_{2}-\mathrm{w}=\mathrm{h}_{2}-\frac{\mathrm{W}}{\mathrm{~m}}
$$

i.e. $\quad w=h_{2}-h_{1} \quad$...for unit maas flow rate...eqn.(5.8)

3. For Throttling device:

Here, $q=0, w=0$, and changes in P.E. can be neglected.
Then SFEE reduces to:

$$
h_{1}+\frac{\mathrm{v}_{1}^{2}}{2}=\mathrm{h}_{2}+\frac{\mathrm{v}_{2}^{2}}{2} \quad \text {..eqn.(5.9) }
$$

Often, pipe velocities are small. If we neglect changes in K.E. we get:

$$
\mathrm{h}_{1}=\mathrm{h}_{2} \quad \text {....eqn. (5.10) }
$$

4. Heat Exchangers:

When the two streams do not mix, as in a normal HX or condenser:
Let: c -- cold stream, h --- hot stream; 1 - inlets, 2 - exits

Here, $\mathrm{Q}=0, \mathrm{~W}=0$, and SFEE becomes:

$$
m_{\mathrm{c}} \cdot h_{\mathrm{c} 1}+\mathrm{m}_{\mathrm{h}} \cdot \mathrm{~h}_{\mathrm{h} 1}=\mathrm{m}_{\mathrm{c}} \cdot h_{\mathrm{c} 2}+\mathrm{m}_{\mathrm{h}} \cdot \mathrm{~h}_{\mathrm{h} 2}
$$

When the two streams mix, as in a de-super-heater or cooling tower, or mixing chambers:

Here, $q=0, w=0$.
Mass balance:

$$
m_{1}+m_{2}=m_{3} \quad \text {....eqn.(5.12) }
$$

SFEE:

$$
m_{1} \cdot h_{1}+m_{2} \cdot h_{2}=m_{3} \cdot h_{3} \quad \text { neglecting changes in P.E. and K.E....eqn.(5.13) }
$$

5.1.4 Uniform State, Uniform Flow (USUF) process:

ex: filling closed tanks with a gas or liquid, discharge from closed vessels etc.:
Let:
$Q_{o l}=$ heat entering the control volume
$\mathrm{W}_{\mathrm{ol}}=$ Work leaving the control volume
$\mathrm{i}=$ inlets to control volume
$e=$ exits from control volume
$m_{1}=$ initial mass in control volume
$m_{2}=$ final mass in control volume
$(\mathrm{m} 2-\mathrm{m} 1)=$ net mass that enters or leaves the control volume
$\mathrm{h}=$ enthalpy
$\mathrm{V}=$ velocity of fluid
$u=$ internal energy
$z=$ height from datum
1 - initial conditions
2 - final conditions

Then, for a time period t, the First Law for USUF process is:

As an example of applying the equation (5.14), consider the following:

Variable flow process: Filling or emptying a tank:

1. Filling a tank:

We assume that changes in P.E. and K.E. are negligible.

Then, we get:
Let:
$\mathrm{m} 1=$ initial mass in tank
$\mathrm{m} 2=$ final mass in tank
$(m 2-m 1)=$ mass that enters the tank from the pipe
$\mathrm{Q}=$ heat transfer $=0$
$\mathrm{W}=$ Work transfer $=0$
$h _p=$ enthalpy of fluid in pipe
V_p = velocity of fluid in pipe
$\mathrm{u}=$ internal energy
1 - initial conditions
2 - final conditions

Making an energy balance:

$$
m_{1} \cdot u_{1}+\left(m_{2}-m 1\right) \cdot\left(h_{p}+\frac{v_{p}^{2}}{2}\right)=m_{2} \cdot u_{2} \quad \text {...eqn.(5.15) }
$$

If, initially, the tank is empty, then $\mathrm{m} 1=0$
Then,

$$
h_{p}+\frac{\mathrm{V}_{\mathrm{p}}^{2}}{2}=\mathrm{u}_{2} \quad \ldots . \text { eqn.(5.16) } \ldots . . \text { if } \mathrm{m} 1=0
$$

Also, if pipe velocity (i.e. KE) is negligible, then:

$$
\mathrm{h}_{\mathrm{p}}=\mathrm{u}_{2} \quad \ldots . \text { eqn. (5.17) } \ldots \text { if } K . E \text { is negligible }
$$

Note: For an Ideal gas, $\mathrm{h}=\mathrm{cp} . \mathrm{T}, \mathrm{u}=\mathrm{cv} . \mathrm{T}$

2. For emptying the tank:

$$
\left(m_{1}-m_{2}\right) \cdot\left(h_{\text {prime }}+\frac{V _ \text {prime }^{2}}{2}\right)-Q=m_{1} \cdot u_{1}-m_{2} \cdot u_{2} \quad \text {...eqn.(5.18) }
$$

where:
h_prime $=$ sp.enthalpy of leaving fluid
V_prime $=$ velocity of leaving fluid

5.2 Problems solved with EES:

"Prob.5.1. A Nozzle is a device for increasing the velocity of a steadily flowing stream. At the inlet to a certain nozzle, the enthalpy of the fluid is $3000 \mathrm{~kJ} / \mathrm{kg}$ and the velocity is $60 \mathrm{~m} / \mathrm{s}$. At the discharge end, the enthalpy is $2762 \mathrm{~kJ} / \mathrm{kg}$. The nozzle is horizontal and there is negligible heat loss from it. (i) Find the velocity at the exit of the nozzle (ii) If the inlet area is $0.1 \mathrm{~m}^{\wedge} 2$ and the sp. volume at inlet is $0.187 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$, find the mass flow rate (iii) If the sp.vol. at the exit of nozzle is $0.498 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$, find the diameter of exit section. [VTU-July 2004]"

Fig.Prob.5.1

EES Solution:

"Data:"
h_1 $=3000 \mathrm{E} 03[\mathrm{~J} / \mathrm{kg}$]"...enthalpy at inlet"
C_1=60 [m/s]"...inlet velocity"
h_2=2762E03[J/kg] "...enthalpy at exit"

A_1 $=0.1\left[\mathrm{~m}^{\wedge} 2\right]^{\text {". }}$. . area at inlet"
v_1=0.187 [m3/kg]"...sp. volume at inlet"
v_2=0.498 [m3/kg]"..sp. volume at exit"

"Calculations:"

$m_{-} 1=A _1^{*} C _1 / v _1$ " $k g / s . .$. finds mass flow rate"
$\mathrm{m} _1=\mathrm{m} _2$ " \ldots. continuity eqn"
$\mathrm{m} _2=\mathrm{A} _2$ * $\mathrm{C} _2 / \mathrm{v} _2$ ".. finds finds area at exit"
$\mathrm{A} _2=\mathrm{pi}{ }^{*} \mathrm{D} _2^{\wedge} 2 / 4$ ".....finds diameter at exit"
$\mathrm{Q}-\mathrm{W}=\mathrm{DELTAh}+$ DELTAKE + DELTAPE "...First Law for Open system"
$\mathrm{Q}=0$ "...by data, for nozzle"
$\mathrm{W}=0$ "...by data, for nozzle"
DELTAh = h_2-h_1"[J/kg]"
DELTAKE=(C_2^2/2)-(C_1^2/2)"[J/kg]"
DELTAPE=0"...by data"

Results:

Unit Settings: SI K kPa kJ molar deg

$\mathrm{A}_{1}=0.1\left[\mathrm{~m}^{2}\right]$	$\mathrm{A}_{2}=0.02307\left[\mathrm{~m}^{2}\right]$	$\mathrm{C}_{1}=60[\mathrm{~m} / \mathrm{s}]$
$\mathrm{C}_{2}=692.5[\mathrm{~m} / \mathrm{s}]$	$\Delta \mathrm{h}=-238000[\mathrm{~J} / \mathrm{kg}]$	$\Delta \mathrm{KE}=238000[\mathrm{~J} / \mathrm{kg}]$
$\Delta \mathrm{PE}=0[\mathrm{~J} / \mathrm{kg}]$	$\mathrm{D}_{2}=0.1714[\mathrm{~m}]$	$\mathrm{h}_{1}=3.000 \mathrm{E}+06[\mathrm{~J} / \mathrm{kg}]$
$\mathrm{h}_{2}=2.762 \mathrm{E}+06[\mathrm{~J} / \mathrm{kg}]$	$\mathrm{m}_{1}=32.09[\mathrm{~kg} / \mathrm{s}]$	$\mathrm{m}_{2}=32.09[\mathrm{~kg} / \mathrm{s}]$
$\mathrm{Q}=0[\mathrm{~J} / \mathrm{kg}]$	$\mathrm{v}_{1}=0.187[\mathrm{~m} 3 / \mathrm{kg}]$	$\mathrm{v}_{2}=0.498[\mathrm{~m} 3 / \mathrm{kg}]$
$\mathrm{W}=0[\mathrm{~J} / \mathrm{kg}]$		

Thus:
Velocity at exit $=\mathrm{C} 2=692.5 \mathrm{~m} / \mathrm{s} \ldots$ Ans.

Mass flow rate $=\mathbf{m 1}=32.09 \mathrm{~kg} / \mathrm{s} \ldots$ Ans.

Dia at exit $=$ D2 $=0.1714 \mathrm{~m} \ldots$ Ans.
"Prob.5.2. 12 kg of air per min. is delivered by a centrifugal air compressor. The inlet and outlet conditions of air are: $\mathrm{V} 1=12 \mathrm{~m} / \mathrm{s}, \mathrm{p} 1=1 \mathrm{bar}, \mathrm{v} 1=0.5 \mathrm{~m} \wedge 3 / \mathrm{kg}$, and $\mathrm{V} 2=90 \mathrm{~m} / \mathrm{s}, \mathrm{p} 2=8$ bar, $\mathrm{v} 2=0.14$ $\mathrm{m}^{\wedge} 3 / \mathrm{kg}$. The increase in enthalpy of air passing through the compressor is $150 \mathrm{~kJ} / \mathrm{kg}$ and heat loss to surroundings is $700 \mathrm{~kJ} / \mathrm{min}$. Calculate: (i) Power required to drive the compressor, (ii) ratio of inlet to outlet pipe diameters. [VTU-Jan. 2003]"

Fig.Prob.5.2

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new $\mathrm{BSc}, \mathrm{MSc}$ and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

EES Solution:

"Data:"
$\mathrm{m}=12$ * convert $(\mathrm{kg} / \mathrm{min}, \mathrm{kg} / \mathrm{s})$ " $[\mathrm{kg} / \mathrm{s}]$ "
C_1=12 [m/s]"...inlet velocity"
$\mathrm{p} 1=10^{\wedge} 5$ " $\mathrm{Pa} \ldots$ inlet pressure"
v_1 $=0.5$ " $\mathrm{m}^{\wedge} 3 / \mathrm{kg} \ldots$ sp. volume at inlet"
C_2 $=90[\mathrm{~m} / \mathrm{s}]$ "...exit velocity"
$\mathrm{p} 2=8 \mathrm{E} 05{ }^{\prime \prime} \mathrm{Pa} \ldots$. exit pressure"
$\mathrm{v} _2=0.14^{\prime \prime} . \mathrm{m}^{\wedge} 3 / \mathrm{kg} \ldots$ sp. vol. at exit"
$\mathrm{Q}=-(700 \mathrm{E} 03) /\left(\mathrm{m}^{*} 60\right)^{"} \ldots \mathrm{~J} / \mathrm{kg} "$
DELTAh $=150 \mathrm{E} 03^{\prime \prime} \mathrm{J} / \mathrm{kg}$.... change in enthalpy"
DELTAKE=(C_2^2/2)-(C_1^2/2)"J/kg....change in K.E."
DELTAPE $=0$ "... change in P.E."

"Calculations:"

$\mathrm{Q}-\mathrm{W}=\mathrm{DELTAh}+$ DELTAKE + DELTAPE "...First Law for open system"
A_1= $m{ }^{*} v _1 / C _1 " .$. finds area at inlet, $m^{\wedge} 2^{\prime \prime}$
A_2= $\mathrm{m}^{*} \mathrm{v} _2 / \mathrm{C} _2^{\prime \prime} .$. .finds area at exit, $\mathrm{m}^{\wedge} 2^{\prime \prime}$
$\mathrm{D} 1 \mathrm{byD} 2=\operatorname{sqrt}\left(\mathrm{A} _1 / \mathrm{A} _2\right)^{\prime \prime} .$. finds dia ratio"
W _act $=\mathrm{W}^{*} \mathrm{~m}$ "...finds Work required, W"

Results:

Unit Settings: SI K kPa kJ molar deg

$\mathrm{A}_{1}=0.008333\left[\mathrm{~m}^{2}\right]$	$\mathrm{A}_{2}=0.0003111\left[\mathrm{~m}^{2}\right]$	$\mathrm{C}_{1}=12[\mathrm{~m} / \mathrm{s}]$	$\mathrm{C}_{2}=90[\mathrm{~m} / \mathrm{s}]$
$\mathrm{D} 1 \mathrm{byD} 2=5.175$	$\Delta \mathrm{~h}=150000[\mathrm{~J} / \mathrm{kg}]$	$\Delta K E=3978[\mathrm{~J} / \mathrm{kg}]$	$\Delta \mathrm{PE}=0[\mathrm{~J} / \mathrm{kg}]$
$\mathrm{m}=0.2[\mathrm{~m} / \mathrm{s}]$	$\mathrm{p} 1=100000[\mathrm{~Pa}]$	$\mathrm{p} 2=800000[\mathrm{~Pa}]$	$\mathrm{Q}=-58333[\mathrm{~J} / \mathrm{kg}]$
$\mathrm{V}_{1}=0.5[\mathrm{~m} 3 / \mathrm{kg}]$	$\mathrm{v}_{2}=0.14[\mathrm{~m} 3 / \mathrm{kg}]$	$\mathrm{W}=-212311[\mathrm{~J} / \mathrm{kg}]$	$W_{\text {act }}=-42462[\mathrm{~W}]$

Thus:

Power required for compressor $=-42462 \mathrm{~W} \ldots$ Ans. (negative sign indicates power input to system)

Ratio of inlet to exit diameters $=5.175 \ldots$. Ans.
(b) Plot the variation of Power required as the heat loss varies from 0 to -8000 J/kg:

First, compute the Parametric Table:

Table 1		
$\underset{1 . .9}{ }$	Q [J/kg]	$W_{\text {act }}$ [W]
Run 1	0	-30796
Run 2	-1000	-30996
Run 3	-2000	-31196
Run 4	-3000	-31396
Run 5	-4000	-31596
Run 6	-5000	-31796
Run 7	-6000	-31996
Run 8	-7000	-32196
Run 9	-8000	-32396

Now, plot the results:

Note that as the heat transfer increases, compressor power required also increases.
"Prob.5.3. Air flows steadily through a rotary compressor. At entry, the air is at 20 C and 101 kPa . At the exit, the air is at 200 C and 600 kPa . Assuming the flow to be adiabatic, (i) evaluate the work done per unit mass of air if the velocities at inlet and exit are negligible (ii) what would be the increase in work input if the velocities at inlet and exit are $50 \mathrm{~m} / \mathrm{s}$ and $110 \mathrm{~m} / \mathrm{s}$? [VTU-Jan. 2005]"

EES Solution:

"Data:"
DELTAKE=0
DELTAPE=0
$\mathrm{Q}=0$ "...since adiabatic"
T1=20 "C"
T2=200 "C"
pl=101E03 "Pa"
p2=600E03 "Pa"
$\mathrm{R}=287$ " J / kg.K for air"
gamma=1.4 "for air"

PLAY.
The stuff that makes life worth living

NORWAY. YOURIDEALSTUDY DESTINATION.

WWW.STUDYNNORWAY.NO FACEBOOK.COM/STUDYINNORWAY

"Calculations:"

"Case 1: Inlet and exit velocities are negligible:"
$\mathrm{cp}=\mathrm{R}^{*}$ gamma/(gamma -1$)^{\text {" }} \ldots$ sp. heat at const. pressure, J/kg.K"
DELTAh $=\mathrm{cp}{ }^{*}(\mathrm{~T} 2-\mathrm{T} 1)$ " $\mathrm{J} / \mathrm{kg} \ldots$ change in enthalpy"
Q - $\mathrm{W}=\mathrm{DELTAh}+\mathrm{DELTAKE}+$ DELTAPE "...by First Law to Open systems"
"Case 2: Inlet and exit vel. not negligible:"
$\mathrm{Q} 1=0$ "...since adiabatic"
$\mathrm{Q} 1-\mathrm{W} 1=\mathrm{cp}{ }^{*}(\mathrm{~T} 2-\mathrm{T} 1)+\left(\mathrm{V} 2^{\wedge} 2-\mathrm{V} 1 \wedge 2\right) / 2$ "...First Law for Open system, including the change in K.E."
$\mathrm{V} 2=110$ " $\mathrm{m} / \mathrm{s} \ldots$ exit velocity"
$\mathrm{V} 1=50$ " $\mathrm{m} / \mathrm{s} \ldots$ inlet velocity"

Results:

Unit Settings: SI K kPa kJ molar deg

$\mathrm{cp}=1005[\mathrm{~J} / \mathrm{kg}-\mathrm{C}]$	$\Delta \mathrm{h}=180810[\mathrm{~J} / \mathrm{kg}]$	$\Delta \mathrm{KE}=0[\mathrm{~J} / \mathrm{kg}]$
$\Delta \mathrm{PE}=0[\mathrm{~J} / \mathrm{kg}]$	$\gamma=1.4$	$\mathrm{p} 1=101000[\mathrm{~Pa}]$
$\mathrm{p} 2=600000[\mathrm{~Pa}]$	$\mathrm{Q}=0[\mathrm{~J} / \mathrm{kg}]$	$\mathrm{Q} 1=0[\mathrm{~J} / \mathrm{kg}]$
$\mathrm{R}=287[\mathrm{~J} / \mathrm{kg}-\mathrm{C}]$	$\mathrm{T} 1=20[\mathrm{C}]$	$\mathrm{T} 2=200[\mathrm{C}]$
$\mathrm{V} 1=50[\mathrm{~m} / \mathrm{s}]$	$\mathrm{V} 2=110[\mathrm{~m} / \mathrm{s}]$	$\mathrm{W}=-180810[\mathrm{~J} / \mathrm{kg}]$
$\mathrm{W} 1=-185610[\mathrm{~J} / \mathrm{kg}]$		

Thus:

$W=-180.81 \mathrm{~kJ} / \mathrm{kg}$ when K.E. and P.E. are neglected...Ans.
$\mathrm{W} 1=-185.61 \mathrm{~kJ} / \mathrm{kg}$ when $\mathrm{K} . E$. is not negligible ...i.e. an increase of about $5 \mathrm{~kJ} / \mathrm{kg} .$. . Ans.
(Note: negative sign indicates work input in to the system.)
"Prob.5.4. In a gas turbine unit, the gases flow through the turbine at $15 \mathrm{~kg} / \mathrm{s}$ and the power developed by the turbine is 12000 kW . The enthalpies of the gases at the inlet and outlet are $1260 \mathrm{~kJ} / \mathrm{kg}$ and 400 $\mathrm{kJ} / \mathrm{kg}$ respectively, and the velocities of gases at the inlet and outlet are $50 \mathrm{~m} / \mathrm{s}$ and $110 \mathrm{~m} / \mathrm{s}$ respectively. Calculate (i) rate at which heat is rejected by the turbine (ii) the area of inlet pipe, given the sp. vol. of gases at inlet is $0.45 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$. [VTU-Jan. 2005]"

Fig.Prob.5.4

EES Solution:

"Data:"
h_1=1260E03 "J/kg ... enthalpy at inlet"
h_2=400E03 "J/kg ... enthalpy at outlet"
C_1=50[m/s] "...velocity at inlet"
C_2 $=110[\mathrm{~m} / \mathrm{s}]$ "...velocity at outlet"
v_1=0.45 [m^3/kg]"..sp. vol. at inlet"
$\mathrm{m}_{-} 1=15[\mathrm{~kg} / \mathrm{s}]$ "...mass flow rate"

"Calculations:"

$\mathrm{m}_{-} 1=\mathrm{A} _1^{*} \mathrm{C}_{-} 1 / \mathrm{v}_{-} 1^{\text {" }} .$. .finds area at inlet, $\mathrm{m}^{\wedge} 2$ "
$\mathrm{Q}-\mathrm{W}=\mathrm{DELTAh}+\mathrm{DELTAKE}+\mathrm{DELTAPE}$ "...First Law for Open System finds Q"
$\mathrm{W}=12 \mathrm{E} 06[\mathrm{~J} / \mathrm{s}] / 15[\mathrm{~kg} / \mathrm{s}]$ " $\mathrm{J} / \mathrm{kg} . \ldots$. work output of turbine, by data"
DELTAh $=\left(\mathrm{h} _2-\mathrm{h} _1\right)$ " $\mathrm{J} / \mathrm{kg} . .$. enthalpy change"
DELTAKE=(C_2^2/2)-(C_1^2/2)"J/kg ... change in K.E."
DELTAPE=0"...change in P.E."

Results:

Unit Settings: SI K kPa kJ molar deg

$A_{1}=0.135\left[\mathrm{~m}^{2}\right]$	$C_{1}=50[\mathrm{~m} / \mathrm{s}]$	$C_{2}=110[\mathrm{~m} / \mathrm{s}]$
$\Delta \mathrm{h}=-860000[\mathrm{~J} / \mathrm{kg}]$	$\Delta K E=4800[\mathrm{~J} / \mathrm{kg}]$	$\Delta P E=0[\mathrm{~J} / \mathrm{kg}]$
$\mathrm{h}_{1}=1.260 \mathrm{E}+06[\mathrm{~J} / \mathrm{kg}]$	$\mathrm{h}_{2}=400000[\mathrm{~J} / \mathrm{kg}]$	$\mathrm{m}_{1}=15[\mathrm{~kg} / \mathrm{s}]$
$Q=-55200[\mathrm{~J} / \mathrm{kg}]$	$\mathrm{V}_{1}=0.45\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$	$\mathrm{W}=800000[\mathrm{~J} / \mathrm{kg}]$

Thus:

Heat rejected by turbine $=\mathbf{Q}=55200 \mathrm{~J} / \mathrm{kg} \ldots$...negative sign indicates heat going out of the system....Ans.

Area of inlet pipe $=\mathrm{A} 1=0.135 \mathrm{~m}^{\wedge} 2 \ldots$ Ans.
"Prob. 5.5. In a steady flow system, 50 kJ of work is done per kg of fluid; values of sp. vol., pressure and velocity at inlet and exit sections are: $0.4 \mathrm{~m} \wedge 3 / \mathrm{kg}, 600 \mathrm{kPa}, 15 \mathrm{~m} / \mathrm{s}$ and $0.6 \mathrm{~m} \wedge 3 / \mathrm{kg}, 100 \mathrm{kPa}$, and 250 m / s, respectively. The inlet is 30 m above the exit. The heat loss from the system is $8 \mathrm{~kJ} / \mathrm{kg}$. Calculate the change in internal energy per kg of fluid. [VTU-July 2003]"

EES Solution:

"Data:"
$\mathrm{Q}=-8 \mathrm{E} 03$ " $\mathrm{J} / \mathrm{kg} \ldots$ heat rej."
$\mathrm{W}=50 \mathrm{E} 03$ " J / kg.... work done by fluid"
$\mathrm{pl}=600 \mathrm{E} 03$ " Pa ...inlet pressure"
$\mathrm{vl}=0.4$ "m $3 / \mathrm{kg} .$. inlet sp. vol."
$\mathrm{C} 1=15$ " m / s.. inlet velocity"
$\mathrm{p} 2=100 \mathrm{E} 03$ " $\mathrm{Pa} . .$. exit pressure"
$\mathrm{v} 2=0.6$ "m3/kg ... exit sp. vol."
$\mathrm{C} 2=250$ " $\mathrm{m} / \mathrm{s} \ldots$ exit velocity"
$\mathrm{Z} 2=0$ " $\mathrm{m} . .$. exit datum level"
$\mathrm{Z} 1=30$ " $\mathrm{m} .$. inlet datum level"

"Calculations:"

$\mathrm{Q}-\mathrm{W}=$ DELTAh + DELTAKE + DELTAPE "...First Law for Open System finds DELTAh" DELTAKE=(C2^2-C1^2)/2 " $/ \mathrm{kg} \ldots$, change in K.E."

DELTAPE $=\mathrm{g} *(\mathrm{Z} 2-\mathrm{Z} 1)$ " $\mathrm{J} / \mathrm{kg} \ldots$... change in P.E."
$\mathrm{g}=9.81$ " $\mathrm{m} / \mathrm{s} 2 \ldots$ accn. due to gravity"
DELTAh $=$ DELTAu $+\left(\mathrm{p}^{*} \mathrm{v} 2-\mathrm{p} 1^{*} \mathrm{v} 1\right)^{\prime} \ldots$. from $\mathrm{h}=\mathrm{u}+\mathrm{pV} \ldots .$. finds DELTAu"

Results:

Unit Settings: SI K kPa kJ molar deg

$$
\begin{array}{lll}
\mathrm{C} 1=15[\mathrm{~m} / \mathrm{s}] & \mathrm{C} 2=250[\mathrm{~m} / \mathrm{s}] & \Delta \mathrm{h}=-88843[\mathrm{~J} / \mathrm{kg}] \\
\Delta \mathrm{KE}=31138[\mathrm{~J} / \mathrm{kg}] & \Delta \mathrm{PE}=-294.3[\mathrm{~J} / \mathrm{kg}] & \Delta \mathrm{u}=91157[\mathrm{~J} / \mathrm{kg}] \\
\mathrm{g}=9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right] & \mathrm{p} 1=600000[\mathrm{~Pa}] & \mathrm{p} 2=100000[\mathrm{~Pa}] \\
\mathrm{Q}=-8000[\mathrm{~J} / \mathrm{kg}] & \mathrm{v} 1=0.4\left[\mathrm{~m}^{3} / \mathrm{kg}\right] & \mathrm{v} 2=0.6\left[\mathrm{~m}^{3} / \mathrm{kg}\right] \\
\mathrm{W}=50000[\mathrm{~J} / \mathrm{kg}] & \mathrm{Z} 1=30[\mathrm{~m}] & \mathrm{Z} 2=0[\mathrm{~m}]
\end{array}
$$

Thus:
Change in Internal energy $=$ DELTAu $=91157 \mathrm{~J} / \mathrm{kg} \ldots$. Ans.

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.
Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.
We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.
For a no obligation proposal, contact us today

(b) Plot the variation of DELTAu as heat rejected Q varies from 0 to $-10 \mathrm{~kJ} / \mathrm{kg}$:

First, calculate the Parametric Table:

Table 1		
${ }_{1 . .11}$	$\begin{gathered} \mathrm{Q} \\ {[\mathrm{~J} / \mathrm{kg}]} \end{gathered}$	$\Delta \mathrm{u}$ $[\mathrm{J} / \mathrm{kg}]$
Run 1	0	99157
Run 2	-1000	98157
Run 3	-2000	97157
Run 4	-3000	96157
Run 5	-4000	95157
Run 6	-5000	94157
Run 7	-6000	93157
Run 8	-7000	92157
Run 9	-8000	91157
Run 10	-9000	90157
Run 11	-10000	89157

Now, plot the results:

Note: Negative sign for Q only indicates that heat is being rejected.
"Prob.5.6. Air flows steadily at a rate of $0.5 \mathrm{~kg} / \mathrm{s}$ through a compressor, entering at $7 \mathrm{~m} / \mathrm{s}$ velocity, 100 kPa pressure and $0.95 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$ sp. volume, and leaves at $700 \mathrm{kPa}, 5 \mathrm{~m} / \mathrm{s}$, and $0.19 \mathrm{~m} \wedge 3 / \mathrm{kg}$. The internal energy of air leaving is $90 \mathrm{~kJ} / \mathrm{kg}$ greater than that of air entering. Cooling water in the compressor jacket absorbs heat at a rate of 58 kW . Compute the shaft work input and the ratio of inlet to exit pipe diameters. [VTU-July 2002]"

Fig.Prob.5. 6

EES Solution:

"Data:"
$\mathrm{m}=0.5$ " kg / s .. mass flow rate"
$\mathrm{Q}=-58 \mathrm{E} 03$ "J/s ...heat rejection rate"
$\mathrm{p} 1=100 \mathrm{E} 03$ " $\mathrm{Pa} . .$. inlet pressure"
$\mathrm{p} 2=700 \mathrm{E} 03$ " $\mathrm{Pa} . .$. exit pressure"
$\mathrm{C} 1=7.0$ " $\mathrm{m} / \mathrm{s} \ldots$ inlet velocity"
$\mathrm{C} 2=5.0$ " $\mathrm{m} / \mathrm{s} \ldots$. exit velocity"
DELTAu=90E03 "J/kg change in internal energy"
$\mathrm{v} 1=0.95$ " $\mathrm{m} \wedge 3 / \mathrm{kg} \ldots$ sp. vol. at inlet"
$\mathrm{v} 2=0.19$ " $\mathrm{m} \wedge 3 / \mathrm{kg} \ldots$. sp. vol. at exit"

"Calculations:"

$\mathrm{Q}-\mathrm{W}=\mathrm{m}^{\star}\left(\mathrm{DELTAu}+\left(\mathrm{p} 2^{*} \mathrm{v} 2-\mathrm{p} 1^{*} \mathrm{v} 1\right)\right)+\mathrm{m}^{\star}\left(\mathrm{C} 2 \wedge 2-\mathrm{C} 1^{\wedge} 2\right) / 2^{*} \ldots$ by First Law for Open system... finds W"
$\mathrm{Al}=\mathrm{m}^{*} \mathrm{v} 1 / \mathrm{C} 1$ " $\mathrm{m} \wedge 2 \ldots$ inlet pipe area"
$\mathrm{A} 2=\mathrm{m}^{*} \mathrm{v} 2 / \mathrm{C} 2$ " $\mathrm{m} \wedge 2 \ldots$ exit pipe area"
D1byD2=sqrt(A1/A2) "...diameter ratio"

Results:

Unit Settings: SI K kPa kJ molar deg

$\mathrm{A} 1=0.06786\left[\mathrm{~m}^{2}\right]$	$\mathrm{A} 2=0.019\left[\mathrm{~m}^{2}\right]$	$\mathrm{C} 1=7[\mathrm{~m} / \mathrm{s}]$
$\mathrm{C} 2=5[\mathrm{~m} / \mathrm{s}]$	$\mathrm{D} 1 \mathrm{by} \mathrm{D} 2=1.89$	$\Delta \mathrm{u}=90000[\mathrm{~J} / \mathrm{kg}]$
$\mathrm{m}=0.5[\mathrm{~kg} / \mathrm{s}]$	$\mathrm{p} 1=100000[\mathrm{~Pa}]$	$\mathrm{p} 2=700000[\mathrm{~Pa}]$
$\mathrm{Q}=-58000[\mathrm{~W}]$	$\mathrm{V} 1=0.95\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$	$\mathrm{V} 2=0.19[\mathrm{~m} / 3 / \mathrm{kg}]$

Thus:
Work input to compressor, $\mathrm{W}=-121.994 \mathrm{~kW} \ldots$. Ans.

Diameter ratio $=$ D1/D2 $=1.89 \ldots$ Ans.

Click on the ad to read more
"Prob.5.7. A centrifugal air compressor compresses $5.7 \mathrm{~m} \wedge 3 / \mathrm{min}$ of air from 85 kPa to 650 kPa . The initial sp. vol. is $0.35 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$ and final sp . vol. is $0.1 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$. If the suction line dia is 10 cm and the discharge line dia is 6.25 cm , determine: (i) the change in flow work (ii) the mass rate of flow, and (iii) the velocity change. [VTU-Aug. 2000]"

Fig.Prob.5.7

EES Solution:

"Data:"
$\mathrm{V} 1=5.7 / 60$ " $\mathrm{m} 3 / \mathrm{s}$ \qquad volume flow rate"
$\mathrm{p} 1=85 \mathrm{E} 03$ " $\mathrm{Pa} \ldots$ inlet pressure"
$\mathrm{p} 2=650 \mathrm{E} 03$ " Pa \qquad exit pressure"
rhol $=1 / 0.35$ " $\mathrm{kg} / \mathrm{m} 3 \ldots$ inlet density"
rho $2=1 / 0.1$ " $\mathrm{kg} / \mathrm{m} 3 \ldots$ exit density"
$\mathrm{d} 1=0.1$ " m .. inlet dia"
$\mathrm{d} 2=0.0625^{\prime \prime} \mathrm{m} .$. exit dia"

"Calculations:"

$\mathrm{m}=\mathrm{V} 1{ }^{*}$ rho1" kg / s \qquad mass flow rate"
$\mathrm{A} 1=\mathrm{pi}^{\star} \mathrm{d} 1 \wedge 2 / 4$ "m2 \ldots inlet area"
$\mathrm{A} 2=\mathrm{pi}^{\star} \mathrm{d} 2 \wedge 2 / 4$ " $\mathrm{m} 2 \ldots$ exit area"

"Change in Flow work:"

DELTAPV $=\mathrm{m}^{*}(\mathrm{p} 2 / \mathrm{rho} 2-\mathrm{p} 1 / \mathrm{rho} 1)$ " $\mathrm{J} / \mathrm{s} \ldots$. change in flow work"

"Velocity change:"

$\mathrm{m}=\mathrm{A} 1^{*} \mathrm{C} 1^{*}$ rho1 ${ }^{*} \ldots$ finds inlet velocity, $\mathrm{C} 1, \mathrm{~m} / \mathrm{s}$ "
$\mathrm{m}=\mathrm{A} 2{ }^{*} \mathrm{C} 2$ * rho 2 " \ldots finds exit velocity, $\mathrm{C} 2, \mathrm{~m} / \mathrm{s}$ "

Results:

Unit Settings: SI K kPa kJ molar deg

$\mathrm{A} 1=0.007854\left[\mathrm{~m}^{2}\right]$	$\mathrm{A} 2=0.003068\left[\mathrm{~m}^{2}\right]$	$\mathrm{C} 1=12.1[\mathrm{~m} / \mathrm{s}]$	$\mathrm{C} 2=8.847[\mathrm{~m} / \mathrm{s}]$
$\mathrm{d} 1=0.1[\mathrm{~m}]$	$\mathrm{d} 2=0.0625[\mathrm{~m}]$	$\Delta \mathrm{PV}=9568$ [$\mathrm{J} / \mathrm{s}]$	$\mathrm{m}=0.2714[\mathrm{~kg} / \mathrm{s}]$
$\mathrm{p} 1=85000$ [Pa]	$\mathrm{p} 2=650000$ [Pa]	rho1 $=2.857\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$	$\mathrm{rho2}=10\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$
$\mathrm{V} 1=0.095[\mathrm{~m} 3 / \mathrm{s}]$			

Thus:

Change in flow work $=$ DELTApv $=9568 \mathrm{~W} \ldots$ Ans.

Mass flow rate $=\mathbf{m}=0.2714 \mathrm{~kg} / \mathrm{s} \ldots$ Ans.

Velocities: $\mathrm{C} 1=12.1 \mathrm{~m} / \mathrm{s}, \mathrm{C} 2=8.847 \mathrm{~m} / \mathrm{s} \ldots$. Ans.
"Prob.5.8. A steam turbine receives steam with a flow rate of $900 \mathrm{~kg} / \mathrm{min}$. and experiences a heat loss of $840 \mathrm{~kJ} / \mathrm{min}$. The exit pipe is 3 m below the level of inlet pipe. Find the power developed by the turbine if the pressure decreases from 62 bar to 9.8 kPa , velocity increases from $30.5 \mathrm{~m} / \mathrm{s}$ to $274.3 \mathrm{~m} / \mathrm{s}$, internal energy decreases by $938.5 \mathrm{~kJ} / \mathrm{kg}$, and sp. vol. increases from $0.058 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$ to $13.36 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$. [VTU-Feb. 2002]"

Fig.Prob.5.8

"I studied English for 16 years but... ...I finally learned to speak it in just six lessons"
 Jane, Chinese architect

Click to hear me talking before and after my unique course download

EES Solution:

"Data:"

$\mathrm{m}=900 / 60 \mathrm{~kg} / \mathrm{s} "$
$\mathrm{Q}=-840 \mathrm{E} 03 / 60$ " $\mathrm{J} / \mathrm{s}^{\prime \prime}$
$\mathrm{Z} 1=3$ " m "
$\mathrm{Z} 2=0$ " m "
$\mathrm{p} 1=62 \mathrm{E} 05$ " Pa "
$\mathrm{p} 2=9.86 \mathrm{E} 03{ }^{\prime \prime} \mathrm{Pa}$ "
$\mathrm{C} 1=30.5^{\prime \prime} \mathrm{m} / \mathrm{s}$ "
$\mathrm{C} 2=274.3^{\prime \prime} \mathrm{m} / \mathrm{s}$ "
DELTAu $=-938.5 E 03$ " J / kg "
$\mathrm{v} 1=0.058$ " $\mathrm{m} 3 / \mathrm{kg}$ "
$\mathrm{v} 2=13.36$ " $\mathrm{m} 3 / \mathrm{kg}$ "
$\mathrm{g}=9.81$ " $\mathrm{m} / \mathrm{s} 2$ "

"Calculations:"

$\mathrm{Q}-\mathrm{W}=\mathrm{m}^{*}\left(\mathrm{DELTAu}+\left(\mathrm{p} 2^{*} \mathrm{v} 2-\mathrm{p} 1^{\star} \mathrm{v} 1\right)\right)+\mathrm{m}^{\star}\left(\mathrm{C} 2 \wedge 2-\mathrm{C} 1^{\wedge} 2\right) / 2+\mathrm{m}^{\star} \mathrm{g}^{*}(\mathrm{Z} 2-\mathrm{Z} 1)^{*} \ldots$ First Law for Open system"

Results:

Unit Settings: SI K kPa kJ molar deg

$\mathrm{C} 1=30.5[\mathrm{~m} / \mathrm{s}]$	$\mathrm{C} 2=274.3[\mathrm{~m} / \mathrm{s}]$	$\Delta \mathrm{u}=-938500[\mathrm{~W}]$	$\mathrm{g}=9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
$\mathrm{m}=15[\mathrm{~kg} / \mathrm{s}]$	$\mathrm{p} 1=6.200 \mathrm{E}+06[\mathrm{~Pa}]$	$\mathrm{p} 2=9860[\mathrm{~Pa}]$	$\mathrm{Q}=-14000[\mathrm{~W}]$
$\mathrm{V} 1=0.058\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$	$\mathrm{V} 2=13.36\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$	$\mathrm{W}=1.692 \mathrm{E}+07[\mathrm{~W}]$	$\mathrm{Z} 1=3[\mathrm{~m}]$
$\mathrm{Z} 2=0[\mathrm{~m}]$			

Thus:

Power developed by turbine $=W=1.692 \mathrm{E} 07 \mathrm{~W} \ldots$. Ans.
"Prob. 5.9. A fluid flows through a steady flow system at the rate of $3 \mathrm{~kg} / \mathrm{s}$. The inlet and outlet conditions are: $\mathrm{p} 1=5 \mathrm{bar}, \mathrm{C} 1=150 \mathrm{~m} / \mathrm{s}, \mathrm{u} 1=2000 \mathrm{~kJ} / \mathrm{kg}$, and $\mathrm{p} 2=1.2 \mathrm{bar}, \mathrm{C} 2=80 \mathrm{~m} / \mathrm{s}$, and $\mathrm{u} 2=1300 \mathrm{~kJ} / \mathrm{kg}$. The change in sp. vol. is from $0.4 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$ to $1.1 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$. The fluid loses $25 \mathrm{~kJ} / \mathrm{kg}$ heat during the process. Neglecting potential energy, determine the power output of the system. [VTU-Dec. 2006-Jan. 2007]:"

EES Solution:

"Data:"
$\mathrm{m}=3$ " kg / s "
$\mathrm{P} 1=500$ " kPa "
$\mathrm{C} 1=150$ " m / s "
$\mathrm{u} 1=2000$ "kJ/kg"
$\mathrm{P} 2=120$ " kPa "
$\mathrm{C} 2=80 " \mathrm{~m} / \mathrm{s}$ "
$\mathrm{u} 2=1300$ " $\mathrm{kJ} / \mathrm{kg}$ "
$\mathrm{v} 1=0.4$ " $\mathrm{m} 3 / \mathrm{kg}$ "
$\mathrm{v} 2=1.1$ " $\mathrm{m} 3 / \mathrm{kg}$ "
$\mathrm{q}=-25$ " $\mathrm{kJ} / \mathrm{kg} \ldots$. . heat loss"
"Neglecting Potential energy, determine the Power output:"

"Write SFEE for $1 \mathbf{k g}$:"

$\mathrm{q}-\mathrm{w}=(\mathrm{h} 2-\mathrm{h} 1)+\left(\left(\mathrm{C} 2^{\wedge} 2-\mathrm{C} 1 \wedge 2\right) / 2\right)^{\star} 10^{\wedge}(-3)^{\text {" }} .$. First Law for Open system...all quantities in $\mathrm{kJ} / \mathrm{kg} "$ $\mathrm{h} 1=\mathrm{u} 1+\mathrm{P} 1^{*} \mathrm{v} 1^{\prime} \mathrm{kJ} / \mathrm{kg} \ldots$ inlet enthalpy"
$\mathrm{h} 2=\mathrm{u} 2+\mathrm{P} 2{ }^{\star} \mathrm{v} 2$ " $\mathrm{kJ} / \mathrm{kg} \ldots$ exit enthalpy"

"Power output:"

Work $=\mathrm{w}^{*} \mathrm{~m}$ " kJ / s "

Results:

Unit Settings: SI C kPa kJ mass deg

$\mathrm{C} 1=150[\mathrm{~m} / \mathrm{s}]$	$\mathrm{C} 2=80[\mathrm{~m} / \mathrm{s}]$	$\mathrm{h} 1=2200[\mathrm{~kJ} / \mathrm{kg}]$	$\mathrm{h} 2=1432[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{m}=3[\mathrm{~kg} / \mathrm{s}]$	$\mathrm{P} 1=500[\mathrm{kPa}]$	$\mathrm{P} 2=120[\mathrm{kPa}]$	$\mathrm{q}=-25[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{u} 1=2000[\mathrm{~kJ} / \mathrm{kg}]$	$\mathrm{u} 2=1300[\mathrm{~kJ} / \mathrm{kg}]$	$\mathrm{V} 1=0.4\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$	$\mathrm{v} 2=1.1[\mathrm{~m} 3 / \mathrm{kg}]$
$\mathrm{w}=751.1[\mathrm{~kJ} / \mathrm{kg}]$	Work $=2253[\mathrm{~kW}]$		

Thus: Work done by the system = Work = 2253 kW ... Ans.
"Prob.5.10. A fluid flows through a steam turbine at a steady rate of $5000 \mathrm{~kg} / \mathrm{h}$, while energy is transferred as heat at a rate of $6279 \mathrm{~kJ} / \mathrm{h}$ from the turbine. The condition of the fluid at the turbine inlet and exit are: $\mathrm{h} 1=3153 \mathrm{~kJ} / \mathrm{kg}, \mathrm{C} 1=60 \mathrm{~m} / \mathrm{s}, \mathrm{Z} 1=6 \mathrm{~m}$, and $\mathrm{h} 2=2713 \mathrm{~kJ} / \mathrm{kg}, \mathrm{C} 2=185 \mathrm{~m} / \mathrm{s}, \mathrm{Z} 2=4 \mathrm{~m}$. Find the power output from the turbine. Comment on K.E. and P.E. changes. [VTU-Dec. 08-Jan. 09]"

Fig.Prob.5.10

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work
closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

EES Solution:

"Data:"
mass_flow $=5000 / 3600 " \mathrm{~kg} / \mathrm{s} "$
$\mathrm{q}=(-6279 / 3600) /$ mass_flow "kJ/kg....heat transf. from turbine"
$\mathrm{h} 1=3153$ " $\mathrm{kJ} / \mathrm{kg}$ "
$\mathrm{h} 2=2713$ " $\mathrm{kJ} / \mathrm{kg}$ "
$\mathrm{C} 1=60$ " m / s "
$\mathrm{C} 2=185$ " m / s "
$\mathrm{Z} 1=6$ " m "
$\mathrm{Z} 2=4$ " m "
$\mathrm{g}=9.81^{\prime \prime} \mathrm{m} / \mathrm{s} 2$ "
"Find the Power output from Turbine and comment on K.E. and P.E. changes:"
$\mathrm{q}-\mathrm{w}=$ DELTAh + DELTAke + DELTApe "..First Law for a turbine....all terms are in $\mathrm{kJ} / \mathrm{kg}$ "
DELTAh = (h2 - h1) "kJ/kg"
DELTAke $=\left(\left(\mathrm{C} 2^{\wedge} 2-\mathrm{C} 1^{\wedge} 2\right) / 2\right)^{\star} 10^{\wedge}(-3) " \mathrm{~kJ} / \mathrm{kg} "$
DELTApe $=\mathrm{g}^{\star}(\mathrm{Z} 2-\mathrm{Z} 1)^{\star} 10^{\wedge}(-3)$ " $\mathrm{kJ} / \mathrm{kg}$ "
Work $=$ mass_flow ${ }^{*} \mathrm{w}$ "kJ/s"

Results:

Unit Settings: SI C kPa kJ mass deg

$\mathrm{C} 1=60[\mathrm{~m} / \mathrm{s}]$	$\mathrm{C} 2=185[\mathrm{~m} / \mathrm{s}]$
$\Delta \mathrm{h}=-440[\mathrm{~kJ} / \mathrm{kg}]$	$\Delta \mathrm{ke}=15.31[\mathrm{~kJ} / \mathrm{kg}]$
$\Delta \mathrm{pe}=-0.01962[\mathrm{~kJ} / \mathrm{kg}]$	$\mathrm{g}=9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
$\mathrm{h} 1=3153[\mathrm{~kJ} / \mathrm{kg}]$	$\mathrm{h} 2=2713[\mathrm{~kJ} / \mathrm{kg}]$
mass flow $=1.389[\mathrm{~kg} / \mathrm{s}]$	$\mathrm{q}=-1.256[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{w}=423.5[\mathrm{~kJ} / \mathrm{kg}]$	Work $=588.1[\mathrm{~kW}]$
$Z 1=6[\mathrm{~m}]$	$\mathrm{Z2}=4[\mathrm{~m}]$

Thus:
Work done by turbine $=588.1$ kW \ldots. Ans.

DELTAke $=15.31 \mathrm{~kJ} / \mathrm{kg}$, DELTApe $=-0.01962 \mathrm{~kJ} / \mathrm{kg} .$. both are negligible compared to the enthalpy difference DELTAh $=-440 \mathrm{~kJ} / \mathrm{kg} \ldots$. Ans.
(b) Plot the variation of Work as heat loss q varies from 0 to $-4 \mathrm{~kJ} / \mathrm{kg}$:

First, compute the Parametric Table:

		$\square \square$
Table 1		
$\underset{1.9}{D}$	q [$\mathrm{kJ} / \mathrm{kg}$]	Work [kW]
Run 1	0	589.9
Run 2	-0.5	589.2
Run 3	-1	588.5
Run 4	-1.5	587.8
Run 5	-2	587.1
Run 6	-2.5	586.4
Run 7	-3	585.7
Run 8	-3.5	585
Run 9	-4	584.3

Now, plot the results:

Note: Negative sign for q only indicates that heat is being rejected from turbine. As the heat rejected increases, work output from the turbine decreases.
"Prob.5.11. The working fluid in a steady flow process flows at a rate of $220 \mathrm{~kg} / \mathrm{min}$. The fluid rejects $100 \mathrm{~kJ} / \mathrm{s}$ of heat passing through the system. The conditions of fluid at inlet and outlet are: $\mathrm{C} 1=220 \mathrm{~m} / \mathrm{s}, \mathrm{p} 1=6 \mathrm{bar}, \mathrm{ul}=2000 \mathrm{~kJ} / \mathrm{kg}, \mathrm{v} 1=0.36 \mathrm{~m} \wedge 3 / \mathrm{kg}$, and $\mathrm{C} 2=140 \mathrm{~m} / \mathrm{s}, \mathrm{p} 2=1.2 \mathrm{bar}$, $\mathrm{u} 2=1400 \mathrm{~kJ} / \mathrm{kg}, \mathrm{v} 2=1.3 \mathrm{~m} \wedge 3 / \mathrm{kg}$. Suffix 1 indicates inlet, and 2 the outlet. Determine the power capacity of the system in MW. [VTU-BTD-June-July 2009:]"

EES Solution:

"Data:"
mass_flow = 220/60 "kg/s"
$\mathrm{q}=-100 /$ mass_flow " $\mathrm{kJ} / \mathrm{kg}$ "
$\mathrm{C} 1=220 \mathrm{~cm} / \mathrm{s}$ "
$\mathrm{P} 1=600$ "kPa"
$\mathrm{ul}=2000{ }^{\mathrm{Ck}} \mathrm{k} / \mathrm{kg}$ "
$\mathrm{v} 1=0.36$ " $\mathrm{m} 3 / \mathrm{kg}$ "
$\mathrm{C} 2=140$ " m / s "
$\mathrm{P} 2=120$ " kPa "
$\mathrm{u} 2=1400$ " $\mathrm{kJ} / \mathrm{kg}$ "
$\mathrm{v} 2=1.3$ " $\mathrm{m} 3 / \mathrm{kg}$ "

$\mathrm{M}_{\S}{ }^{-} \mathrm{M}$

For almost 60 years Maastricht School of Management has been enhancing the management capacity of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open Enrollment Executive Programs offers you a unique interactive, stimulating and multicultural learning experience.

Be prepared for tomorrow's management challenges and apply today.
For more information, visit www.msm.nl or contact us at +31433870808 or via admissions@msm.nl
the globally networked management school

"Determine the Power capacity of the system in MW:"
"Apply I Law to Open System: Energy going In = Energy going Out:"
$\left(\mathrm{u} 1+\mathrm{P} 1^{*} \mathrm{v} 1\right)+\left(\mathrm{C} 1^{\wedge} 2 / 2\right) / 1000+\mathrm{q}=(\mathrm{u} 2+\mathrm{P} 2 * \mathrm{v} 2)+(\mathrm{C} 2 \wedge 2 / 2) / 1000+\mathrm{w}^{*} \ldots$ where w is work done in $\mathrm{kJ} / \mathrm{kg}$ "
Work $=\mathrm{w}$ * mass_flow / 1000 "MW"

Results:

Unit Settings: SI C kPa kJ mass deg
$\mathrm{C} 1=220[\mathrm{~m} / \mathrm{s}]$
$\mathrm{P} 1=600[\mathrm{kPa}]$
$u 1=2000[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{C} 2=140[\mathrm{~m} / \mathrm{s}]$
massflow $=3.667[\mathrm{~kg} / \mathrm{s}]$
$v 2=1.3\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$
$\mathrm{P} 2=120[\mathrm{kPa}]$
$\mathrm{q}=-27.27[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{u} 2=1400[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{v} 1=0.36\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$
Work $=2.373$ [MW]

Thus:

Work done by turbine $=2.373$ MW \ldots Ans.
\qquad
(b) Plot the variation of Work as heat rejected q varies from 0 to $-50 \mathrm{~kJ} / \mathrm{kg}$:

First, compute the Parametric Table:

EsS Parametric Table		$\square \square$
Table 1		
$1 . .11$	q [$\mathrm{kJ} / \mathrm{kg}$]	Work [MW]
Run 1	0	2.473
Run 2	-5	2.454
Run 3	-10	2.436
Run 4	-15	2.418
Run 5	-20	2.399
Run 6	-25	2.381
Run 7	-30	2.363
Run 8	-35	2.344
Run 9	-40	2.326
Run 10	-45	2.308
Run 11	-50	2.289

Now, plot the results:

Note: Negative sign for q only indicates that heat is being rejected from turbine. As the heat rejected increases, work output from the turbine decreases.
"Prob.5.12. A turbine operating under steady flow conditions receives steam at the following state: Pressure $=13.8$ bar, sp. vol. $=0.143 \mathrm{~m} \wedge 3 / \mathrm{kg}$, sp. int. energy $=2590 \mathrm{~kJ} / \mathrm{kg}$, Velocity $=30 \mathrm{~m} / \mathrm{s}$. The state of steam leaving the turbine is: pressure $=0.35 \mathrm{bar}, \mathrm{sp}$. vol. $=4.37 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$, sp. int. energy $=2360 \mathrm{~kJ} / \mathrm{kg}$, velocity $=90 \mathrm{~m} / \mathrm{s}$. Heat is rejected to surroundings at the rate of 0.25 kW and the rate of steam flow through the turbine is $0.38 \mathrm{~kg} / \mathrm{s}$. Calculate the power developed by the turbine. [VTU-BTD-June-July 2008:]"

Fig.Prob.5.12

EES Solution:

"Data:"
mass_flow $=0.38$ " kg / s "
$\mathrm{q}=-0.25[\mathrm{~kJ} / \mathrm{s}] /$ mass_flow " $\mathrm{kJ} / \mathrm{kg}$ "
$\mathrm{C} 1=30$ " m / s "
$\mathrm{P} 1=1380$ "kPa"
$\mathrm{u} 1=2590{ }^{\text {" } k J / k g " ~}$
$\mathrm{v} 1=0.143$ " $\mathrm{m} 3 / \mathrm{kg}$ "
$\mathrm{C} 2=90$ " m / s "
$\mathrm{P} 2=35$ " kPa "
$\mathrm{u} 2=2360$ " $\mathrm{kJ} / \mathrm{kg}$ "
$\mathrm{v} 2=4.37$ " $\mathrm{m} 3 / \mathrm{kg}$ "

"Determine the Power capacity of the Turbine:"

"Apply I Law to Open System: Energy going In = Energy going Out:"

$\left(\mathrm{u} 1+\mathrm{P} 1^{*} \mathrm{v} 1\right)+\left(\mathrm{C} 1^{\wedge} 2 / 2\right) / 1000+\mathrm{q}=\left(\mathrm{u} 2+\mathrm{P} 2{ }^{\star} \mathrm{v} 2\right)+\left(\mathrm{C} 2^{\wedge} 2 / 2\right) / 1000+\mathrm{w}^{\text {"...finds }} \mathrm{w}$, where w is work done in $\mathrm{kJ} / \mathrm{kg}$ "
Work $=\mathrm{w}^{*}$ mass_flow " kW "

Results:

Unit Settings: SI C kPa kJ mass deg

$\mathrm{C} 1=30[\mathrm{~m} / \mathrm{s}]$	$\mathrm{C} 2=90[\mathrm{~m} / \mathrm{s}]$	mass $\mathrm{Flow}=0.38[\mathrm{~kg} / \mathrm{s}]$
$\mathrm{P} 1=1380[\mathrm{kPa}]$	$\mathrm{P} 2=35[\mathrm{kPa}]$	$\mathrm{q}=-0.6579[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{u} 1=2590[\mathrm{~kJ} / \mathrm{kg}]$	$\mathrm{u} 2=2360[\mathrm{~kJ} / \mathrm{kg}]$	$\mathrm{V} 1=0.143\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$
$\mathrm{v} 2=4.37\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$	$\mathrm{w}=270.1[\mathrm{~kJ} / \mathrm{kg}]$	Work $=102.7[\mathrm{~kW}]$

Thus: Power developed by the turbine $=102.7 \mathrm{~kW} \ldots$ Ans.
"Prob.5.13. Air enters an adiabatic horizontal nozzle at 400 C with a velocity of $50 \mathrm{~m} / \mathrm{s}$. The inlet area is $240 \mathrm{~cm} \wedge 2$. Temp of air at exit is 80 C . Given that the sp. vol. of air at the inlet and exit are respectively 0.2 $\mathrm{m}^{\wedge} 3 / \mathrm{kg}$ and $1.02 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$, find the area of cross-section of the nozzle at the exit. Assume that enthalpy of air is a function of temp only and that $\mathrm{cp}=1.005 \mathrm{~kJ} / \mathrm{kg}$.K. [VTU-BTD-July 2006:]"

Fig.Prob.5.13

EES Solution:

"Data:"
$\mathrm{T} 1=400+273$ " K "
$\mathrm{C} 1=50$ " $\mathrm{m} / \mathrm{s} \ldots$ velocity at inlet"
$\mathrm{A} 1=240^{\star} 10^{\wedge}(-4)^{\prime \prime} \mathrm{m} 2 \ldots$ area at inlet"
$\mathrm{T} 2=80+273$ " K "
$\mathrm{v} 1=0.2$ " $\mathrm{m} 3 / \mathrm{kg}$ "
$\mathrm{v} 2=1.02$ " $\mathrm{m} 3 / \mathrm{kg}$ "
$\mathrm{cp}=1.005$ " $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$ "
$\mathrm{q}=0$ "...since adiabatic"
$\mathrm{w}=0$ "...since there is no work output in nozzle"

"Calculations:"

DELTAh $=\mathrm{cp}{ }^{*}(\mathrm{~T} 2-\mathrm{T} 1)$ " $\mathrm{kJ} / \mathrm{kg} \ldots$ change in enthalpy"
$\mathrm{q}-\mathrm{w}=\mathrm{DELTAh}+\left(\left(\mathrm{C} 2^{\wedge} 2-\mathrm{C} 1^{\wedge} 2\right) / 2\right)^{\star} 10^{\wedge}(-3)^{\prime} \ldots$. First Law for Nozzle... Finds Velocity at exit" $\mathrm{A} 1{ }^{*} \mathrm{C} 1 / \mathrm{v} 1=\mathrm{A} 2{ }^{*} \mathrm{C} 2 / \mathrm{v} 2$ "Finds A2, area at exit"

Results:

Unit Settings: SI C kPa kJ mass deg
$\mathrm{A} 1=0.024\left[\mathrm{~m}^{2}\right]$
$\mathrm{C} 2=803.6[\mathrm{~m} / \mathrm{s}]$
$\mathrm{q}=0[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{v} 1=0.2\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$

$$
\begin{aligned}
& \mathrm{A} 2=0.007616\left[\mathrm{~m}^{2}\right] \\
& \mathrm{cp}=1.005[\mathrm{~kJ} / \mathrm{kg}-\mathrm{K}] \\
& \mathrm{T} 1=673[\mathrm{~K}] \\
& \mathrm{v} 2=1.02\left[\mathrm{~m}^{3} / \mathrm{kg}\right]
\end{aligned}
$$

$$
\mathrm{C} 1=50[\mathrm{~m} / \mathrm{s}]
$$

$$
\Delta h=-321.6[\mathrm{~kJ} / \mathrm{kg}]
$$

$$
\mathrm{T} 2=353[\mathrm{~K}]
$$

$$
w=0[\mathrm{~kJ} / \mathrm{kg}]
$$

Thus: Area of cross-section of nozzle at exit $=A 2=76.16 \mathrm{~cm}^{\wedge} 2 \ldots$ Ans.
"Prob.5.14. At the inlet to a certain nozzle, the enthalpy of the fluid is $3025 \mathrm{~kJ} / \mathrm{kg}$ and the velocity is 60 m / s. At the exit of the nozzle, the enthalpy is $2790 \mathrm{~kJ} / \mathrm{kg}$. The nozzle is horizontal and there is a heat loss of $100 \mathrm{~kJ} / \mathrm{kg}$ from it. Calculate the velocity of fluid at nozzle exit. Also find the mass flow rate of fluid if inlet area is $0.1 \mathrm{~m}^{\wedge} 2$ and sp. vol. at inlet is $0.19 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}$. [VTU-BTD-July-2007:]"

Fig.Prob.5.14

EES Solution:

"Data:"
$\mathrm{h} 1=3025$ " $\mathrm{kJ} / \mathrm{kg}$ "
$\mathrm{C} 1=60$ " m / s "
$\mathrm{h} 2=2790$ " $\mathrm{kJ} / \mathrm{kg}$ "
$\mathrm{q}=-100$ " $\mathrm{kJ} / \mathrm{kg} \ldots$...heat loss from Nozzle"

- OLIVER WYMAN

GET THERE FASTER
Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.
Discover the world of Oliver Wyman at oliverwyman.com/careers COMPANIES

"Calculations:"

$\mathrm{A} 1=0.1^{\prime \prime} \mathrm{m} 2$ "
$\mathrm{v} 1=0.19$ "m3/kg....sp. vol. at inlet"
$\mathrm{q}-\mathrm{w}=(\mathrm{h} 2-\mathrm{h} 1)+\left(\left(\mathrm{C} 2^{\wedge} 2-\mathrm{C} 1^{\wedge} 2\right) / 2\right) * 10^{\wedge}(-3)$ "First Law for nozzle, neglecting PE finds C2" $\mathrm{w}=0$ "No work done in Nozzle"
"Mass flow rate:"
mass_flow $=\mathrm{A} 1{ }^{*} \mathrm{Cl} / \mathrm{vl}$ " kg / s "

Results:

Unit Settings: SI C kPa kJ mass deg
$\mathrm{A} 1=0.1\left[\mathrm{~m}^{2}\right]$
$\mathrm{h} 2=2790[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{C} 1=60[\mathrm{~m} / \mathrm{s}]$
massflow $=31.58[\mathrm{~kg} / \mathrm{s}]$
$\mathrm{C} 2=523.1[\mathrm{~m} / \mathrm{s}]$
$q=-100[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{h} 1=3025[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{v} 1=0.19\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$
$w=0[\mathrm{~kJ} / \mathrm{kg}]$

Thus:

Exit velocity, C2 $=523.1$ m/s \ldots Ans.
Mass flow rate $=31.58 \mathrm{~kg} / \mathrm{s} \ldots$ Ans.
"Prob.5.15. An air receiver of volume $6 \mathrm{~m} \wedge 3$ contains air at 15 bar and 40.5 C . A valve is opened and some air is allowed to blow out to atmosphere. The pressure of air in the receiver drops rapidly to 12 bar and then the valve is closed. Calculate the mass of air blown out. [Ref. 4]"

EES Solution:

"Data:"
Voll $=6\left[\mathrm{~m}^{\wedge} 3\right]$
$\mathrm{P} 1=15 \mathrm{E} 05[\mathrm{~Pa}]$
$\mathrm{T} 1=40.5+273[\mathrm{~K}]$
$\mathrm{P} 2=12 \mathrm{E} 05[\mathrm{~Pa}]$

R_air = 287[J/kg-K]"...Gas const. for air"
gamma $=1.4^{\text {" }}$. .ratio of sp. heats for air"

"Calculations:"

$\mathrm{T} 2 / \mathrm{T} 1=(\mathrm{P} 2 / \mathrm{P} 1)^{\wedge}((\mathrm{gamma}-1) / \mathrm{gamma})$ "..for isentropic expn.... finds $\mathrm{T} 2(\mathrm{~K})$ " $\mathrm{m}_{-} 1=(\mathrm{P} 1 *$ Vol1 $) /\left(\mathrm{R} _\right.$air * T 1$)$ "kg \ldots initial mass of air in the receiver" $\mathrm{m}_{2} 2=\left(\mathrm{P} 2 *\right.$ Vol1) / (R_air $\left.{ }^{*} \mathrm{~T} 2\right)$ " $\mathrm{kg} \ldots$ final mass of air in the receiver" mass_blown $=\left(m_{-} 1-m_{2} 2\right)$ "kg ... mass blown out"

Results:

Unit Settings: SI C kPa kJ mass deg

$\gamma=1.4$	massbown $=14.74[\mathrm{~kg}]$	$\mathrm{m}_{1}=100[\mathrm{~kg}]$
$\mathrm{m}_{2}=85.29[\mathrm{~kg}]$	$\mathrm{P} 1=1.500 \mathrm{E}+06[\mathrm{~Pa}]$	$\mathrm{P} 2=1.200 \mathrm{E}+06[\mathrm{~Pa}]$
$\mathrm{R}_{\text {air }}=287[\mathrm{~J} / \mathrm{kg}-\mathrm{K}]$	$\mathrm{T} 1=313.5[\mathrm{~K}]$	$\mathrm{T} 2=294.1[\mathrm{~K}]$
Vol1 $=6\left[\mathrm{~m}^{3}\right]$		

Thus:

Final temp of air in the receiver $=\mathbf{T} 2=294.1 \mathrm{~K} \ldots$.. Ans.

Mass of air blown out $=14.74 \mathrm{~kg} .$. Ans.

(b) Plot the final temp and mass blown out as the P2 varies from $\mathbf{6}$ bar to $\mathbf{1 2}$ bar:

First, compute the Parametric Table:

Fes Parametric Table $^{\text {c }}$			$\square \square$
Table 1			
$D_{1.13}$	$\begin{gathered} \mathrm{P} 2 \\ {[\mathrm{~Pa}]} \end{gathered}$	T2 [K]	mass $_{\text {blown }}$ [kg]
Run 1	600000	241.3	48.04
Run 2	650000	246.9	44.98
Run 3	700000	252.2	41.99
Run 4	750000	257.2	39.06
Run 5	800000	262	36.18
Run 6	850000	266.5	33.36
Run 7	900000	270.9	30.58
Run 8	950000	275.1	27.85
Run 9	1000000	279.2	25.15
Run 10	$1.050 \mathrm{E}+06$	283.1	22.5
Run 11	$1.100 \mathrm{E}+06$	286.9	19.88
Run 12	$1.150 \mathrm{E}+06$	290.6	17.29
Run 13	$1.200 \mathrm{E}+06$	294.1	14.74

Now, plot the results:

"Prob.5.16. A tank has a volume of $0.4 \mathrm{~m} \wedge 3$ and is evacuated. Steam at a pressure of $1.4 \mathrm{MPa}, 300 \mathrm{C}$ is flowing in a pipe and is connected to this tank. The valve is opened and the tank is filled with steam until the pressure is 1.4 MPa , and then the valve is closed. If the process takes place adiabatically and K.E. and P.E. are negligible, determine the final temp of steam in the tank, and the amount filled in. [Ref.2]"

EES Solution:

"Data:"
Vol1 $=0.4\left[\mathrm{~m}^{\wedge} 3\right]$
$\mathrm{ml}=0$ "...initial mass, since the tank is evacuated"
P_pipe $=1400[\mathrm{kPa}]$
T_pipe $=300[\mathrm{C}]$
h_pipe $=$ Enthalpy $\left(\right.$ Steam_NBS,T=T_pipe, $\left.P=P _p i p e\right) " k J / k g . .$. note the use of built-in Function for enthalpy of Steam in EES"
"Let the final temp of fluid after filling in in the tank be T2 deg.C"
"Then: h_pipe = u2 by First Law;"
$\mathrm{u} 2=\operatorname{IntEnergy}\left(\right.$ Steam_NBS,T$=T 2, \mathrm{P}=\mathrm{P} _$pipe $)$" $\mathrm{kJ} / \mathrm{kg} \ldots$... since tank is filled to a pressure of the steam in the pipe"
"Note the use of built-in Function for Int. energy of Steam in EES"
h_pipe $=u 2$ "...finds T2"
$\mathrm{v} 2=$ Volume $($ Steam_NBS,T=T2,P=P_pipe)" $\mathrm{m} \wedge 3 / \mathrm{kg} \ldots . \mathrm{sp}$. vol. of steam in tank"
mass $=$ Vol1/v2 "kg \ldots mass filled in the tank"

Results:

Unit Settings: SI C kPa kJ mass deg

$\mathrm{h}_{\text {pipe }}=3040$ [$\left.\mathrm{kJ} / \mathrm{kg}\right]$	$\mathrm{m} 1=0[\mathrm{~kg}]$	mass $=1.697[\mathrm{kg]}$	$\mathrm{P}_{\text {pipe }}=1400$ [kPa$]$
T2 = 452 [C]	$\mathrm{T}_{\text {pipe }}=300 \quad[\mathrm{C}]$	$\mathrm{u} 2=3040[\mathrm{~kJ} / \mathrm{kg}]$	$\mathrm{v} 2=0.2357$
Vol1 $=0.4\left[\mathrm{~m}^{3}\right]$			

Thus:

Final temp of steam in tank $=$ T2 $=452$ deg.C... Ans.

Amount of steam filled in the tank $=1.697 \mathrm{~kg} .$. Ans.

In the past four years we have drilled

$81,000 \mathrm{~km}$

That's more than twice around the world.

Who are we?
We are the world's leading oilfield services company. Working globally-often in remote and challenging locations-we invent, design, engineer, manufacture, apply, and maintain technology to help customers find and produce oil and gas safely.

Who are we looking for?
We offer countless opportunities in the following domains:

- Engineering, Research, and Operations
- Geoscience and Petrotechnical
- Commercial and Business

If you are a self-motivated graduate looking for a dynamic career, apply to join our team.

careers.slb.com
Satllumheryger
"Prob.5.17. Let the tank in the previous example contain initially sat. vapour at 350 kPa . Now the valve is opened and the tank is filled with steam until the pressure is 1.4 MPa , and then the valve is closed. If the process takes place adiabatically and K.E. and P.E. are negligible, determine the final temp of steam in the tank, and the amount filled in. [Ref.2]"

EES Solution:

"Data:"

Vol1 $=0.4\left[\mathrm{~m}^{\wedge} 3\right]$ "..volume of tank"
P1 $=350[\mathrm{kPa}]$ "...Initial pressure of steam in tank"
$\mathrm{x} 1=1$ "...sat. vapour"
P_pipe $=1400[\mathrm{kPa}]$ " \ldots. pressure of steam in pipe"
T_pipe $=300[C]$ "...temp of steam in pipe"
"Calculations:"
$\mathrm{u} 1=\operatorname{IntEnergy}($ Steam_NBS, $\mathrm{x}=\mathrm{x} 1, \mathrm{P}=\mathrm{P} 1)$ " $\mathrm{kJ} / \mathrm{kg} \ldots$...Int. energy of steam in the beginning"
$\mathrm{v} 1=$ Volume $($ Steam_NBS, $\mathrm{x}=\mathrm{x} 1, \mathrm{P}=\mathrm{P} 1)$ " $\mathrm{m} \wedge 3 / \mathrm{kg} \ldots$. sp. vol. of steam present initially in tank"
$\mathrm{m} 1=$ Vol1 / v1 "...initial mass of steam in the tank "
h_pipe $=$ Enthalpy(Steam_NBS,T=T_pipe,P=P_pipe) "kJ/kgenthalpy of steam in the pipe"
"Let the final mass in tank be m2, temp of fluid after filling in the tank be T2 deg.C"
"Then: $(\mathrm{m} 2-\mathrm{m} 1)^{*}$ h_pipe $=\left(\mathrm{m} 2^{*} \mathrm{u} 2-m 1^{*} \mathrm{u} 1\right) \ldots$ by First Law;"
$\mathrm{u} 2=\operatorname{IntEnergy}($ Steam_NBS,T=T2,P=P_pipe) "kJ/kg ..int. energy of steam after the tank is filled to a pressure of the steam in the pipe"
$\mathrm{v} 2=$ Volume $($ Steam_NBS,T=T2,P=P_pipe)"m^3/kg $\ldots . \mathrm{sp}$. vol. of steam in tank, after filling up"
$\mathrm{m} 2=\mathrm{Vol} 1 / \mathrm{v} 2$ "kg..mass of steam in tank after filling"
$(m 2-m 1)^{\star} h _p i p e=\left(m 2^{\star} u 2-m 1^{\star} u 1\right)^{*} \ldots$ By First Law for filling process"

"Mass of steam flowing in to the tank:"

mass_to_tank $=(\mathrm{m} 2-\mathrm{m} 1)$ " kg "

Results:

Unit Settings: SI C kPa kJ mass deg

$\mathrm{h}_{\text {pipe }}=3040[\mathrm{~kJ} / \mathrm{kg}]$	$\mathrm{m} 1=0.763[\mathrm{~kg}]$	$\mathrm{m} 2=2.027[\mathrm{~kg}]$
mass totank $=1.264[\mathrm{~kg}]$	$\mathrm{P} 1=350[\mathrm{kPa}]$	$\mathrm{P}_{\text {pipe }}=1400[\mathrm{kPa}]$
$\mathrm{T} 2=341.8[\mathrm{C}]$	$\mathrm{T}_{\text {pipe }}=300[\mathrm{C}]$	$\mathrm{u} 1=2549[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{u} 2=2855[\mathrm{~kJ} / \mathrm{kg}]$	$\mathrm{V} 1=0.5243\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$	$\mathrm{v} 2=0.1973\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$
$\mathrm{Vol} 1=0.4\left[\mathrm{~m}^{3}\right]$	$\mathrm{x}=1$	

Thus:

Final temp of steam in tank $=341.8$ deg. $\mathrm{C} . .$. Ans.

Mass of steam entering the tank $=1.264 \mathrm{~kg} . .$. Ans.

Prob.5.18. A balloon initially contains $65 \mathrm{~m}^{\wedge} 3$ of helium gas at atmospheric conditions of 100 kPa and 22 C . The balloon is connected by a valve to a large reservoir that supplies helium gas at 150 kPa and 25 C. Now the valve is opened, and helium is allowed to enter the balloon until pressure equilibrium with the supply line is reached. The material of the balloon is such that its volume increases linearly with pressure. If no heat transfer takes place during this process, determine the final temp in the balloon. [Ref:1]

Fig. Prob.5.18

We use eqn. (5.14):

$$
Q_{\mathrm{cv}}+\sum_{\text {inlets }}\left(\mathrm{h}_{\mathrm{i}}+\frac{\mathrm{v}_{\mathrm{i}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{i}}\right)=\sum_{\text {exits }}\left(\mathrm{h}_{\mathrm{e}}+\frac{\mathrm{v}_{\mathrm{e}}^{2}}{2}+\mathrm{g} \cdot \mathrm{z}_{\mathrm{e}}\right)+\left[\mathrm{m}_{2} \cdot\left(\mathrm{u}_{2}+\frac{\mathrm{v}_{2}^{2}}{2}+\mathrm{g} \cdot \mathrm{Z}_{2}\right)-\mathrm{m}_{1} \cdot\left(\mathrm{u}_{1}+\frac{\mathrm{v}_{1}^{2}}{2}-\mathrm{g} \cdot \mathrm{Z}_{1}\right)\right]+\mathrm{w}_{\mathrm{cv}}
$$

Here, we have: all K.E. and P.E. changes are negligible, $Q_{c v}=0$, use ' h ' for gas flowing, and ' u ' for gas confined to the control volume. Work done is positive since the boundary of balloon is expanding.

EES Solution:

"Data:"
$\mathrm{P} 1=100$ " kPa "
$\mathrm{T} 1=22+273$ " K "
Vol1 = 65 " $\mathrm{m}^{\wedge} 3$ "
$\mathrm{P} 2=150$ " kPa "
$\mathrm{Vol} 2=\operatorname{Vol} 1^{\star}(\mathrm{p} 2 / \mathrm{p} 1)$ " $\mathrm{m} \wedge 3 \ldots$ since volume is proprtional to pressure"
$\mathrm{P} 3=150{ }^{" k P a "}$
$\mathrm{T} 3=25+273^{\prime \prime} \mathrm{K}$ "

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research \& Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

亚
Dove.

"Calculations:"

$\mathrm{Q}+\mathrm{m}_{-} \mathrm{i}^{\star} \mathrm{h} 3=\mathrm{W}+\left(\mathrm{m} 2^{*} \mathrm{u} 2-\mathrm{m} 1^{*} \mathrm{u} 1\right)$ "First Law for this case of filling a control volume, see Eqn. 5.14" h3=Enthalpy(Helium, $\mathrm{T}=\mathrm{T} 3, \mathrm{P}=\mathrm{P} 3$)" $\mathrm{kJ} / \mathrm{kg}$ "
$\mathrm{u} 1=\operatorname{Int}$ Energy (Helium, $\mathrm{T}=\mathrm{T} 1, \mathrm{P}=\mathrm{P} 1$)" $\mathrm{kJ} / \mathrm{kg}$ "
$\mathrm{u} 2=\operatorname{Int}$ Energy (Helium, $\mathrm{T}=\mathrm{T} 2, \mathrm{P}=\mathrm{P} 2$) " $\mathrm{kJ} / \mathrm{kg}$ "
$\mathrm{m} _\mathrm{i}=\mathrm{m} 2-\mathrm{m} 1$ "kg.... mass entering the c.v."
$\mathrm{v} 1=\operatorname{Volume}(\text { Helium, } \mathrm{T}=\mathrm{T} 1, \mathrm{P}=\mathrm{P} 1)^{\prime} . . \mathrm{m} \wedge 3 / \mathrm{kg} \ldots$ sp. vol. in state $1 "$
$\mathrm{v} 2=$ Volume $(\text { Helium, } \mathrm{T}=\mathrm{T} 2, \mathrm{P}=\mathrm{P} 2)^{\prime} . . \mathrm{m} \wedge 3 / \mathrm{kg} \ldots$ sp. vol. in state 2 "
$\mathrm{m} 2=\mathrm{Vol} 2 / \mathrm{v} 2$ "kg...mass in state 2 "
$\mathrm{ml}=$ Vol1/v1 "kg...mass in state 1 "
$\mathrm{W}=((\mathrm{P} 1+\mathrm{P} 2) / 2)^{*}(\mathrm{Vol} 2-\mathrm{Vol} 1)$ " $\mathrm{kJ} . .$. work done by the c.v., since Vol is proportional to pressure"
$\mathrm{Q}=0$ "...heat going into the c.v. is zero"

Solution:

Unit Settings: SI K kPa kJ mass deg

$\mathrm{h} 3=-0.2942[\mathrm{~kJ} / \mathrm{kg}]$	$\mathrm{m} 1=10.6[\mathrm{~kg}]$	$\mathrm{m} 2=21.09[\mathrm{~kg}]$
$\mathrm{m}_{\mathrm{i}}=10.49$	$\mathrm{P} 1=100[\mathrm{kPa}]$	$\mathrm{P} 2=150[\mathrm{kPa}]$
$\mathrm{P} 3=150[\mathrm{kPa}]$	$\mathrm{Q}=0[\mathrm{~kJ}]$	$\mathrm{T} 1=295[\mathrm{~K}]$
$\mathrm{T} 2=333.6[\mathrm{~K}]$	$\mathrm{T} 3=298[\mathrm{~K}]$	$\mathrm{u} 1=-629.1[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{u} 2=-508.9[\mathrm{~kJ} / \mathrm{kg}]$	$\mathrm{V} 1=6.131\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$	$\mathrm{V} 2=4.622\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$
$\mathrm{Vol} 1=65\left[\mathrm{~m}^{3}\right]$	$\mathrm{Vol} 2=97.5\left[\mathrm{~m}^{3}\right]$	$\mathrm{W}=4063[\mathrm{~kJ}]$

Thus:

Final temp, T2 = 333.6 K \ldots. Ans.

Work done, $\mathrm{W}=4063 \mathrm{~kJ}$...Ans.
(b) If the final pressure P 2 varies from 120 to 150 kPa , plot the variation of T 2 and W against P 2 :

First, compute the Parametric Table:

Now, plot the results:

Deloitte

Discover the truth at www.deloitte.ca/careers
© Deloitte \& Touche LLP and affiliated entities.
"Prob.5.19. A 100-L rigid tank contains carbon dioxide gas at $1 \mathrm{MPa}, 300 \mathrm{~K}$. A valve is cracked open, and carbon dioxide escapes slowly until the tank pressure has dropped to 500 kPa . At this point, the valve is closed. The gas remaining inside the tank may be assumed to have undergone a polytropic expansion, with polytropic exponent $n=1.15$. Find the final mass inside and the heat transferred to the tank during the process. [Ref:2]"

EES Solution:

"Data:"
$\mathrm{P} 1=1000$ "kPa"
$\mathrm{T} 1=300$ " K "
Vol1 $=0.1^{\prime \prime} \mathrm{m} \wedge 3$ "
$\mathrm{n}=1.15$ " \ldots. polytropic index"
$\mathrm{P} 2=500$ " kPa "
$\mathrm{Vol} 2=\mathrm{Vol} 1 " \mathrm{~m} \wedge 3$ "
$\mathrm{T} 2 / \mathrm{T} 1=(\mathrm{P} 2 / \mathrm{P} 1)^{\wedge}((\mathrm{n}-1) / \mathrm{n})^{"}[\mathrm{~K}] \ldots$ finds temp after polytropic expansion, state 2 "

"Calculations:"

"Note: Enthalpy of CO2 exiting goes on varying from state 1 to state 2.
So, we take the average value of enthalpy:"
$\mathrm{h} 1=$ Enthalpy (CarbonDioxide, $\mathrm{T}=\mathrm{T} 1, \mathrm{P}=\mathrm{P} 1$)" $\mathrm{kJ} / \mathrm{kg} \ldots$. enthalpy in state 1 "
$\mathrm{h} 2=$ Enthalpy (CarbonDioxide, $\mathrm{T}=\mathrm{T} 2, \mathrm{P}=\mathrm{P} 2$)" $\mathrm{kJ} / \mathrm{kg} \ldots$. enthalpy in state 2 "
$h _a v g=(\mathrm{h} 1+\mathrm{h} 2) / 2 " \mathrm{~kJ} / \mathrm{kg} \ldots$ average enthalpy of exiting CO 2 "
$\mathrm{Q}=\mathrm{m} _\mathrm{e}^{*} \mathrm{~h} _\operatorname{avg}+\left(\mathrm{m} 2^{*} \mathrm{u} 2-\mathrm{m} 1^{*} \mathrm{u} 1\right)+\mathrm{W}$ "...First Law for this case of filling a control volume, see Eqn. 5.14"
$\mathrm{W}=0$ "..no work done, since volume is const."
$\mathrm{ul}=\operatorname{IntEnergy}($ CarbonDioxide, $\mathrm{T}=\mathrm{T} 1, \mathrm{P}=\mathrm{P} 1$)" $\mathrm{kJ} / \mathrm{kg}$....internal energy"
$\mathrm{u} 2=\mathrm{IntEnergy}($ CarbonDioxide, $\mathrm{T}=\mathrm{T} 2, \mathrm{P}=\mathrm{P} 2$)" $\mathrm{kJ} / \mathrm{kg} \ldots$ internal energy"
$m_{_} \mathrm{e}=(\mathrm{m} 1-\mathrm{m} 2)^{\prime} \mathrm{kg} \ldots$. mass exiting the c.v."
$\mathrm{v} 1=\operatorname{Volume}\left(\right.$ CarbonDioxide, $\mathrm{T}=\mathrm{T} 1, \mathrm{P}=\mathrm{P} 1$)"..m^3/kg \ldots sp. vol. in state $1^{\prime \prime}$
v2=Volume(CarbonDioxide, T=T2, P=P2)"..m^3/kg ... sp. vol. in state 2"
$\mathrm{m} 2=\mathrm{Vol} 2 / \mathrm{v} 2$ "kg...mass in state 2 "
$\mathrm{m} 1=\mathrm{Vol} 1 / \mathrm{v} 1$ "kg...mass in state 1 "

Results:

Unit Settings: SI K kPa kJ mass deg

$$
\begin{aligned}
& \mathrm{h} 1=-7.942[\mathrm{~kJ} / \mathrm{kg}] \\
& \mathrm{m} 1=1.858[\mathrm{~kg}] \\
& \mathrm{n}=1.15 \\
& \mathrm{Q}=24.56[\mathrm{kJJ}] \\
& \mathrm{u} 1=-61.76[\mathrm{~kJ} / \mathrm{kg}] \\
& \mathrm{v} 2=0.1001\left[\mathrm{~m}^{3} / \mathrm{kg}\right] \\
& \mathrm{W}=0[\mathrm{~kJ}]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{h} 2=-25.75[\mathrm{~kJ} / \mathrm{kg}] \\
& \mathrm{m} 2=0.9993[\mathrm{~kg}] \\
& \mathrm{P} 1=1000[\mathrm{kPa}] \\
& \mathrm{T} 1=300[\mathrm{~K}] \\
& \mathrm{u} 2=-75.79[\mathrm{~kJ} / \mathrm{kg}] \\
& \mathrm{Vol} 1=0.1\left[\mathrm{~m}^{3}\right]
\end{aligned}
$$

$\mathrm{h}_{\mathrm{avg}}=-16.85 \quad[\mathrm{~kJ} / \mathrm{kg}]$
$\mathrm{m}_{\mathrm{e}}=0.8587$
$\mathrm{P} 2=500[\mathrm{kPa}]$
$\mathrm{T} 2=274.1[\mathrm{K]}]$
$\mathrm{V} 1=0.05382\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$
$\mathrm{Vol} 2=0.1\left[\mathrm{~m}^{3}\right]$

Thus:

$Q=24.56 \mathrm{~kJ} \ldots$. Heat transferred \ldots. Ans.
$\mathrm{m} 2=0.9993 \mathrm{~kg} \ldots$. Final mass inside the tank \ldots Ans.

T2 = 274.1 K ...Final temp of gas inside the tank.... Ans.
(b) As the final pressure (P2) varies from 300 kPa to 600 kPa , plot the variation of $\mathrm{T} 2, \mathrm{~m} 2$, and Q with P2:

First, compute the Parametric Table:

Now, plot the results:

Grant Thornton-a ${ }^{2}$ great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute ${ }^{\text {TM }}$ for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Audit •Tax • Advisory www.GrantThornton.ca/Careers

An instinct for growth'

5.3 Problems solved with The Expert System for Thermodynamics (TEST):

Nozzles and Diffusers:

Prob.5.20. Superheated vapour Ammonia enters an insulated nozzle at $20 \mathrm{C}, 800 \mathrm{kPa}$, shown in Fig. below, with a low velocity and at a steady rate of $0.01 \mathrm{~kg} / \mathrm{s}$. The Ammonia exits at 300 kPa with a velocity of $450 \mathrm{~m} / \mathrm{s}$. Determine the temperature (or quality, if saturated) and the exit area of the nozzle. [Ref. 2]

Fig.Prob.5.20

TEST Solution:

1. Start TEST by going to www.thermofluids.net, enter the required e-mail address and password and, we get the greeting screen. Locate the Daemons tab at the bottom of screen:

2. Click on Daemons tab to get the Daemon tree to select the required Daemon:

The Wake

the only emission we want to leave behind

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel \& Turbo.
Power competencies are offered with the world's largest engine programme - having outputs spanning
from 450 to $87,220 \mathrm{~kW}$ per engine. Get up front!
Find out more at www.mandieselturbo.com
Engineering the Future - since 1758.
MAN Diesel \& Turbo
3. Hover the mouse pointer over System Analysis - Open - Generic - Single Flow shown above. We get the following description screen:

Click to go to page: TEST>Daemons>Systems>Open>Steady>Generic>Single-Flow Systems

Single-Flow Steady Systems: Analyze an open steady system with a single inlet and a single exit. Examples include turbines, compressors, pumps, nozzles, diffusers, throttling valves, etc.

Chapters 4 and 6 deal with generic open steady systems.

We see from the description that this is the daemon to be used for calculations regarding turbines, compressors, pumps, nozzles, diffusers, throttling valves etc. i.e. for most of this chapter, we will be using this daemon.
4. Now, click on Single-Flow. A window appears where we have to choose the required Material model. In the present case, we deal with vapour/liquid Ammonia; so, we choose PC (i.e. Phase Change) model as shown below:

5. On clicking PC model, we get the following screen, where we have chosen Ammonia as the fluid. We have also filled up the data for State 1 as $\mathrm{p} 1=800 \mathrm{kPa}, \mathrm{T} 1=20 \mathrm{C}$ and mdotl $=0.01 \mathrm{~kg} / \mathrm{s}$. Vel1 $=0$ by default. Click on Calculate and rest of the calculations for state 1 are completed in the screen shot shown below:

6. Similarly, choose State 2 and fill in the given data, i.e. $\mathrm{p} 2=300 \mathrm{kPa}, \mathrm{Vel} 2=450 \mathrm{~m} / \mathrm{s}$ and $\operatorname{mdot} 2=\operatorname{mdot} 1$. Click on Calculate:

Note that no new calculations are made since data is not enough; however, we will return to this State after entering other data:
7. Go to Device Panel and fill in the known data, i.e. $\mathrm{Q}=0$, Wdot_ext $=0$ for a Nozzle, and click on Calculate. We get:

8. Now, the important step: click on SuperCalculate to update all related States calculations. We get:

淡RBS Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder - whatever your level of education, degree subject or work experience.
And it's not just finance-focused either. That's because it's not about us. It's about you.
So download the app and you'll get everything you need to know to kickstart your career.
So what are you waiting for?
Click here to get started.

Download free eBooks at bookboon.com

Basic Thermodynamics: Software Solutions Part II
9. Now, go to State Panel and see States 1 and 2:

State 1:

State 2:

Thus: $\mathrm{A} 2=8.5668935 \mathrm{E}-6 \mathrm{~m}^{\wedge} 2=8.567 \mathrm{~mm} \wedge 2, \mathrm{~T} 2=-9.259 \mathrm{C}, \mathrm{x} 2=0.94729 \ldots \ldots$ Ans.

-1.72
$\mathrm{s}, \mathrm{kJ} / \mathrm{kg} . \mathrm{K}$
8.38
11. Now, go to the I/O panel and see the TEST code which can be used to regenerate the calculations at a later date, and also other calculations such as property values at different States etc:
\#~
~OUTPUT OF SUPER-CALCULATE (starts from your inputs) OPERATION (for further iteration use SUPER-ITERATE)
$\#^{* * * * * * *}$ ANALYST: Dr. Muliya; TEST License: Professional ${ }^{* * * * * * *}$
\#
Solution logged at: Dec 20, 2013 9:43:40 PM
\#*******TEST-code: To save the solution, copy the codes generated below into a text file. To reproduce the solution at a later time, launch the daemon (see path name below), paste the saved TEST-code at the bottom of this I/O panel, and click the Load button.
\qquad

States \{

State-1: Ammonia(NH3);
Given: $\{\mathrm{pl}=800.0 \mathrm{kPa} ; \mathrm{T} 1=20.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vel} 1=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \operatorname{mdot} 1=0.01 \mathrm{~kg} / \mathrm{s} ;\}$
State-2: Ammonia(NH3);
Given: $\{\mathrm{p} 2=300.0 \mathrm{kPa} ; \mathrm{Vel} 2=450.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{mdot} 2=$ " $\mathrm{mdot} 1 " \mathrm{~kg} / \mathrm{s} ;\}$
\}

Analysis \{
Device-A: i-State $=$ State-1; e-State $=$ State-2;
Given: $\left\{\right.$ Qdot $=0.0 \mathrm{~kW}$; Wdot_ext $\left.=0.0 \mathrm{~kW} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K} ;\right\}$
\}
\#-
End of TEST-code

○RACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future,

Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE

ORACLE IS THE INFORMATION COMPANY

Download free eBooks at bookboon.com

$\#^{* * * * * *}$ DETAILED OUTPUT:

\# Evaluated States:

\# State-1: Ammonia(NH3) > Superheated Vapor;
\# Given: $\mathrm{p} 1=800.0 \mathrm{kPa} ; \mathrm{T} 1=20.0$ deg-C; Vel1 $=0.0 \mathrm{~m} / \mathrm{s}$;
\# $\quad \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{mdot} 1=0.01 \mathrm{~kg} / \mathrm{s}$;
\# Calculated: vl= $0.1614 \mathrm{~m}^{\wedge} 3 / \mathrm{kg} ; \mathrm{ul}=1335.6714 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 1=1464.7263 \mathrm{~kJ} / \mathrm{kg}$;
$\mathrm{s} 1=5.1321 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{e} 1=1335.6714 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{j} 1=1464.7263 \mathrm{~kJ} / \mathrm{kg} ;$
Voldot $1=0.0016 \mathrm{~m}^{\wedge} 3 / \mathrm{s} ; \mathrm{A} 1=161.4154 \mathrm{~m}^{\wedge} 2 ; \mathrm{MM1}=17.031 \mathrm{~kg} / \mathrm{kmol}$;
\# State-2: Ammonia(NH3) > Saturated Mixture;
\# Given: p2 $=300.0 \mathrm{kPa} ; \mathrm{Vel} 2=450.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m}$; mdot2= "mdot1" kg/s;
Calculated: $\mathbf{T} \mathbf{2}=\mathbf{- 9 . 2 5 9 2} \mathbf{d e g}-\mathbf{C} ; \mathbf{x} \mathbf{2}=\mathbf{0 . 9 4 7 3}$ fraction; $\mathrm{y} 2=0.9998$ fraction;
$\mathrm{v} 2=0.3855 \mathrm{~m}^{\wedge} 3 / \mathrm{kg} ; \mathrm{u} 2=1248.0526 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 2=1363.4763 \mathrm{~kJ} / \mathrm{kg}$;
$\mathrm{s} 2=5.1985 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{e} 2=1349.3026 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{j} 2=1464.7263 \mathrm{~kJ} / \mathrm{kg}$;
Voldot $2=0.0039 \mathrm{~m}^{\wedge} 3 / \mathrm{s} ; \mathrm{A} 2=0.0 \mathrm{~m}^{\wedge} 2 ; \mathrm{MM} 2=17.031 \mathrm{~kg} / \mathrm{kmol}$;
\#--------Property spreadsheet starts: The following property table can be copied onto a spreadsheet (such as Excel) for further analysis or plots. \qquad

\# State	$\mathbf{p}(\mathbf{k P a})$	$\mathbf{T}(\mathbf{K})$	\mathbf{x}	$\mathbf{v}(\mathbf{m 3} / \mathbf{k g})$	$\mathbf{u}(\mathbf{k J} / \mathbf{k g})$	$\mathbf{h}(\mathbf{k J} / \mathbf{k g})$	$\mathbf{s}(\mathbf{k J} / \mathbf{k g})$
\# 01	800.0	293.2		0.1614	1335.67	1464.73	5.132
\# 02	300.0	$\mathbf{2 6 3 . 9}$	$\mathbf{0 . 9}$	0.3855	1248.05	1363.48	5.199

\# Mass, Energy, and Entropy Analysis Results:

$\# \quad$ Device-A: i-State $=$ State-1; e-State $=$ State-2;
\# Given: Qdot= 0.0 kW ; Wdot_ext= $0.0 \mathrm{~kW} ; \mathrm{T} _\mathrm{B}=298.15 \mathrm{~K}$;
\# Calculated: Sdot_gen="6.64382E-4" kW/K; Jdot_net=0.0 kW; Sdot_net="-6.64382E-4" kW/K;

Note: In the above calculations, $j=h+V^{\wedge} 2 / 2+g . Z$, and $e=u+V^{\wedge} 2 / 2+g . Z$
(b) If the exit pressure varies from 100 to 500 kPa , mass flow rate remaining constant at $0.01 \mathrm{~kg} / \mathrm{s}$, plot the variation of T 2 and A 2 with p 2 :

The procedure is quite simple:

Go to State 2, change the pressure p2 to desired value and click Calculate, then click SuperCalculate. All values are updated.

Do this for all desired values of p2 and separately tabulate p2, T2 and A2:

$\mathbf{P 2}(\mathbf{k P a})$	$\mathbf{T} 2(\mathrm{~K})$	A2 $\left(\mathbf{m m}^{\wedge} \mathbf{2}\right)$
100	239.5	24.74
200	254.3	12.68
300	263.9	8.567
400	271.2	6.472
500	277.3	5.2045

Now, we can copy these values to EXCEL and draw the graphs:

Prob.5.21. A Diffuser shown in fig. has air entering at $100 \mathrm{kPa}, 300 \mathrm{~K}$, with a velocity of $200 \mathrm{~m} / \mathrm{s}$. The inlet cross-sectional area of the diffuser is $100 \mathrm{~mm}^{\wedge} 2$. At the exit, the area is $860 \mathrm{~mm} \wedge 2$, and the velocity is $20 \mathrm{~m} / \mathrm{s}$. Determine the exit pressure and temp of air. [Ref. 2]:

Fig.Prob.5.21

TEST Solution:

1. Go to the Daemon tree and locate System Analysis - Open - Generic - Single Flow:

2. Select the Perfect Gas (PG) Model (cp = const.) for Material model, since air is the working substance:

	\|Pure Phase-Transition Fluid: The phase-change ($P C$) model can be used to determine states of sub-cooled (compressed) liquid, super-heated vapor, and saturated mixture of liquid and vapor phases. Based on the saturation and super-heated tables, the model is quite accurate. Sub-cooled liquid is modeled with the compressed-liquid sub-model, except for species with an asterisk (H 2 O * as opposed to H 2 O), which uses compressed liquid table for better accuracy. Working fluids such as $\mathrm{H} 2 \mathrm{O}, \mathrm{R}-12, \mathrm{NH} 3, \mathrm{R}-134 \mathrm{a}, \mathrm{N} 2, \mathrm{CO} 2$, etc., should be treated as PC fluids if there is any possibility of a phase transition. Examples: Analyze a steady steam turbine with one inlet and one exit. For specific examples, click on the help icon at the bottom margin of the daemon.
$p=c$ SL Model	Pure Solid and Pure Liquid: Constant density and constant specific heats ($c_{p}=c_{V}=c$) characterize the solid/liquid (SL) model. Beside a wide selection to choose from, a new solid or liquid can be created by assigning custom material properties. Working substances such as steel, iron, copper, aluminum, wood, water, oil, etc., which can be assumed to maintain their condensed (solid or liquid) phase when a system undergoes other changes, can be analyzed with the SL model. Examples: Liquid water is pumped steadily from a given inlet-state to a given exit-state with no possibility of a phase change. For specific examples, click on the help icon at the bottom margin of the daemon.

Masters in Management

London

Business
School

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni - a community that offers support and opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or give us a call on +44 (0)20 70007573.

* Figures taken from London Business School's Masters in Management 2010 employment report

3. We get the following screen after clicking on PG model. Now, choose Air as the Working substance from the drop down menu. Then, enter known values of P1, T1, Vel1 and A1 for State 1. Click on Calculate. We get:

Generic, Open Steady, Single-Flow, Daemon: PG Model

Move mouse over a variable to display its value with more precision.

Note that mass flow rate is calculated as $\operatorname{mdot} 1=0.02323 \mathrm{~kg} / \mathrm{s}$.

4. Now, go to State 2, and enter A2, Vel2 and mdot2 (= mdot1). Click on Calculate. We get:

5. Go to Device Panel, enter b-state and f-state as State 1 and State 2 respectively as shown. Also, enter Qdot $=0$ and Wdot_ext $=0$, since heat transfer and work transfer for diffuser are zero. Click on Calculate. We get:

6. Now, click on SuperCalculte. We get:

7. Now, go back to States panel:

And, observe States 1 and 2:

State 1:

State 2:

Move mouse over a variable to display its value with more precision.															
- Mixed ¢ SI C English				$<$ ©Case-0 \checkmark >			\sqrt{V} Help Messages On		Super-Iterate Supur		Super-Calculate		Load	Super-Initialize	
State Panel					Device Panel				Exergy Panel				110 Panet		
< OState-2	$v>$		Calculate		No-Plots \vee		Initialize		Formation Enthalpy:		CNo - Yes		Air	\checkmark	
$\Gamma \quad \mathrm{p} 2$				T2	$\Gamma \mathrm{v} 2$					$\Gamma u 2$			「 h2		
123.92677	kPa	\checkmark	319.73105		K	\checkmark	0.74043	$\mathrm{m}^{3} 3 / \mathrm{kg}$	\checkmark	-70.10205	k. $/ \mathrm{kg}$	\checkmark	21.65646	kJ/kg	\checkmark
Γ s2				$\mathrm{Vel2}$			z2			Γ e2			- ${ }^{2}$		
6.89525	kJ/kg.K	\checkmark	20.0		m/s	\checkmark	0.0	m	\checkmark	-69.90205	kJ/kg	\checkmark	21.856464	kJ/kg	\checkmark
phi2			psi2				\checkmark mdot2			- Voldot2			$\checkmark \quad A 2$		
\square	kJ/kg	\checkmark			kJ/kg	\checkmark	=mdot1	kg/s	\checkmark	0.0172	m³/s	\checkmark	860.0	mm²	\checkmark
MM2			R2				c_p2		c_V2				k2		
28.97	kg/kmol	\checkmark	0.28699		kJ/kg. K	\checkmark	1.00349	kJ/kg.K	\checkmark	0.71651	kJ/kg.K	\checkmark	1.40054	Unitless	v

Thus: Exit pressure, $\mathrm{p} 2=123.93 \mathrm{kPa}$, exit temp, $\mathrm{T} 2=319.73 \mathrm{~K} \ldots$ Ans.
8. Draw the indicative T-s diagram from the Plot tag, after choosing T-s plot:

Get Internationally Connected at the University of Surrey
 MA Intercultural Communication with International Business MA Communication and International Marketing

MA Intercultural Communication with International Business
Provides you with a critical understanding of communication in contemporary socio-cultural contexts by combining linguistic, cultural/media studies and international business and will prepare you for a wide range of careers.

MA Communication and International Marketing
Equips you with a detailed understanding of communication in contemporary international marketing contexts to enable you to address the market needs of the international business environment.

For further information contact:
T: +44 (0)1483 681681
E: pg-enquiries@surrey.ac.uk
www.surrey.ac.uk/downloads

Download free eBooks at bookboon.com
9. SuperCalculate also produces TEST code and the detailed property output etc. in the I/O panel. Part of the output is shown below:
\#~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE :
\# Daemon Path: Systems $>$ Open $>$ SteadyState $>$ Generic $>$ SingleFlow $>$ PG-Model; v-10.bb05
\#---------------------Start of TEST-code \qquad

States \{
State-1: Air;
Given: $\{\mathrm{pl}=100.0 \mathrm{kPa} ; \mathrm{T} 1=300.0 \mathrm{~K} ; \mathrm{Vel} 1=200.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{A} 1=100.0 \mathrm{~mm} \wedge 2 ;\}$
State-2: Air;
Given: $\left\{\right.$ Vel2 $=20.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{mdot} 2=$ " $\left.\mathrm{mdot} 1 " \mathrm{~kg} / \mathrm{s} ; \mathrm{A} 2=860.0 \mathrm{~mm}{ }^{\wedge} 2 ;\right\}$ \}

Analysis \{
Device-A: i-State $=$ State-1; e-State $=$ State-2;
Given: $\left\{\right.$ Qdot $=0.0 \mathrm{~kW}$; Wdot_ext $\left.=0.0 \mathrm{~kW} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K} ;\right\}$
\}
\#
-End of TEST-code \qquad

```
#****** DETAILED OUTPUT:
```

\# Evaluated States:
\# State-1: Air > PG-Model;

Given: $\mathrm{pl}=100.0 \mathrm{kPa} ; \mathrm{T} 1=300.0 \mathrm{~K} ; \operatorname{Vel} 1=200.0 \mathrm{~m} / \mathrm{s} ;$
$\mathrm{z} 1=0.0 \mathrm{~m} ; \mathrm{A} 1=100.0 \mathrm{~mm}^{\wedge} 2 ;$
Calculated: $\mathrm{v} 1=0.861 \mathrm{~m} \wedge 3 / \mathrm{kg} ; \mathrm{u} 1=-84.2395 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 1=1.8565 \mathrm{~kJ} / \mathrm{kg}$;
$\mathrm{s} 1=6.8929 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{e} 1=-64.2395 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{j} 1=21.8565 \mathrm{~kJ} / \mathrm{kg} ;$
$\operatorname{mdot} 1=0.0232 \mathrm{~kg} / \mathrm{s} ;$ Voldot $1=0.02 \mathrm{~m} \wedge 3 / \mathrm{s} ; \mathrm{MM1}=28.97 \mathrm{~kg} / \mathrm{kmol}$;
$\mathrm{R} 1=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{c} _\mathrm{pl}=1.0035 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{c} _\mathrm{v} 1=0.7165 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$;
$\mathrm{k} 1=1.4005$ UnitLess;
State-2: Air > PG-Model;
Given: Vel2= $20.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \operatorname{mdot} 2=$ " $\operatorname{mdot} 1 " \mathrm{~kg} / \mathrm{s}$;
$A 2=860.0 \mathrm{~mm}^{\wedge} 2 ;$
Calculated: $\mathbf{p} 2=\mathbf{1 2 3 . 9 2 6 8} \mathbf{~ k P a} ; \mathbf{T} 2=\mathbf{3 1 9 . 7 3 1 1 ~ K ; ~ v 2}=0.7404 \mathrm{~m} \wedge 3 / \mathrm{kg}$;
$\mathrm{u} 2=-70.102 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 2=21.6565 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{s} 2=6.8952 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ;$
$\mathrm{e} 2=-69.902 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{j} 2=21.8565 \mathrm{~kJ} / \mathrm{kg} ; \operatorname{Voldot} 2=0.0172 \mathrm{~m}^{\wedge} 3 / \mathrm{s} ;$
$\mathrm{MM} 2=28.97 \mathrm{~kg} / \mathrm{kmol} ; \mathrm{R} 2=0.287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{c} _\mathrm{p} 2=1.0035 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$;
c_v2 $=0.7165 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{k} 2=1.4005$ UnitLess;
\#---------Property spreadsheet:

$\#$	State	$\mathbf{p}(\mathbf{k P a})$	$\mathbf{T}(\mathbf{K})$	$\mathbf{v}\left(\mathbf{m}^{\wedge} \mathbf{3} / \mathbf{k g}\right)$	$\mathbf{u}(\mathbf{k J} / \mathbf{k g})$	$\mathbf{h}(\mathbf{k J} / \mathbf{k g})$	$\mathbf{s}(\mathbf{k}) / \mathbf{k g})$
$\#$	1	100.0	300.0	0.861	-84.24	1.86	6.893
$\#$	2	123.93	319.7	0.7404	-70.1	21.66	6.895

\#--------Property spreadsheet ends \qquad
\# Mass, Energy, and Entropy Analysis Results:
$\# \quad$ Device-A: i-State $=$ State-1; e-State $=$ State-2;
\# Given: Qdot $=0.0 \mathrm{~kW}$; Wdot_ext= 0.0 kW ; T_B=298.15 K;
\#
Calculated:Sdot_gen="5.472404E-5"kW/K; Jdot_net=0.0kW;Sdot_net="-5.472404E5" kW/K;
(b) As A1 varies from 50 to $300 \mathrm{~mm} \wedge 2$, plot the variation of mdot, $\mathbf{p} 2$ and T 2 , other quantities remaining unchanged:

The procedure is as follows

Go to State 1, change the pressure A1 to desired value and click Calculate (or, hit Enter), then click SuperCalculate. All values are updated.

Do this for all desired values of A1and separately tabulate A1, mdot, p2, and T2:

A1 (mm^2)	mdot (kg/s)	P2 (kPa)	T2 (K)
50	0.01161	61.96	319.73
100	0.02323	123.93	319.73
150	0.03484	185.89	319.73
200	0.04646	247.85	319.73
250	0.05807	309.82	319.73
300	0.06969	371.78	319.73

Note that T2 does not change; but, mdot and P2 vary with A2.

Now, plot these results in EXCEL:

Prob.5.22. Carbon dioxide enters an adiabatic nozzle steadily at $1 \mathrm{MPa}, 500 \mathrm{C}$ with a mass flow rate of $6000 \mathrm{~kg} / \mathrm{h}$ and leaves at 100 kPa and $450 \mathrm{~m} / \mathrm{s}$. The inlet area of the nozzle is $40 \mathrm{~cm} \wedge 2$. Determine (a) the inlet velocity, and (b) the exit temperature. [Ref. 1]:

Fig.Prob.5.22

TEST Solution:

1. Go to Daemon tree, choose System Analysis - Open - Generic - Single Flow as shown below:

2. On clicking Single Flow, we are led to Material model:

$p=c$ SL Model	Pure Solid and Pure Liquid: Constant density and constant specific heats ($c_{p}=c_{V}=c$) characterize the solid/liquid (SL) model. Beside a wide selection to choose from, a new solid or liquid can be created by assigning custom material properties. Working substances such as steel, iron, copper, aluminum, wood, water, oil, etc., which can be assumed to maintain their condensed (solid or liquid) phase when a system undergoes other changes, can be analyzed with the SL model. Examples: Liquid water is pumped steadily from a given inlet-state to a given exit-state with no possibility of a phase change. For specific examples, click on the help icon at the bottom margin of the daemon.
	Pure Gas: A pure gas has a fixed chemical composition across space and time. Oxygen, nitrogen, and air are examples of a pure gas. The PG (perfect gas) model is the simplest gas model which obeyes the ideal gas equation ($p v=R T$) and assumes specific heats to be constant. In the IG (ideal gas) model, specific heats are assumed to be function of temperature only. The RG (real gas) model uses generalized compressiblity charts and is useful for gases near the critical or super-critical conditions for which PC-model data are not avaiable. the IG Model ingle-Flow, Open-Steady Daemon es: Helium expands steadily in a nozzle from an inlet-state to an exit-state \square the bottom margin of the daemon.

3. Choose Ideal Gas (IG) model and select CO2 as the working fluid. In IG Model, sp. heat is taken as a function of temp. Enter the data given for State 1, i.e. P1, T1, A1 and mdot1; click on Calculate (or, hit Enter). We get:

Generic, Open Steady, Single-Flow, Daemon: IG Model

Note that Vel1 is calculated as Vell $=\mathbf{6 0 . 8 6} \mathbf{~ m} / \mathrm{s} \ldots$. Ans.

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new $\mathrm{BSc}, \mathrm{MSc}$ and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers
4. Enter data known for State 2, i.e. P2, Vel2 and $\operatorname{mdot} 2=\operatorname{mdot} 1$. Hit Enter. We get:

Move mouse over a variable to display its value with more precision.																		
- Mixed $ك$	CsI	C English		$<$	Case-0 v	\geq	$\sqrt{\checkmark}$ Help Messages On			Super-Iterate			Super-Calculate		Load S		Super-Initialize	
State Panel				Device Panel					Exergy Panel				I/O Panel					
< ©State-2	$2 \vee$		Calculate		No-Plots \vee		-	Initialize	Formation Enthalpy:				CNo - Yes		$\mathrm{CO2}$		\checkmark	
$\checkmark \quad \mathrm{p} 2$			Γ	T2			Γ m	ho2			Γ	$v 2$			Γ	$u 2$		
100.0	kPa	\checkmark			deg-C	\checkmark			$\mathrm{kg} / \mathrm{m}^{\wedge} 3$	\checkmark			$m^{\wedge} 3 / \mathrm{kg}$	V			$\mathrm{kJ} / \mathrm{kg}$	\checkmark
「 h2			Γ	s2			V V	Vel2			\checkmark	z2			Γ	e2		
\square	KJ/kg	\checkmark			kJ/kg.K	\checkmark	450.0		m / s	\checkmark	0.0		m	\checkmark			$\mathrm{kJ} / \mathrm{kg}$	\checkmark
$\Gamma \quad 12$			phi2				psi2				$\sqrt{\square}$	mdot2			Γ	Voldot2		
,	kJ/kg	\checkmark			kJ/kg	\checkmark			kJ/kg	\checkmark	$=\mathrm{m}$	ot1	kg/s	\checkmark			$m^{\wedge} 3 / \mathrm{s}$	\checkmark
「 A2			MM				R2					c_p2						
	$\mathrm{cm}^{\wedge} 2$	\checkmark	44.01		$\mathrm{kg} / \mathrm{kmol}$	\checkmark	0.18891		kJ/kg.K	\checkmark			kJ/kg.K	\checkmark				

5. Go to Device Panel. Enter State 1 for b-state, State 2 for f -state, and $\mathrm{Qdot}=0$, Wdot_ext $=0$. Click on Calculate. We get:

6. Now, click on SuperCalculate. We get:

7. Go back to States Panel: We get:

State 1:

And, State 2:

Thus: Inlet velocity, Vel1 $=60.86 \mathrm{~m} / \mathrm{s}$, exit temp, $\mathrm{T} 2=412.76 \mathrm{C} \ldots$ ans.
8. Plot the indicative T-s diagram:

9. The I/O panel gives TEST code and other details. Part of it is shown below:

```
#~~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:
# Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>IG-Model; v-10.bb05
#------------------------Start of TEST-code
```

\qquad

```
States {
    State-1: CO2;
    Given: { pl= 1000.0 kPa; T1= 500.0 deg-C; zl= 0.0 m; mdotl= " }6000/3600" kg/s; A1= 40.0
    cm^2;}
    State-2: CO2;
    Given: { p2= 100.0 kPa; Vel2= 450.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/s; }
    }
Analysis {
    Device-A: i-State = State-1; e-State = State-2;
    Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; }
    }
```

\qquad
\#--------Property spreadsheet starts: \#

$\#$	State	$\mathrm{p}(\mathrm{kPa})$	$\mathrm{T}(\mathrm{K})$	$\mathrm{v}\left(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)$	$\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg})$
$\#$	1	1000.0	773.2	0.1461	-8600.73	-8454.67	5.379
$\#$	2	100.0	685.9	1.2958	-8683.64	-8554.07	5.677

\#--------Property spreadsheet ends \qquad

\# Mass, Energy, and Entropy Analysis Results:

\# \quad Device-A: i-State $=$ State-1; e-State $=$ State- $2 ;$
\# Given: Qdot= 0.0 kW ; Wdot_ext= 0.0 kW ; T_B=298.15 K;
\# Calculated: Sdot_gen= $0.49769834 \mathrm{~kW} / \mathrm{K}$; Jdot_net= "-2.1262167E-5" kW; Sdot_net= -0.49769834 kW/K;

Prob.5.23. Refrigerant 134 a at 700 kPa and 120 C enters an adiabatic nozzle with a velocity of 20 m / s and leaves at 400 kPa and 30 C . Determine (a) the exit velocity, and (b) ratio of inlet to exit area, A1/A2. [Ref. 1]

TEST Solution:

1. In the Daemons tree, select System Analysis - Open - Generic - Single Flow as shown below:

2. For Material model, choose Phase Change (PC) model, since R134a is the working fluid:

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering

 training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.
We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.
For a no obligation proposal, contact us today
OIL \& GAS ENGINEERING ELECTRONICS

AUTOMATION \& PROCESS CONTROL

3. In the Window that appears, select the R134a as the substance and enter the data for State 1 , i.e. P1. T1 and Vel1, and click Calculate (or, hit Enter). We get:

Generic, Open Steady, Single-Flow, Daemon: PC Model

4. Similarly, fill in data for State 2, press Enter:

5. Go to Device Panel, enter Qdot $=0$, Wdot_ext $=0$; press Enter:

6. Click on SuperCalculate. Go to States Panel:

State 2:

Thus: Exit velocity $=$ Vel2 $=409.53 \mathrm{~m} / \mathrm{s} \ldots$ Ans.
7. Use the I/O panel to calculate A1/A2:

We have: $\mathrm{rho} 1^{*} \mathrm{~A} 1^{*} \mathrm{Vel} 1=\mathrm{rho} 2^{*} \mathrm{~A} 2{ }^{\star} \mathrm{Vel} 2 \ldots$. By mass balance
i.e. $(\mathrm{A} 1 / \mathrm{A} 2)=(1 / \mathrm{v} 2)^{*} \mathrm{Vel} 2 /\left(\mathrm{Vel1}{ }^{*}(1 / \mathrm{v} 1)\right)$
i.e. $(A 1 / A 2)=15.578 \ldots$ Ans.
8. Also, from I/O panel, copy the TEST code etc:

```
#~~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE
# Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>PC-Model; v-10.bb06
#-------------------------
```

\qquad

```
States {
    State-1: R-134a;
    Given: {pl= 700.0 kPa; T1= 120.0 deg-C; Vel1= 20.0 m/s; zl= 0.0 m; }
    State-2: R-134a;
    Given: { p2= 400.0 kPa; T2= 30.0 deg-C; z2= 0.0 m; mdot2= "mdot1" kg/s; }
    }
Analysis {
    Device-A: i-State = State-1; e-State = State-2;
    Given: { Qdot= 0.0 kW; Wdot_ext= 0.0 kW; T_B= 298.15 K; }
    }
#-
\#---------Property spreadsheet starts:
\begin{tabular}{lllllll} 
\# State & \(\mathbf{p}(\mathbf{k P a})\) & \(\mathbf{T}(\mathbf{K})\) & \(\mathbf{x}\) & \(\mathbf{v}(\mathbf{m} \mathbf{3} / \mathbf{k g})\) & \(\mathbf{u}(\mathbf{k J} / \mathbf{k g})\) & \(\mathbf{h}(\mathbf{k J} / \mathbf{k g})\) \\
\# 01 & 700.0 & 393.2 & 0.0433 & 327.57 & \(\mathbf{s}(\mathbf{k J} / \mathbf{k g})\) \\
\(\# 02\) & 400.0 & 303.2 & 0.0569 & 251.46 & 274.23 & 1.189 \\
\hline
\end{tabular}
\# Mass, Energy, and Entropy Analysis Results:
\# \(\quad\) Device-A: i-State \(=\) State-1; e-State \(=\) State- 2 ;
\# Given: Qdot \(=0.0 \mathrm{~kW} ;\) Wdot_ext= \(0.0 \mathrm{~kW} ;\) T_B=298.15 K;
\(\#^{* * * * * * *}\) CALCULATE VARIABLES: Type in an expression starting with an ' \(=\) ' sign ( \({ }^{\prime}=\operatorname{mdot} 1^{*}(\mathrm{~h} 2-\mathrm{h} 1)\), \('=\operatorname{sqrt}\left(4^{*} \mathrm{~A} 1 / \mathrm{PI}\right)\) ', etc. \()\) and press the Enter key \()^{* * * * * * * * * *}\)
\(\#(\mathrm{~A} 1 / \mathrm{A} 2)=(1 / \mathrm{v} 2)^{*} \mathrm{Vel} 2 /\left(\mathrm{Vel} 1{ }^{*}(1 / \mathrm{v} 1)\right)\)
\((1 / v 2)^{\star} \operatorname{Vel} 2 /(\operatorname{Vel} 1 *(1 / v 1))=15.578052777777797\)


Prob.5.24. Air at \(80 \mathrm{kPa}, 27 \mathrm{C}\), and \(220 \mathrm{~m} / \mathrm{s}\) enters a Diffuser at a rate of \(2.5 \mathrm{~kg} / \mathrm{s}\) and leaves at 42 C . The exit area of the diffuser is \(400 \mathrm{~cm}^{\wedge} 2\). The air is estimated to lose heat at a rate of \(18 \mathrm{~kJ} / \mathrm{s}\) during this process. Determine: (a) the exit velocity, and (b) the exit pressure. [Ref. 1]


Fig.Prob.5.24

\section*{TEST Solution:}
1. Go to Daemon tree, choose System Analysis - Open - Generic - Single Flow as shown below:

2. For Material model, choose Ideal Gas (IG) model, where cp is taken as a function of temp. (PG model also will give almost the same results):

3. Choose Air as the working substance. Enter given data of P1, T1, Vel1, and mdot1 for State 1. Click Enter:

Generic, Open Steady, Single-Flow, Daemon: IG Model
thermofluids.net > Daemons \(>\) Systems \(>\) Open \(>\) Steady \(>\) Generic \(>\) Singleflow \(>\) IG-Model
1 Home of TES T

Move mouse over a variable to display its value with more precision.


Note that in addition to properties such as \(u 1, h 1\), s1, volume flow rate Voldotl and inlet area A1 are also calculated.
4. Similarly, enter data for State 2, i.e. T2, A2 and mdot2, and click Enter:

5. Go to Devices Panel, enter Qdot \(=-18 \mathrm{~kW}\) (negative sign since heat is leaving the system), Wdot_ext \(=0\). And for i-State \(=\) State 1, b-state \(=\) State 2. Click Calculate (or, hit Enter):


\section*{"I studied English for 16 years but... \\ ...I finally learned to speak it in just six lessons" \\ Jane, Chinese architect}


Click to hear me talking before and after my unique course download

\section*{6. Now, click on SuperCalculate:}

\section*{Go to State-1 and 2:}

\section*{State 1:}


State 2:


Thus: Vel2 \(=62.07 \mathrm{~m} / \mathrm{s}, \mathrm{p} 2=91.07 \mathrm{kPa} . . .\). Ans.
7. Draw the indicative T-s diagram:

8. From the I/O panel, copy the TEST code etc:
\#~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:
\# Daemon Path: Systems \(>\) Open \(>\) SteadyState \(>\) Generic \(>\) SingleFlow \(>\) IG-Model; v-10.bb05
\#----------------------Start of TEST-code \(\qquad\)

\section*{States \{}

State-1: Air;
Given: \(\{\mathrm{pl}=80.0 \mathrm{kPa} ; \mathrm{T} 1=27.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vel} 1=220.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{mdot} 1=2.5 \mathrm{~kg} / \mathrm{s} ;\}\)
State-2: Air;
Given: \(\{\mathrm{T} 2=42.0\) deg-C; \(\mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{mdot} 2=\) " \(\mathrm{mdot} 1 " \mathrm{~kg} / \mathrm{s} ; \mathrm{A} 2=400.0 \mathrm{~cm} \wedge 2 ;\}\)
\}

Analysis \{
Device-A: i-State \(=\) State-1; e-State \(=\) State-2;
Given: \(\left\{\right.\) Qdot \(=-18.0 \mathrm{~kW} ;\) Wdot_ext \(\left.=0.0 \mathrm{~kW} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K} ;\right\}\)
\}
\#-
End of TEST-code
\#--------Property spreadsheet starts:
\begin{tabular}{llllllll}
\(\#\) & State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & \(\mathrm{v}\left(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\(\#\) & 1 & 80.0 & 300.2 & 1.0767 & -84.12 & 2.02 & 6.957 \\
\(\#\) & 2 & 91.07 & 315.2 & 0.9931 & -73.35 & 17.1 & 6.969
\end{tabular}

Prob.5.25. Argon gas enters steadily an adiabatic turbine at 900 kPa and 450 C with a velocity of \(80 \mathrm{~m} / \mathrm{s}\) and leaves at 150 kPa with a velocity of \(150 \mathrm{~m} / \mathrm{s}\). The inlet area of the turbine is \(60 \mathrm{~cm} \wedge 2\). If the power output of the turbine is 250 kW , determine the exit temp of argon. [Ref. 1]


P2, Vel2

Fig.Prob.5.25

> Study at one of Europe's leading universities


DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work
closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

\section*{Visit us at www.dtu.dk}


\section*{TEST Solution:}
1. Go to System Analysis ---Single Flow daemon as shown below:

2. For Material Model, choose Perfect Gas (PG) model, and select Argon for the working substance. Enter the data, viz. P1, T1, Vel1 and A1 for State 1, and click on Calculate (or, hit Enter). We get:

Generic, Open Steady, Single-Flow, Daemon: PG Model


Move mouse over a variable to display its value with more precision.


Note that additional properties at State 1 and mass flow rate, mdotl are calculated.
3. Enter given data for State 2, i.e. P2, Vel2 and modot2 = mdot1; hit Enter:

4. Go to Devices Panel. Enter Qdot \(=0\) and Wdot_ext \(=250 \mathrm{~kW}\). Enter State 1 and State 2 for b-state and f-state respectively. Click Calculate:

5. Click SuperCalculate:

6. Now, go back to States Panel, see State 2:


Observe that \(\mathrm{T} 2=267.14\) deg. \(\mathrm{C} . \ldots\). Ans.


\section*{\(\mathrm{M}_{\overline{-}}{ }^{\mathrm{M}}\)}

\section*{MAASTRICHT SCHOOL OF MANAGEMENT}


For almost 60 years Maastricht School of Management has been enhancing the management capacity of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open Enrollment Executive Programs offers you a unique interactive, stimulating and multicultural learning experience.

Be prepared for tomorrow's management challenges and apply today.
For more information, visit www.msm.nl or contact us at +31433870808 or via admissions@msm.nl
\(\square\)

7. Indicative T-s diagram, obtained from Plots tab, is as follows:

8. The I/O panel gives the TEST code, and other details:
```

OUTPUT OF SUPER-CALCULATE :

```
\#- \(\qquad\) Start of TEST-code \(\qquad\)

\section*{States \{}

State-1: Ar;
Given: \(\{\mathrm{pl}=900.0 \mathrm{kPa} ; \mathrm{T} 1=450.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vel} 1=80.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{A} 1=60.0 \mathrm{~cm} \wedge 2 ;\}\)
State-2: Ar;
Given: \(\{\mathrm{p} 2=150.0 \mathrm{kPa} ; \mathrm{Vel} 2=150.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \operatorname{mdot} 2=\) " \(\mathrm{mdot} 1 " \mathrm{~kg} / \mathrm{s} ;\}\)
\}

Analysis \{
Device-A: i-State \(=\) State-1; e-State \(=\) State-2;
Given: \(\left\{\right.\) Qdot \(=0.0 \mathrm{~kW}\); Wdot_ext \(\left.=250.0 \mathrm{~kW} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K} ;\right\}\)
\}
\#-
End of TEST-code
\begin{tabular}{lccccccc}
\(\#\) & State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & \(\mathrm{v}\left(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\(\#\) & 1 & 900.0 & 723.2 & 0.1672 & 70.63 & 221.13 & 3.882 \\
\(\#\) & 2 & 150.0 & \(\mathbf{5 4 0 . 3}\) & 0.7496 & 13.55 & 125.99 & 4.104
\end{tabular}

Prob.5.26. Air flows steadily through an adiabatic turbine, entering at \(1 \mathrm{MPa}, 500 \mathrm{C}\) and \(120 \mathrm{~m} / \mathrm{s}\) and leaving at \(150 \mathrm{kPa}, 150 \mathrm{C}\) and \(250 \mathrm{~m} / \mathrm{s}\). The inlet area of turbine is \(80 \mathrm{~cm}^{\wedge} 2\). Determine (a) the mass flow rate of air, and (b) the power output of turbine. [Ref. 1]

\section*{TEST Solution:}
1. Choose System Analysis ..... Single Flow daemon as in previous cases:

2. For Material model, choose Ideal Gas (IG) model, where cp is a function of temp. (We can choose PG model also; results will not be much different):
\begin{tabular}{|c|c|c|c|}
\hline & \(\xrightarrow[\text { PC Model }]{\text { LK }}\) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Working fluids such as H2O, R-12,NH3, R-134a, N2, CO2, etc., should be treated as PC fluids if there is any possibility of a phase transition. \\
Examples: Analyze a steady steam turbine with one inlet and one exit. For specific examples, click on the help icon at the bottom margin of the daemon.
\end{tabular}} \\
\hline & \[
\begin{aligned}
& D=\sigma \\
& =\rho=c \\
& \text { SL Model }
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pure Solid and Pure Liquid: Constant density and constant specific heats ( \(c_{p}=c_{v}=c\) ) characterize the solid/liquid (SL) model. Beside a wide selection to choose from, a new solid or liquid can be created by assigning custom material properties. \\
Working substances such as steel, iron, copper, aluminum, wood, water, oil, etc., which can be assumed to maintain their condensed (solid or liquid) phase when a system undergoes other changes, can be analyzed with the SL model. \\
Examples: Liquid water is pumped steadily from a given inlet-state to a given exit-state with no possibility of a phase change. For specific examples, click on the help icon at the bottom margin of the daemon.
\end{tabular}} \\
\hline &  &  & \begin{tabular}{l}
Pure Gas: A pure gas has a fixed chemical composition across space and time. Oxygen, nitrogen, and air are examples of a pure gas. The PG (perfect gas) model is the simplest gas model which obeyes the ideal gas equation ( \(p v=R T\) ) and assumes specific heats to be constant. In the IG (ideal gas) model, specific heats are assumed to be function of temperature only. The RG (real gas) model uses generalized compressiblity charts and is useful for gases near the critical or super-critical conditions for which PC-model data are not avaiable. \\
pples: Helium expands steadily in a nozzle from an inlet-state to an exit-state no possibility of phase change. For specific examples, click on the help icon at
\end{tabular} \\
\hline
\end{tabular}

3. Choose Air for material, enter data, i.e. P1, T1, A1, Vel1 for State 1; press Enter:


Note that mdot 1 is calculated as 4.327 kg/s .... Ans.
4. Now, enter data for State 2, i.e. P2, T2, Vel2, and mdot \(2=\operatorname{mdot} 1\). Press Enter:


Note that A2 is calculated as \(140.11 \mathrm{~cm}^{\wedge} 2\).
5. Now, go to Device Panel. Enter State 1 and State 2 for b-state and f-state respectively. Also Qdot \(=0\). Press Calculate:


Note that work output is calculated as: Wdot_ext \(=1495.3 \mathrm{~kW} . .\). Ans.
6. Indicative T-s diagram is as follows:

7. Clicking on SuperCalculate gives TEST code etc. in the I/O panel:

\section*{\#~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:}

\section*{\# Daemon Path: Systems \(>\) Open \(>\) SteadyState \(>\) Generic \(>\) SingleFlow \(>\) IG-Model; v-10.bb05}
\(\qquad\)
\(\qquad\)

\section*{States \{}

State-1: Air;
Given: \(\{\mathrm{pl}=1000.0 \mathrm{kPa} ; \mathrm{T} 1=500.0\) deg-C; Vell \(=120.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{Al}=80.0 \mathrm{~cm} \wedge 2 ;\}\)
State-2: Air;
Given: \(\{\mathrm{p} 2=150.0 \mathrm{kPa} ; \mathrm{T} 2=150.0\) deg-C; Vel2 \(=250.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{mdot} 2=\) " \(\mathrm{mdot} 1 " \mathrm{~kg} / \mathrm{s} ;\}\) \}

Analysis \{
Device-A: i-State \(=\) State-1; e-State \(=\) State-2;
Given: \(\left\{\right.\) Qdot \(=0.0 \mathrm{~kW} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K}\); \}
\}
\#------------------------End of TEST-code \(\qquad\) \#
```

\#---------Property spreadsheet starts:

$\#$	State	$\mathrm{p}(\mathrm{kPa})$	$\mathrm{T}(\mathrm{K})$	$\mathrm{v}\left(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)$	$\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg})$
$\#$	1	1000.0	773.2	0.2219	274.45	496.33	7.215
$\#$	2	150.0	423.2	0.8096	5.24	126.68	7.125

\#--------Property spreadsheet ends

```
\(\qquad\)
```


Mass, Energy, and Entropy Analysis Results:

Device-A: i-State = State-1; e-State = State-2;

Given: Qdot= 0.0 kW; T_B=298.15 K;

Calculated: Wdot_ext= 1495.2935 kW; Sdot_gen= -0.3899593 kW/K; Jdot_net=

1495.2935 kW; Sdot_net= 0.3899593 kW/K;

```

Prob.5.27. Steam flows steadily through an adiabatic turbine. The inlet conditions of steam are: 6 MPa , 400 C and \(80 \mathrm{~m} / \mathrm{s}\) and the exit conditions are: \(40 \mathrm{kPa}, 92 \%\) quality and \(50 \mathrm{~m} / \mathrm{s}\). The mass flow rate of steam is \(20 \mathrm{~kg} / \mathrm{s}\). Determine: (a) the change in K.E. (b) the power output, and (c) the turbine inlet area.


\section*{(OLIVER WYMAN}


OiverWyman is a leading global management consuting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk management, organizational transformation, and leadership development. With ces in \(50+\) cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 compani An equal opportunity employe

GET THERE FASTER
Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.
Discover the world of Oliver Wyman at oliverwyman.com/careers COMPANIES
(b) Plot the Power output and exit temp against the exit pressure as exit pressure varies from 10 to 200 kPa. [Ref. 1]


Fig.Prob.5.27

\section*{TEST Solution:}
1. Go to Daemons tree and choose System Analysis.....Single Flow as shown below:

2. Choose PC model for Material Model, since Steam is the working substance:

3. Choose H2O for working substance, enter data for State 1, i.e. enter P1, T1, Vel1 and mdot1, and press Enter (or, Calculate):

We get:


Note that Turbine inlet area \(A 1\) is calculated as: \(A 1=0.01185 \mathbf{m} \wedge 2 \ldots\) Ans.
4. Enter data for State 2, i.e. P2, x2, Vel2 and mdot \(=\) mdot2. Press Enter (or, Calculate). We get:

5. Go to Device Panel. Enter State 1 and State 2 for b-state and f-state respectively. Also enter Qdot \(=0\), and press Calculate. We get:


Note that Wdot_ext is calculated as: \(14558.3 \mathrm{~kW}=14.558 \mathrm{MW}=\) Work output of turbine... Ans.

Also: \(\operatorname{Vel} 2=50 \mathrm{~m} / \mathrm{s}\), Vel1 \(=80 \mathrm{~m} / \mathrm{s}\), and therefore, change in K.E. \(=(\) Vel2^2 \(-\operatorname{Vel1\wedge 2)} / 2\).


i.e.
\[
\frac{\mathrm{Vel} 2^{2}-\mathrm{Vel1} 1^{2}}{2}=\frac{50^{2}-80^{2}}{2}=-1.95 \times 10^{3} \quad \mathrm{~J} / \mathrm{kg} \ldots . \text { Ans. }
\]
6. Click on SuperCalculate and go to I/O panel to get TEST code and other details:
\#~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:
\# Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>PC-Model; v-10.ca08
\#--------------------Start of TEST-code \(\qquad\)

States \{
State-1: H2O;
Given: \(\{\mathrm{pl}=6000.0 \mathrm{kPa} ; \mathrm{T} 1=400.0 \mathrm{deg}-\mathrm{C} ;\) Vel1 \(=80.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{mdot} 1=20.0 \mathrm{~kg} / \mathrm{s} ;\}\)
State-2: H2O;
Given: \(\{\mathrm{p} 2=40.0 \mathrm{kPa} ; \mathrm{x} 2=0.92\) fraction; Vel2 \(=50.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{mdot} 2=\) " \(m \operatorname{dot} 1 " \mathrm{~kg} / \mathrm{s} ;\}\) \}

Analysis \{
Device-A: i-State \(=\) State-1; e-State \(=\) State-2;
Given: \(\left\{\right.\) Qdot \(=0.0 \mathrm{~kW} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K} ;\) \}
\}
\#----------------------End of TEST-code \(\qquad\)
\#--------Property spreadsheet starts:
\begin{tabular}{llllllll} 
\# State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & x & \(\mathrm{v}(\mathrm{m} 3 / \mathrm{kg})\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\# 01 & 6000.0 & 673.2 & & 0.0474 & 2892.81 & 3177.14 & 6.541 \\
\# 02 & 40.0 & 349.0 & 0.9 & 3.682 & 2304.23 & 2451.18 & 7.139
\end{tabular}

\section*{\# Mass, Energy, and Entropy Analysis Results:}
\# Device-A: i-State \(=\) State-1; e-State \(=\) State-2;
\# Given: Qdot= \(0.0 \mathrm{~kW} ; \mathrm{T} \_\mathrm{B}=298.15 \mathrm{~K}\);
\# Calculated: Wdot_ext= \(\mathbf{1 4 5 5 8 . 3 2 6} \mathbf{~ k W}\); Sdot_gen= \(11.966095 \mathrm{~kW} /\) K; Jdot_net= 14558.326 kW ; Sdot_net= \(-11.966095 \mathrm{~kW} / \mathrm{K}\);
(b) Plot Power output and T2 as P2 varies from 10 to 200 kPa :

\section*{The procedure is quite simple:}

Go to State 2, enter the desired value of P2 and press Enter. Then, press SuperCalculate. Read the value of T2 and Wdot_ext and tabulate the values. Results are shown below:
\begin{tabular}{|c|c|c|}
\hline P2(kPa) & Wdot_ext (MW) & T2 (deg.C) \\
\hline 10 & 15.717 & 45.81 \\
\hline 30 & 14.815 & 69.08 \\
\hline 50 & 14.354 & 81.31 \\
\hline 80 & 13.907 & 93.48 \\
\hline 110 & 13.59 & 102.3 \\
\hline 140 & 13.345 & 109.29 \\
\hline 170 & 13.143 & 115.17 \\
\hline 200 & 12.972 & 120.23 \\
\hline
\end{tabular}

Plot the above results in EXCEL:


Basic Thermodynamics: Software Solutions Part II


In the past four years we have drilled

\section*{\(81,000 \mathrm{~km}\)}

That's more than twice around the world.

\section*{Who are we?}

We are the world's leading oilfield services company. Working globally-often in remote and challenging locations-we invent, design, engineer, manufacture, apply, and maintain technology to help customers find and produce oil and gas safely.

\section*{Who are we looking for?}

We offer countless opportunities in the following domains:
- Engineering, Research, and Operations
- Geoscience and Petrotechnical
- Commercial and Business

If you are a self-motivated graduate looking for a dynamic career, apply to join our team.

careers.slb.com
Sedluminherygr
fly
Click on the ad to read more

Prob.5.28. Air enters the compressor of a gas turbine plant at \(100 \mathrm{kPa}, 25 \mathrm{C}\) with a low velocity and exits at 1 MPa and 347 C with a velocity of \(90 \mathrm{~m} / \mathrm{s}\). The compressor is cooled at a rate of \(1500 \mathrm{~kJ} / \mathrm{min}\) and the power input to the compressor is 250 kW . Determine the mass flow rate of air through the compressor. [Ref. 1]


Fig.Prob.5.28

\section*{TEST Solution:}
1. Go to System Analysis ..... Single Flow daemon, as in the case of previous problems:

2. Choose the Ideal Gas (IG) model, since we are going to use Air as working substance:

3. Choose Air for working substance, enter data i.e. P1, T1, Vell for State 1 and press Enter:

4. Enter P2, T2 and Vel2 and mdot2 = mdot 1 for State 2; press Enter:

5. Go to Device Panel, enter b-state and f-state, and also Qdot \(=0\), Wdot_ext \(=-250\) (negative sign since work is input to compressor), press Enter:

6. Now, click on SuperCalculate to up-date all calculations:

\section*{Go to State Panel, State 1:}


\section*{And, State 2:}


Thus: \(\operatorname{mdot} 1=0.6699 \mathrm{~kg} / \mathrm{s} \ldots\). Ans.
7. Indicative T-s diagram is as follows:

\section*{T, K}
682.17
268.34

\(s, k J / k g . K\)
7.68


Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research \& Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.
 Milvanis Downs Dove.
8. From the I/O panel, get the TEST code etc.:
```

\#~~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:

```
\#
\# Daemon Path: Systems \(>\) Open \(>\) SteadyState \(>\) Generic \(>\) SingleFlow \(>\) IG-Model; v-10.bb05
\#-
\(\qquad\) Start of TEST-code \(\qquad\)
States \{
    State-1: Air;
    Given: \(\{\mathrm{pl}=100.0 \mathrm{kPa} ; \mathrm{T} 1=25.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vel} 1=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ;\}\)
    State-2: Air;
    Given: \(\{\mathrm{p} 2=1000.0 \mathrm{kPa} ; \mathrm{T} 2=347.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vel} 2=90.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{mdot} 2=\) " mdot 1 " \(\mathrm{kg} / \mathrm{s} ;\}\)
    \}
Analysis \{
    Device-A: i-State \(=\) State-1; e-State \(=\) State- \(2 ;\)
    Given: \{ Qdot="-1500/60" kW; Wdot_ext= -250.0 kW; T_B=298.15 K; \}
    \}
\#-
End of TEST-code
\#--------Property spreadsheet starts:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \# & State & \(\mathrm{p}(\mathrm{kPa})\) & T(K) & \(\mathrm{v}(\mathrm{m} \wedge 3 / \mathrm{kg})\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\hline \# & 1 & 100.0 & 298.2 & 0.8557 & -85.55 & 0.02 & 6.887 \\
\hline \# & 2 & 1000.0 & 620.2 & 0.178 & 153.86 & 331.83 & 6.978 \\
\hline \# & & & & & & & \\
\hline
\end{tabular}
\# Mass, Energy, and Entropy Analysis Results:
\# \(\quad\) Device-A: i-State \(=\) State-1; e-State \(=\) State-2;
\# Given: Qdot= "-1500/60" kW; Wdot_ext=-250.0 kW; T_B=298.15 K;
\# Calculated:Sdot_gen \(=0.14507116 \mathrm{~kW} / \mathrm{K}\);Jdot_net \(=-225.0 \mathrm{~kW}\);Sdot_net \(=-0.061220754\) kW/K;

Prob.5.29. A compressor operating at steady state takes in \(45 \mathrm{~kg} / \mathrm{min}\) of methane gas (CH4) at 1 bar, 25 C, \(15 \mathrm{~m} / \mathrm{s}\), and compresses it with negligible heat transfer to \(2 \mathrm{bar}, 50 \mathrm{~m} / \mathrm{s}\) at exit. The power input to the compressor is 110 kW . Using the ideal gas model, determine the temp of the gas at the exit. [Ref. 5]

\section*{TEST Solution:}
1. Go to System Analysis ... Single Flow daemon as shown:

2. Select IG model for Material model:

3. Choose Methane (CH4) for working substance, enter data for State 1 (i.e. P1, T1, Vel1 and mdot1), press Enter:

Generic, Open Steady, Single-Flow, Daemon: IG Model




Deloitte.
Discover the truth at www.deloitte.ca/careers
4. Enter data for State 2, (i.e. P2, Vel2 and mdot2), press Enter:

5. Go to Device Panel, enter for b-state and f-state, and also Qdot \(=0\), Wdot_ext \(=-110 \mathrm{~kW}\) (negative sign since work is done on the system in compressor). Press Enter:

6. Now click on SuperCalculate. Go to State Panel, State 2. We get:


Thus: T2 = 87.02 deg. C \(\ldots\). Ans.
7. Indicative T-s diagram is as follows:

8. I/O panel gives TEST code etc:
```

\#~~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>IG-Model; v-10.ca08

\#---------------------Start of TEST-code

```
\(\qquad\)
```

States {
State-1: Methane(CH4);
Given: { pl= 100.0 kPa; T1=25.0 deg-C; Vel1= 15.0 m/s; z1= 0.0 m; mdot1= 45.0 kg/min; }
State-2: Methane(CH4);
Given: { p2= 200.0 kPa; Vel2= 90.0 m/s; z2= 0.0 m; mdot2= "mdot1" kg/min; }
}
Analysis {
Device-A: i-State = State-1; e-State = State-2;
Given: { Qdot= 0.0 kW; Wdot_ext= -110.0 kW; T_B= 298.15 K; }
}

```
\#------------------------End of TEST-code \(\qquad\)
\#---------Property spreadsheet starts:
\begin{tabular}{llllllll} 
\# & State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & \(\mathrm{v}(\mathrm{m} \wedge 3 / \mathrm{kg})\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\(\#\) & 1 & 100.0 & 298.2 & 1.5454 & -4822.36 & -4667.82 & 11.619 \\
\(\#\) & 2 & 200.0 & 360.2 & 0.9334 & -4711.78 & -4525.09 & 11.694
\end{tabular}

\section*{\# Mass, Energy, and Entropy Analysis Results:}
\# \(\quad\) Device-A: i-State \(=\) State-1; e-State \(=\) State-2;
\# Given: Qdot= 0.0 kW ; Wdot_ext= \(-110.0 \mathrm{~kW} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K}\);
\# Calculated: Sdot_gen= \(0.056342352 \mathrm{~kW} / \mathrm{K}\); Jdot_net= -110.00039 kW ; Sdot_net= -0.056342352 kW/K;

Prob.5.30. Helium is to be compressed from \(120 \mathrm{kPa}, 310 \mathrm{~K}\) to \(700 \mathrm{kPa}, 430 \mathrm{~K}\). A heat loss of \(20 \mathrm{~kJ} / \mathrm{kg}\) occurs during compression. Neglecting K.E. changes, determine the power input required for a mass flow rate of \(90 \mathrm{~kg} / \mathrm{min}\). [Ref. 1]

\section*{}

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute \({ }^{\mathrm{TM}}\) for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.



Audit •Tax • Advisory www.GrantThornton.ca/Careers

An instinct for growth"
© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

Download free eBooks at bookboon.com

\section*{TEST Solution:}
1. Go to System Analysis ... Single Flow daemon as shown:

2. Choose the Ideal Gas (IG) model for Material model, since Helium is the working substance:
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& -\rho=\mathrm{cF} \\
& \text { SL Model }
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
to maintain their condensed (solid or liquid) phase when a system undergoes other changes, can be analyzed with the SL model. \\
Examples: Liquid water is pumped steadily from a given inlet-state to a given exit-state with no possibility of a phase change. For specific examples, click on the help icon at the bottom margin of the daemon.
\end{tabular}} \\
\hline &  & the IG Model ingle-Flow, Open-Steady & Pure Gas: A pure gas has a fixed chemical composition across space and time. Oxygen, nitrogen, and air are examples of a pure gas. The PG (perfect gas) model is the simplest gas model which obeyes the ideal gas equation \((p v=R T)\) and assumes specific heats to be constant. In the IG (ideal gas) model, specific heats are assumed to be function of temperature only. The RG (real gas) model uses generalized compressiblity charts and is useful for gases near the critical or super-critical conditions for which PC-model data are not avaiable.
\(\qquad\) es: Helium expands steadily in a nozzle from an inlet-state to an exit-state possibility of phase change. For specific examples, click on the help icon at the bottom margin of the daemon. \\
\hline & \(c_{B}=\) const & & Binary Mixture: The mixture of two gases, A and B , is expressed in terms of the \\
\hline
\end{tabular}
3. Choose He for working substance, enter data for State 1 (i.e. P1, T1, mdot \(1=1.5 \mathrm{~kg} / \mathrm{s}\) ), press Enter. We get:

Generic, Open Steady, Single-Flow, Daemon: IG Model
thermofluids.net > Daemons \(>\) Systems \(>\) Open \(>\) Steady \(>\) Generic \(>\) Singleflow \(>\) IG-Model
1) Home of
TEST
Move mouse over a variable to display its value with more precision.

4. Enter data for State 2, i.e. P2, T2, mdot2 = mdot1. Press Enter. We get:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|l|}{Move mouse over a variable to display its value with more precision.} \\
\hline - Mixed & Csi & \multicolumn{2}{|l|}{\(\bigcirc\) English} & \multicolumn{3}{|c|}{\(<\) Case-0 \(\checkmark\) >} & \multicolumn{3}{|l|}{\(\checkmark\) Help Messages On} & \multicolumn{2}{|l|}{Super-Iterate} & \multicolumn{2}{|l|}{Super-Calculate} & Load & \multicolumn{2}{|l|}{Super-Initialize} \\
\hline \multicolumn{5}{|c|}{State Panel} & \multicolumn{4}{|c|}{Device Panel} & \multicolumn{5}{|c|}{Exergy Panel} & \multicolumn{3}{|c|}{110 Panel} \\
\hline < ©State-2 & \(\checkmark\) & & \multicolumn{2}{|l|}{Calculate} & \multicolumn{2}{|l|}{No-Plots \(\vee\)} & & Initialize & \multicolumn{3}{|r|}{Formation Enthalpy:} & \multicolumn{2}{|l|}{O \({ }^{-}\)- Yes} & He & \multicolumn{2}{|c|}{\(\checkmark\)} \\
\hline \(\checkmark \quad \mathrm{p} 2\) & & & & T2 & & & \(\Gamma\) rho & ho2 & & & \(\Gamma \quad v 2\) & & & \multicolumn{3}{|l|}{\(\Gamma \quad u 2\)} \\
\hline 700.0 & kPa & \(\checkmark\) & \multicolumn{2}{|l|}{430.0} & K & & \multicolumn{2}{|l|}{0.78321} & \(\mathrm{kg} / \mathrm{m} / 3\) & \(\checkmark\) & 1.27679 & \(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\) & \(\checkmark\) & -208.59203 & kJ/kg & \(\checkmark\) \\
\hline \(\Gamma \quad h 2\) & & & & s2 & & & \multicolumn{2}{|l|}{V Vel2} & & & V z2 & & & \(\Gamma \mathrm{e} 2\) & & \\
\hline 685.16296 & \(\mathrm{kJ} / \mathrm{kg}\) & \(\checkmark\) & \multicolumn{2}{|l|}{29.42369} & kJ/kg.K & \(\checkmark 10\) & \multicolumn{2}{|l|}{0.0} & \(\mathrm{m} / \mathrm{s}\) & \(\checkmark\) & 0.0 & m & \(\checkmark\) & -208.59203 & kJ/kg & \(\checkmark\) \\
\hline 「 \(\quad 12\) & & & \multicolumn{2}{|l|}{phi2} & & \multicolumn{3}{|c|}{psi2} & \multirow[b]{2}{*}{kJ/kg} & & =mdot1 & & & \multicolumn{3}{|l|}{\(\Gamma\) Voldot2} \\
\hline 685.16296 & \(\mathrm{kJ} / \mathrm{kg}\) & \(\checkmark\) & & & kJ/kg & \(\checkmark\) & & & & \(\checkmark\) & =mdot1 & kg/s & \(\checkmark\) & 1.91519 & \(\mathrm{m}^{\text {³/ }}\) & \(\checkmark\) \\
\hline \(\Gamma \quad \mathrm{A} 2\) & & & \multicolumn{2}{|l|}{MM2} & & \multicolumn{3}{|c|}{R2} & & & \(\Gamma\) c_p2 & & & & & \\
\hline 191518.92 & \(\mathrm{m} \times 2\) & \(\checkmark\) & \multicolumn{2}{|l|}{4.0} & kg/kmol & \multicolumn{3}{|c|}{2.0785} & kJ/kg.K & \(\checkmark\) & 5.19651 & kJ/kg.K & \(\checkmark\) & & & \\
\hline
\end{tabular}
5. Go to Device Panel. Enter Qdot \(=-20^{*}\) mdot1 and click on Calculate, and SuperCalculate. We get:

\section*{Move mouse over a variable to display its value with more precision.}


Thus: \(\mathrm{W}=-965.37 \mathrm{~kW} \ldots\) Ans. (negative sign, since work is done on the system in compressor)
6. Indicative T-s diagram from Plots tab:


\section*{The Wake}
the only emission we want to leave behind

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ
The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel \& Turbo.
Power competencies are offered with the world's largest engine programme - having outputs spanning
from 450 to \(87,220 \mathrm{~kW}\) per engine. Get up front!
Find out more at www.mandieselturbo.com
Engineering the Future - since 1758.
MAN Diesel \& Turbo
7. I/O panel gives the TEST code and other details:
\#~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:
\# Daemon Path: Systems \(>\) Open \(>\) SteadyState \(>\) Generic \(>\) SingleFlow \(>\) IG-Model; v-10.bb05
\#- \(\qquad\) Start of TEST-code \(\qquad\)

States \{
State-1: He;
Given: \(\{\mathrm{pl}=120.0 \mathrm{kPa} ; \mathrm{T} 1=310.0 \mathrm{~K} ; \mathrm{Vel} 1=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{mdot}=1.5 \mathrm{~kg} / \mathrm{s} ;\}\)
State-2: He;
Given: \(\{\mathrm{p} 2=700.0 \mathrm{kPa} ; \mathrm{T} 2=430.0 \mathrm{~K} ; \mathrm{Vel} 2=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{mdot} 2=\) " mdot 1 " \(\mathrm{kg} / \mathrm{s} ;\}\)
\}

Analysis \{
Device-A: i-State \(=\) State-1; e-State \(=\) State- \(2 ;\)
Given: \(\left\{\right.\) Qdot \(=\) " \(-20^{*}\) mdot1" kW; T_B= 298.15 K; \}
\}
\#-----------------------End of TEST-code \(\qquad\)
\#---------Property spreadsheet starts
\begin{tabular}{llllllll}
\(\#\) & State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & \(\mathrm{v}\left(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\(\#\) & 1 & 120.0 & 310.0 & 5.3695 & -582.75 & 61.58 & 31.389 \\
\(\#\) & 2 & 700.0 & 430.0 & 1.2768 & -208.59 & 685.16 & 29.424
\end{tabular}
\#--------Property spreadsheet ends \(\qquad\)

\section*{\# Mass, Energy, and Entropy Analysis Results:}
\# \(\quad\) Device-A: i-State \(=\) State-1; e-State \(=\) State-2;
\# Given: Qdot= "-20*mdotl" kW; T_B=298.15 K;
\# Calculated: Wdot_ext= -965.37134 kW; Sdot_gen= -2.8472614 kW/K;
Jdot_net= -935.37134 kW ; Sdot_net= \(2.9478817 \mathrm{~kW} / \mathrm{K}\);

Prob.5.31. Refrigerant-134a is throttled from the sat. liquid state at 800 kPa to a temp of -20 C . Determine the pressure of the refrigerant at the final state. [Ref. 1]

\section*{TEST Solution:}

Note that this is a problem on throttling. The daemon to be used is still the same as used earlier, viz.

\section*{Systems \(>\) Open \(>\) SteadyState \(>\) Generic \(>\) SingleFlow \(>\) IG-Model \(:\)}
1. Go to System ... Single Flow daemon:

2. Choose PC model for material model since R134a is the working substance:


\section*{淡RBS Group}

\section*{CAREERKICKSTART}

\section*{An app to keep you in the know}

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder - whatever your level of education, degree subject or work experience.
And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?
Click here to get started.

3. Choose R134a for working substance and enter data for State 1, i.e. P1, x1 and press Enter.

We get:

Generic, Open Steady, Single-Flow, Daemon: PC Model


4. Enter data for State 2, i.e. T2, and \(\mathrm{h} 2=\mathrm{h} 1\) since it is throttling process. Click on Calculate and SuperCalculate. We get:


Thus: \(\mathrm{p} 2=133.7 \mathrm{kPa} .\). Ans.
5. Indicative P-h diagram is easily obtained from the Plots tab:
\[
\mathrm{p}, \mathrm{kPa}(\log \mathrm{Sc} a \operatorname{e})
\]
(200.945, 87050.213)
9329.3
1.5506

\(-34.42\)
\(\mathrm{h}, \mathrm{kJ} / \mathrm{kg}\)
308.52
6. I/O panel gives the TEST code etc:
\#~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:
\# Daemon Path: Systems \(>\) Open \(>\) SteadyState \(>\) Generic \(>\) SingleFlow \(>\) PC-Model; v-10.bb06
\#----------------------Start of TEST-code \(\qquad\)

\section*{States \{}

State-1: R-134a;
Given: \(\{\mathrm{p} 1=800.0 \mathrm{kPa} ; \mathrm{x} 1=0.0\) fraction; Vel1 \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 1=0.0 \mathrm{~m} ;\}\)
State-2: R-134a;
Given: \(\{\mathrm{T} 2=-20.0\) deg-C; h2 = "h1" kJ/kg; Vel2 \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ;\}\)
\}
\#-
End of TEST-code
\#--------Property spreadsheet:
\begin{tabular}{lllllllrl} 
\# State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & x & \(\mathrm{v}(\mathrm{m} 3 / \mathrm{kg})\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\# 01 & 800.0 & 304.4 & 0.0 & \(8.0 \mathrm{E}-4\) & 94.0 & 94.68 & 0.351 & \\
\# 02 & 133.7 & 253.2 & 0.3 & 0.0487 & 88.16 & 94.68 & 0.378 &
\end{tabular}

Prob.5.32. A hot water stream at 80 C enters a mixing chamber with a mass flow rate of \(0.5 \mathrm{~kg} / \mathrm{s}\) where it is mixed with a stream of cold water at 20 C . If it is desired that the mixture leave the chamber at 42 C, determine the mass flow rate of the cold water stream. Assume that all the streams are at a pressure of 250 kPa . [Ref. 1]

\section*{TEST Solution:}
1. This is a problem on mixing chambers. So, choose the appropriate daemon as shown below:

2. Hovering the mouse pointer on Mixing Multi-Flow brings up the following:

\section*{Click to go to page: TEST>Daemons>Systems>Open>Steady>Generic>Multi-Flow Mixing Systems}

Multi-Flow Mixing Systems: Analyze a
mixing open steady system with two inlets and a single exit. Examples include a mixing chamber where two non-
reacting gases are mixed or two different phases of a fluid are mixed at steady state.

Mixing chambers are covered in chapters 4, 6, and 11.

3. Choose Phase Change (PC) model, and choose H 2 O as working substance:


\section*{○RACLE}

\section*{Be brave enough to reach for the sky}

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future,


Oracle is the company for you to drive your career!

\section*{https://campus.oracle.com}


ORACLE IS THE INFORMATION COMPANY
4. Enter data for State 1, i.e. P1, T1, mdot1; click on Calculate (or, press Enter). We get:

5. Enter data for State 2 (i.e. cold stream entering), i.e, P2 and T2, press Enter:

6. Now, enter data for State 3 (i.e. state after mixing), i. P3, T3, mdot3 \((=\operatorname{mdot} 2+\operatorname{mdot} 1)\), press Enter:

7. Go to Device Panel, enter State 1, State 2 and State 3 for i1-state, i2-state and e1-state respectively. e2-state is maintained as Null-state since there is only one exit.
Press Enter, and also SuperCalculate:


\section*{8. Now, go to State 2:}


Thus: \(\operatorname{mdot} 2=0.864 \mathrm{~kg} / \mathrm{s} \ldots\) Ans.
9. Go to I/O panel to see TEST code etc:
\#~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:
\# Daemon Path: Systems \(>\) Open \(>\) SteadyState \(>\) Generic \(>\) MultiFlowMixed \(>\) PC-Model; v-10. bb06
\(\qquad\)

States \{
State-1: H2O;
Given: \(\{\mathrm{pl}=250.0 \mathrm{kPa} ; \mathrm{T} 1=80.0\) deg-C; Vell \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{mdot} 1=0.5 \mathrm{~kg} / \mathrm{s} ;\}\)
State-2: H2O;
Given: \(\{\mathrm{p} 2=\) " p 1 " kPa; T2 \(=20.0\) deg-C; Vel2 \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ;\}\)

State-3: H2O;
Given: \(\{\mathrm{p} 3=250.0 \mathrm{kPa} ; \mathrm{T} 3=42.0\) deg \(-\mathrm{C} ; \mathrm{Vel} 3=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 3=0.0 \mathrm{~m} ; \mathrm{mdot} 3=\) "mdot \(1+\mathrm{mdot} 2\) " kg/s; \}
\}

\section*{Analysis \{}

Device-A: i-State \(=\) State-1, State-2; e-State \(=\) State-3; Mixing: true;
Given: \(\left\{\right.\) Qdot \(=0.0 \mathrm{~kW}\); Wdot_ext \(\left.=0.0 \mathrm{~kW} ; \mathrm{T} \_\mathrm{B}=298.15 \mathrm{~K} ;\right\}\)
\}
\#-----------------------End of TEST-code \(\qquad\)
\#--------Property spreadsheet :
\begin{tabular}{llrlllll} 
\# State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & x & \(\mathrm{v}(\mathrm{m} 3 / \mathrm{kg})\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\# 01 & 250.0 & 353.2 & & 0.001 & 334.86 & 335.12 & 1.075 \\
\# 02 & 250.0 & 293.2 & 0.001 & 83.96 & 84.21 & 0.297 \\
\#03 & 250.0 & 315.2 & 0.001 & 175.92 & 176.17 & 0.599
\end{tabular}

```

\# Mass, Energy, and Entropy Analysis Results:

```
\# Device-A: i-State \(=\) State-1, State-2; e-State \(=\) State-3; Mixing: true;
\# Given: Qdot= 0.0 kW ; Wdot_ext= \(0.0 \mathrm{~kW} ;\) T_B=298.15 K;
\# Calculated: Sdot_gen= \(0.023273543 \mathrm{~kW} / \mathrm{K}\); Jdot_net="-2.842171E-14" kW; Sdot_net= -0.023273543 kW/K;

\section*{Verify:}
\(\#^{\# * * * * * *}\) CALCULATE VARIABLES: Type in an expression starting with an ' \(=\) ' sign ( \(‘=\operatorname{mdot} 1^{*}(\mathrm{~h} 2-\mathrm{h} 1)\) ', \('=\operatorname{sqrt}\left(4^{\star} \mathrm{A} 1 / \mathrm{PI}\right)\) ', etc. \()\) and press the Enter key \()^{* *}\)
\[
\begin{aligned}
& \left(\text { mdot }^{*} \mathrm{~h} 1+\mathrm{mdot}^{*} \mathrm{~h} 2\right)=240.3336599692044 \\
& \text { mdot } 3 *^{*} \mathrm{~h} 3=240.33365996920443
\end{aligned}
\]
\# i.e. Energy balance is verified.

Prob. 5.33. Steam enters the condenser of a steam power plant at 20 kPa as sat. vapour with a mass flow rate of \(20000 \mathrm{~kg} / \mathrm{h}\). It is to be cooled by water from a nearby river, circulating the water through the tubes within the condenser. The river water is not allowed to experience a temp rise above 10 C . If the steam is to leave the condenser as sat. liquid at 20 kPa , determine the mass flow rate of cooling water required. [Ref. 1]

\section*{TEST Solution:}

This is a Non-mixing multi-flow type problem. i.e. the steam and cooling water do not mix.
1. Choose the daemon suitable for Non-mixing, multi-flow problem, as shown below:

2. Hovering the mouse pointer over "Non-mixing Multi-Flow" gives following window:

\section*{Click to go to page: TEST>Daemons>Systems>Open>Steady>Generic>Multi-Flow Non-Mixing Systems}

Multi-Flow Non-Mixing Systems:
Analyze a non-mixing open steady system with two inlets and two exits. A co-flow or counter-flow heat exchanger is an example of such a system. The working substances can be different for the two flows.

Heat exchangers are covered in chapters 4 and 6 .


Note that this is the daemon required to solve parallel flow and counter-flow heat exchangers:
3. Choose PC model under 'Two Identical Fluids' as shown below, since water/steam is the working substance:
\begin{tabular}{|c|c|}
\hline Select & the non-mixing multi-flow daemon. \\
\hline \multicolumn{2}{|r|}{Two Identical Fluids} \\
\hline  &  \\
\hline  & \begin{tabular}{l}
The system has two separate flows consisting of two identical fluids, say, H 2 O and H 2 O , which can not mix. Two inlet and two exit states - i1, i2, e1 and e2-states - are necessary to describe the non-mixing device. The two fluids can be chemically identical. \\
Examples: Heat is exchanged in a counter-flow heat exchanger between a flow of cold liquid water and hot steam. For specific examples, click on the help icon at the bottom margin of the daemon.
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Two Different Fluids} \\
\hline  & \begin{tabular}{l}
The system has two separate flows consisting of two phase-change (PC) fluids, say, H 2 O and NH 3 , which can not mix. Two inlet and two exit states - i1, i2, e1 and e2-states - are necessary to describe the non-mixing device. The two fluids can be chemically identical. \\
Examples: \(\mathrm{R}-134 \mathrm{a}\) and H 2 O are the two fluids in a heat exchanger. Suppose both the inlet states, state-1 (i1) and state2 (i2), and one of the exit states, state-3 (e1), are completely given. For state-4 (e2 state), set mdot \(4=\mathrm{mdot} 2\), set up the device panel with the known value of Wdot_ext \((=0\) ) and \(Q d o t(=0\), if adiabatic), and click Super-Calculate to evaluate State-4. If T3 and T4 are both unknown, but related, iterative solution is necessary in which Qdot is left as an unknown, T3 is guessed until Qdot approaches the known value. For specific examples, click on the help icon at the bottom margin of the daemon.
\end{tabular} \\
\hline
\end{tabular}


Masters in Management
Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was \(95 \%\) within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni - a community that offers support and opportunities throughout your career.

For more information visit www.Iondon.edu/mm, email mim@london.edu or give us a call on +44 (0)20 70007573 .
* Figures taken from London Business School's Masters in Management 2010 employment report
4. After choosing H 2 O as the working substance, enter data for State 1, i.e. P1, x1 ( \(=1\), since sat. vap. is entering the condenser), and hit Enter:

5. Enter data for State 2 (i.e. sat. liq. leaving the condenser); i.e. enter P2, \(\mathrm{x} 2(=0.0), \operatorname{mdot} 2=\) mdot1. Hit Enter:

6. For State 3, enter data for river water entering the condenser; hit Enter:

7. State 4 is river water exiting the condenser; enter the data, i.e. \(\mathrm{P} 4, \mathrm{~T} 4, \operatorname{mdot} 4=\operatorname{mdot} 3\), and hit Enter:


Note that exit temp of cooling (river) water is 10 C above the inlet temp.
8. Now, go to Device Panel, enter i-1 state, i-2 state, e-1 state and e-2 state as shown. Also, Qdot \(=0\), and Wdot_ext \(=0\). Press Calculate, and SuperCalculate:

9. Go to State Panel.

\section*{See State 3:}


We see that: mdot \(3=313.49 \mathrm{~kg} / \mathrm{s} \ldots\)..flow rate of cooling (river) water required... Ans.

10. To see the TEST code etc go to I/O panel:
```

\#~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE :
\# Daemon Path: Systems>Open>SteadyState>Generic>MultiFlowUnmixed>PC-Model; v-10. bb06

```
```

\#-----------------------Start of TEST-code

```
\(\qquad\)
```

States \{
State-1: H2O;
Given: $\{\mathrm{p} 1=20.0 \mathrm{kPa} ; \mathrm{x} 1=1.0$ fraction; Vel1 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 1=0.0 \mathrm{~m} ; \mathrm{mdot} 1=" 20000 / 3600 " \mathrm{~kg} / \mathrm{s} ;\}$
State-2: H2O;
Given: $\{\mathrm{p} 2=20.0 \mathrm{kPa} ; \mathrm{x} 2=0.0$ fraction; Vel2 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{mdot} 2=$ "mdot1" $\mathrm{kg} / \mathrm{s} ;\}$
State-3: H2O;
Given: $\{\mathrm{p} 3=100.0 \mathrm{kPa} ; \mathrm{T} 3=25.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vel} 3=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 3=0.0 \mathrm{~m} ;\}$
State-4: H2O;
Given: $\{\mathrm{p} 4=$ " p 3 " $\mathrm{kPa} ; \mathrm{T} 4=$ "T3+10" deg-C; Vel4 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 4=0.0 \mathrm{~m} ; \mathrm{mdot} 4=$ " mdot 3 " kg / s; \}
\}
Analysis \{
Device-A: i-State $=$ State-1, State-3; e-State $=$ State-2, State-4; Mixing: false;
Given: $\{$ Qdot $=0.0 \mathrm{~kW}$; Wdot_ext= $0.0 \mathrm{~kW} ;$ T_B= $298.15 \mathrm{~K} ;\}$
\}
\#
-End of TEST-code
\#****** DETAILED OUTPUT:
\# Evaluated States:
\# State-1: H2O > Saturated Mixture;

```
```

Given: $\mathrm{pl}=20.0 \mathrm{kPa} ; \mathrm{x} 1=1.0$ fraction; Vel1 $=0.0 \mathrm{~m} / \mathrm{s}$;
$\mathrm{zl}=0.0 \mathrm{~m}$; mdot $1=$ " $20000 / 3600$ " kg/s;
Calculated: $\mathrm{T} 1=60.062$ deg-C; $\mathrm{yl}=1.0$ fraction; $\mathrm{v}=7.6516 \mathrm{~m} \wedge 3 / \mathrm{kg}$;
$\mathrm{ul}=2456.7214 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 1=2609.708 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{sl}=7.9086 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$;
$\mathrm{el}=2456.7214 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{jl}=2609.708 \mathrm{~kJ} / \mathrm{kg}$; Voldot1 $=42.509 \mathrm{~m} \wedge 3 / \mathrm{s}$;
$\mathrm{Al}=4250896.5 \mathrm{~m} \wedge 2 ; \mathrm{MM1}=18.0 \mathrm{~kg} / \mathrm{kmol}$;
State-2: H2O > Saturated Mixture;
Given: $\mathrm{p} 2=20.0 \mathrm{kPa} ; \mathrm{x} 2=0.0$ fraction; Vel2 $=0.0 \mathrm{~m} / \mathrm{s}$;
$\mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{mdot} 2=$ "mdot1" kg/s;
Calculated: T2 $=60.062$ deg-C; y $2=0.0$ fraction; $\mathrm{v} 2=0.001 \mathrm{~m} \wedge 3 / \mathrm{kg}$;
$\mathrm{u} 2=251.3691 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 2=251.3895 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{s} 2=0.832 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ;$

```
```


e2=251.3691 kJ/kg; j2=251.3895 kJ/kg; Voldot2= 0.0056 m^3/s;

A2= 565.0207 m^2; MM2= 18.0 kg/kmol;

```
\# State-3: \(\mathrm{H} 2 \mathrm{O}>\) Subcooled Liquid;
\# Given: \(\mathrm{p} 3=100.0 \mathrm{kPa} ; \mathrm{T} 3=25.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vel} 3=0.0 \mathrm{~m} / \mathrm{s}\);
\# \(\quad \mathrm{z} 3=0.0 \mathrm{~m}\);
\# Calculated: v3 \(=0.001 \mathrm{~m} \wedge 3 / \mathrm{kg} ; \mathrm{u} 3=104.8785 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 3=104.9788 \mathrm{~kJ} / \mathrm{kg}\);
\# \(\quad \mathrm{s} 3=0.3673 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; ~ e 3=104.8785 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{j} 3=104.9788 \mathrm{~kJ} / \mathrm{kg}\);
\# \(\quad \boldsymbol{m d o t} 3=\mathbf{3 1 3 . 4 8 6 9} \mathbf{~ k g} / \mathrm{s} ; \operatorname{Voldot} 3=0.3145 \mathrm{~m}^{\wedge} 3 / \mathrm{s} ; \mathrm{A} 3=31447.955 \mathrm{~m}{ }^{\wedge} 2\);
\# State-4: H2O > Subcooled Liquid;
\# Given: \(\mathrm{p} 4=\) "p3" kPa; T4= "T3+10" deg-C; Vel4 \(=0.0 \mathrm{~m} / \mathrm{s}\);
\# \(\quad \mathrm{z} 4=0.0 \mathrm{~m} ; \operatorname{mdot} 4=\) " \(m \operatorname{dot} 3 " \mathrm{~kg} / \mathrm{s}\);
\# Calculated: v4= \(0.001 \mathrm{~m} \wedge 3 / \mathrm{kg} ; \mathrm{u} 4=146.6718 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 4=146.7725 \mathrm{~kJ} / \mathrm{kg}\);
\# \(\quad \mathrm{s} 4=0.5052 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} ; \mathrm{e} 4=146.6718 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{j} 4=146.7725 \mathrm{~kJ} / \mathrm{kg} ;\)
\# Voldot \(4=0.3154 \mathrm{~m}^{\wedge} 3 / \mathrm{s} ; \mathrm{A} 4=31544.615 \mathrm{~m} \wedge 2\);
\#--------Property spreadsheet starts:
\begin{tabular}{llllllll} 
\# State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & x & \(\mathrm{v}(\mathrm{m} 3 / \mathrm{kg})\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\# 01 & 20.0 & 333.2 & 1.0 & 7.6516 & 2456.72 & 2609.71 & 7.909 \\
\# 02 & 20.0 & 333.2 & 0.0 & 0.001 & 251.37 & 251.39 & 0.832 \\
\# 03 & 100.0 & 298.2 & & 0.001 & 104.88 & 104.98 & 0.367 \\
\# 04 & 100.0 & 308.2 & & 0.001 & 146.67 & 146.77 & 0.505
\end{tabular}

\section*{\# Mass, Energy, and Entropy Analysis Results:}
\(\# \quad\) Device-A: i-State \(=\) State-1, State-3; e-State \(=\) State-2, State-4; Mixing: false;
\# Given: Qdot= 0.0 kW ; Wdot_ext= \(0.0 \mathrm{~kW} ;\) T_B=298.15 K;
\# Calculated: Sdot_gen= \(3.9177132 \mathrm{~kW} / \mathrm{K}\); Jdot_net= 0.0 kW ; Sdot_net= \(-3.9177132 \mathrm{~kW} / \mathrm{K}\);

Prob.5.34. Air enters an adiabatic horizontal nozzle at 400 C with a velocity of \(50 \mathrm{~m} / \mathrm{s}\). The inlet area is \(240 \mathrm{~cm} \wedge 2\). Temp of air at exit is 80 C . Given that the sp. vol. of air at the inlet and exit are respectively 0.2 \(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\) and \(1.02 \mathrm{~m}^{\wedge} 3 / \mathrm{kg}\), find the area of cross-section of the nozzle at the exit. Assume that enthalpy of air is a function of temp only and that \(\mathrm{cp}=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}\). [VTU-BTD-July 2006:]


Fig.Prob.5.34

\section*{TEST Solution:}

This problem is the same as Prob.5.13 which was solved with EES.
1. Go to the Daemon tree and locate System Analysis - Open - Generic - Single Flow:

2. Select the Perfect Gas (PG) Model (cp = const.) for Material model, since air is the working substance:

3. We get the following screen after clicking on PG model. Now, choose Air as the Working substance from the drop down menu. Then, enter known values of T1, Vel1, v1 and A1 for State 1. Click on Calculate. We get:

Generic, Open Steady, Single-Flow, Daemon: PG Model
thermofluids.net > Daemons \(>\) Systems \(>\) Open \(>\) Steady \(>\) Generic \(>\) SingleFlow \(>\) PG-Model
Wome of
TES T



Click on the ad to read more
4. Enter data i.e. T2, v2 and \(\operatorname{mdot} 2=\operatorname{mdot} 1\) for State 2, hit Enter:

5. Go to Device Panel, enter State 1 and State 2 for i-state and e-state respectively; enter Qdot \(=0\) and Wdot_ext \(=0\) for the nozzle and click on Calculate. We get:

6. Now, click on SuperCalculate. Go to State Panel. We get:

\section*{State 1:}


\section*{And, State 2:}


Thus: \(\mathbf{A 2}=76.22 \mathrm{~cm} \wedge 2, \mathrm{Vel} 2=802.95 \mathrm{~m} / \mathrm{s} \ldots\). Ans.
Also, \(\mathbf{p} 2=99.36 \mathrm{kPa}, \mathrm{mdot} 1=\operatorname{mdot} 2=6 \mathrm{~kg} / \mathrm{s} \ldots\) Ans.
7. Indicative T-s diagram for Plots tab:
T, K
(6.19.726.746)
740.46
317.83

s, kJ/kg.K
8. I/O panel gives the TEST code etc.:
\# Daemon Path: Systems \(>\) Open \(>\) SteadyState \(>\) Generic \(>\) SingleFlow \(>\) PG-Model; v-10.bb05
\#---------------------Start of TEST-code \(\qquad\)

States \{
State-1: Air;
Given: \(\left\{\mathrm{T} 1=400.0\right.\) deg-C; v1 \(\left.=0.2 \mathrm{~m}^{\wedge} 3 / \mathrm{kg} ; \mathrm{Vel} 1=50.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{Al}=240.0 \mathrm{~cm} \wedge 2 ;\right\}\)
State-2: Air;
Given: \(\{\mathrm{T} 2=80.0\) deg-C; \(\mathrm{v} 2=1.02 \mathrm{~m} \wedge 3 / \mathrm{kg} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{mdot} 2=\) " \(\mathrm{mdot} 1 " \mathrm{~kg} / \mathrm{s} ;\}\)
\}

Analysis \{
Device-A: i-State \(=\) State-1; e-State \(=\) State-2;
Given: \(\{\) Qdot \(=0.0 \mathrm{~kW}\); Wdot_ext \(=0.0 \mathrm{~kW} ;\) T_B=298.15 K; \}
\}
\(\qquad\)


As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new \(\mathrm{BSc}, \mathrm{MSc}\) and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers
\#--------Property spreadsheet starts: \#
\begin{tabular}{lclrllcc}
\(\#\) & State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & \(\mathrm{v}\left(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\(\#\) & 1 & 965.92 & 673.2 & 0.2 & 183.13 & 376.31 & 7.053 \\
\(\#\) & 2 & 99.36 & 353.2 & 1.02 & -46.16 & 55.19 & 7.058 \\
\(\#\) & & & & & & &
\end{tabular}

Prob.5.35. Steam at 1 MPa and 250 C enters a nozzle with a velocity of \(60 \mathrm{~m} / \mathrm{s}\) and leaves at 10 kPa . Assuming the flow process to be isentropic and the mass flow rate to be \(1 \mathrm{~kg} / \mathrm{s}\), determine: (i) the exit velocity (ii) the exit diameter. [VTU-BTD-Jan./Feb. 2005]


Fig.Prob.5.35

\section*{TEST Solution:}
1. Choose the System analysis ... Single Flow daemon as shown below:

2. Choose the PC model for Material model:

3. Select H 2 O as working substance. Enter data, i.e. P1, T1, Vel1 and mdot1 for State 1. Hit Enter:

Generic, Open Steady, Single-Flow, Daemon: PC Model
जtar Ma min mik
Move mouse over a variable to display its value with more precision:

4. Enter P2,s2 \(=\mathrm{s} 1\) (since isentropic) and mdot2 \(=\) mdot 1 and hit Enter:


Note in the above screen shot that immediately other parameters for State 2 are calculated.


PLAY.
The stuff that makes life worth living


WWW.STUDYINNORWAY.NO FACEBOOK.COM/STUDYINNORWAY
5. Go to Device Panel, enter State 1 and Styate 2 for i-state and e-state; also, enter Qdot \(=0\) and Wdot_ext \(=0\). Hit Enter:

6. Now, click on SuperCalculate. Then, go to State Panel.

\section*{See State 1:}


\section*{And, State 2:}

```

Thus:
exit velocity, Vel2 = 1225.31 m/s,
exit area = 0.01002 m^2 = 100.188 cm^2
Therefore, exit dia = d2 = 11.29 cm
7. I/O panel gives TEST code etc:
\#~~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:

Daemon Path: Systems>Open>SteadyState>Generic>SingleFlow>PC-Model; v-10.bb06

\#------------------------Start of TEST-code

```
\(\qquad\)
```

States {
State-1: H2O;
Given: { pl= 1000.0 kPa; T1 = 250.0 deg-C; Vel1 = 60.0 m/s; zl= 0.0 m; mdotl= 1.0 kg/s; }
State-2: H2O;
Given: { p2= 10.0 kPa; s2= "s1" kJ/kg.K; z2= 0.0 m; mdot2= "mdot1" kg/s; }
}
Analysis \{
Device-A: i-State $=$ State-1; e-State $=$ State-2;
Given: $\{$ Qdot $=0.0 \mathrm{~kW} ;$ Wdot_ext $=0.0 \mathrm{~kW} ;$ T_B=298.15 K; \}
\}
\#------------------------End of TEST-code

``` \(\qquad\)
```

\#---------Property spreadsheet starts:

\# State	$\mathrm{p}(\mathrm{kPa})$	$\mathrm{T}(\mathrm{K})$	x	$\mathrm{v}(\mathrm{m} 3 / \mathrm{kg})$	$\mathrm{u}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg})$
\# 01	1000.0	523.2		0.2327	2709.89	2942.57	6.925
\# 02	10.0	319.0	0.8	12.2762	2070.91	2193.67	6.925

\#****** CALCULATE VARIABLES:
$\operatorname{sqrt}(\mathrm{A} 2 * 4 / \mathrm{pi})=0.11294417026465142 \mathrm{~m}$
\# i.e. $\mathrm{d} 2=11.29 \mathrm{~cm} \ldots$...Ans.

```

Prob. 5.36. Air flows steadily through a rotary compressor. At entry the air is at 20 C and 101 kPa . At exit it is at 200 C and 600 kPa . Assuming the flow to be adiabatic, (i) evaluate the work done per unit mass of air if the velocities at inlet and exit are negligible. (ii) what would be the increase in work input if the velocities at inlet and exit are \(50 \mathrm{~m} / \mathrm{s}\) and \(110 \mathrm{~m} / \mathrm{s}\) ? [VTU-BTD-Ja./Feb. 2004]


Air, In
Fig.Prob.5.36


\section*{TEST Solution:}
1. Choose the System analysis ... Single Flow daemon as shown below:

2. Choose the IG model for Material model:

A. When velocities are negligible:
3. Choose Air as working substance. Enter P1, T1, mdot1 for State 1 . Vel1 \(=0\) by default. Hit Enter. We get:

4. Enter P2, T2, mdot2=mdot1 for State 2; press Enter:

5. Go to Device Panel, enter State 1 and State 2 for i-state and e-state respectively. Also, Qdot \(=0\), Wdot_ext \(=0\). Click Calculate, and SuperCalculate. We get:


Thus: Work done on unit mass of air \(=-183.08 \mathrm{~kW} \ldots\)..(negative sign indicates work input since it is a compressor)..Ans.
6. Indicative T-s diagram:


7. I/O panel gives TEST code etc:
Analysis \{
Device-A: i-State \(=\) State-1; e-State \(=\) State-2;
Given: \(\left\{\right.\) Qdot \(\left.=0.0 \mathrm{~kW} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K} ;\right\}\)
\}
\#-
End of TEST-code
\#--------Property spreadsheet starts:
\begin{tabular}{llllllll}
\(\#\) & State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & \(\mathrm{v}\left(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\(\#\) & 1 & 101.0 & 293.2 & 0.833 & -89.13 & -5.0 & 6.867 \\
\(\#\) & 2 & 600.0 & 473.2 & 0.2263 & 42.29 & 178.08 & 6.842
\end{tabular}
B. When Vell \(=\mathbf{5 0} \mathbf{~ m} / \mathrm{s}\) and Vel2 \(=110 \mathrm{~m} / \mathrm{s}\) :

\section*{The procedure is:}
i) Enter the Vel1 value, Calculate, and
ii) enter Vel 2 value, Calculate, and then
iii) SuperCalculate.

Basic Thermodynamics: Software Solutions Part II

We get:

\section*{State 1:}

Generic, Open Steady, Single-Flow, Daemon: IG Model
क力


State 2:


\section*{Device Panel:}


Thus: Work done on unit mass of air \(=\mathbf{- 1 8 7 . 8 8} \mathbf{k W} \ldots\)..when inlet and exit velocities are considered...Ans.
\(\qquad\)

States \{
State-1: Air;
Given: \(\{\mathrm{pl}=101.0 \mathrm{kPa} ; \mathrm{T} 1=20.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vel} 1=50.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \operatorname{mdot} 1=1.0 \mathrm{~kg} / \mathrm{s} ;\}\)
State-2: Air;
Given: \(\{\mathrm{p} 2=600.0 \mathrm{kPa} ; \mathrm{T} 2=200.0 \operatorname{deg}-\mathrm{C} ; \mathrm{Vel} 2=110.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{mdot} 2=\) " mdot 1 " \(\mathrm{kg} / \mathrm{s} ;\}\) \}

Analysis \{
Device-A: i-State \(=\) State-1; e-State \(=\) State-2;
Given: \(\{\) Qdot \(=0.0 \mathrm{~kW} ;\) T_B= 298.15 K; \}
\}

\section*{"I studied English for 16 years but... ...I finally learned to speak it in just six lessons" Jane, Chinese architect}


ENGLISH OUT THERE

Click to hear me talking before and after my unique course download
\#******DETAILED OUTPUT:
\begin{tabular}{llllllll}
\(\#\) & State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & \(\mathrm{v}\left(\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right)\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\(\#\) & 1 & 101.0 & 293.2 & 0.833 & -89.13 & -5.0 & 6.867 \\
\(\#\) & 2 & 600.0 & 473.2 & 0.2263 & 42.29 & 178.08 & 6.842
\end{tabular}

Prob. 5.37. Steam at a pressure of \(1.4 \mathrm{MPa}, 300 \mathrm{C}\) is flowing in a pipe. Connected to this pipe through a valve is an evacuated tank. The valve is opened and the tank fills with steam until the pressure is 1.4 MPa , and then the valve is closed. The process takes place adiabatically and K.E. and P.E. are negligible. Determine the final temp of steam. [Ref. 2]

\section*{TEST Solution:}

This is a problem on charging a tank. i.e. Uniform State, Uniform Flow type of problem. See eqn. 5.14 at the beginning of this chapter.
1. Select System Analysis - Open - Unsteady Process daemon as shown below:

2. Hovering the mouse pointer on 'Unsteady Process' brings up the following message window:

\section*{Click to go to page: TEST>Daemons>Systems>Open>Unsteady Processes}

Open Processes: The open
system is unsteady; moreover, only the beginning and final conditions are relevant so that the instantaneous changes can be integrated out. However, unlike a closed process, the open process equations also involve the inlet and/or exit state(s).

Examples (chapters 4, 6) include
 charging and discharging of cylinders, inflating a tire, a pressure cooker discharging steam, etc.
3. Choose PC model for Material model since Steam is the working substance:

4. Select H 2 O as the substance and enter data, i.e. \(\mathrm{P} 1=0, \mathrm{ml}=0\) (since tank is evacuated), and Vol1, for State 1. Press Enter:

5. For State 2, enter P2, and m2=m3, not known yet. Press Enter:

6. Enter data for State 3, i.e. state of fluid in the pipe, P3, T3 and Vol3 = Vol1. Press Enter:

7. Go to Process Panel, enter i-state \(=\) State 3, e-state \(=\) Null, and State 1 and State 2 for b-state and f -state respectively, as shown. Also, \(\mathrm{Q}=0, \mathrm{~W} \_\)ext \(=\mathrm{o}\). Press Enter:


\section*{8. Click on SuperCalculate. Go to State Panel:}

\section*{State 2:}


Thus, T2 \(=452.1\) deg. \(C . .\). Ans.

\section*{9. I/O panel gives TEST code etc:}
\#~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:
\# Daemon Path: Systems>Open>Process>PC-Model; v-10.bb06
\#--------------------Start of TEST-code \(\qquad\)

States \{
State-1: H2O;
Given: \(\{\mathrm{pl}=0.0 \mathrm{kPa} ;\) Vel1 \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{ml}=0.0 \mathrm{~kg} ;\) Vol1 \(=0.4 \mathrm{~m} \wedge 3 ;\}\)
State-2: H2O;
Given: \(\{\mathrm{p} 2=1400.0 \mathrm{kPa} ; \mathrm{u} 2=" \mathrm{~h} 3\) " \(\mathrm{kJ} / \mathrm{kg} ; \mathrm{Vel} 2=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{m} 2=" \mathrm{~m} 3\) " kg; \}
State-3: H2O;
Given: \(\{\mathrm{p} 3=1400.0 \mathrm{kPa} ; \mathrm{T} 3=300.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vel} 3=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z3}=0.0 \mathrm{~m} ; \mathrm{Vol} 3=\) "vol1" m^3; \} \}

Analysis \{
Process-A: ie-State \(=\) State-3, State-Null; bf-State \(=\) State-1, State-2;
Given: \(\left\{\mathrm{Q}=0.0 \mathrm{~kJ} ; \mathrm{W}_{-}\right.\)ext \(\left.=0.0 \mathrm{~kJ} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K} ;\right\}\)
\}
\#------------------------End of TEST-code \(\qquad\)
\#---------Property spreadsheet:
\begin{tabular}{llllllll} 
\# State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & x & \(\mathrm{v}(\mathrm{m} 3 / \mathrm{kg})\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\# 01 & 0.0 & 0.0 & 0.0 & Infinity & 0.0 & 0.0 & 0.0 \\
\# 02 & 1400.0 & 725.3 & & 0.2357 & 3040.33 & 3370.3 & 7.459 \\
\# 03 & 1400.0 & 573.2 & & 0.1823 & 2785.14 & 3040.33 & 6.953
\end{tabular}

\section*{\# Mass, Energy, and Entropy Analysis Results:}
\(\# \quad\) Process-A: ie-State \(=\) State-3, State-Null; bf-State \(=\) State-1, State-2;
\# Given: Q=0.0 kJ; W_ext= \(0.0 \mathrm{~kJ} ; \mathrm{T}\) _B \(=298.15 \mathrm{~K}\);
\# Calculated: S_gen= \(1.1094596 \mathrm{~kJ} / \mathrm{K}\); Delta_E= 6671.911 kJ ; Jdot_net= 6671.911 kJ ;
Delta_S= \(16.368185 \mathrm{~kJ} / \mathrm{K}\);
\# Sdot_net= 15.258725 kJ ;

Prob.5.38. A \(1 \mathrm{~m}^{\wedge} 3\) tank contains ammonia at \(150 \mathrm{kPa}, 25 \mathrm{C}\). The tank is attached to a line flowing ammonia at \(12300 \mathrm{kPa}, 60 \mathrm{C}\). The valve is opened, and mass flows in until the tank is half full of liquid, by volume at 25 C . Calculate the heat transferred from the tank during this process. [Ref. 2]

> Study at one of Europe's leading universities


DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work
closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk



\section*{TEST Solution:}

This is a problem on charging a tank. i.e. Uniform State, Uniform Flow type of problem. See eqn.
5.14 at the beginning of this chapter.
1. Select System Analysis - Open - Unsteady Process daemon as shown below:

2. Choose PC model for Material model since NH3 is the working substance:

3. Select Ammonia (NH3) as the substance and enter data, i.e. P1, T1 and Vol1 for State 1.

Press Enter:

Open Process Daemon: Phase-Change (PC) Model
बतis

4. Enter the data, viz. T2, Vol2 \(=\) Vol1, and \(\mathrm{y} 2=\) volume fraction \(=0.5\) for State 2; press Enter:

5. Enter data for State 3 (i.e. fluid flowing in the line), i.e. P3, T3; press Enter:

6. Go to Process panel, enter State 3 for i-state, Null for e-state, and State 1 and State 2 for b-state and f-state respectively. (See the fig. below). Press Enter, and click SuperCalculate:


\section*{Thus: \(Q=-379647.3 \mathrm{~kJ}\).... Ans... (negative sign indicates that heat is rejected).}
7. I/O panel gives TEST code etc:

\section*{\#~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:}
\# Daemon Path: Systems>Open>Process>PC-Model; v-10.bb06
\#----------------------Start of TEST-code \(\qquad\)

States \{
State-1: Ammonia(NH3);
Given: \(\{\mathrm{p} 1=150.0 \mathrm{kPa} ; \mathrm{T} 1=25.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vel} 1=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 1=0.0 \mathrm{~m} ; \operatorname{Vol} 1=1.0 \mathrm{~m} \wedge 3 ;\}\)
State-2: Ammonia(NH3);
Given: \(\{\mathrm{T} 2=25.0\) deg-C; \(\mathrm{y} 2=0.5\) fraction; Vel2 \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{Vol} 2=\) "vol1" \(\mathrm{m} \wedge 3 ;\}\)
State-3: Ammonia(NH3);
Given: \(\{\mathrm{p} 3=1200.0 \mathrm{kPa} ; \mathrm{T} 3=60.0 \mathrm{deg}-\mathrm{C} ; \mathrm{Vel} 3=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 3=0.0 \mathrm{~m} ;\}\)
\}

Analysis \{
Process-A: ie-State \(=\) State-3, State-Null; bf-State \(=\) State-1, State-2;
Given: \(\left\{\right.\) W_ext \(\left.=0.0 \mathrm{~kJ} ; \mathrm{T} \_\mathrm{B}=298.15 \mathrm{~K} ;\right\}\)
\}
\#-
End of TEST-code
\#---------Property spreadsheet starts: \(\qquad\)
\begin{tabular}{llllllll} 
\# State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & x & \(\mathrm{v}(\mathrm{m} 3 / \mathrm{kg})\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\# 01 & 150.0 & 298.2 & & 0.9557 & 1380.43 & 1523.78 & 6.113 \\
\# 02 & 1003.2 & 298.2 & 0.0 & 0.0033 & 309.85 & 313.14 & 1.171 \\
\# 03 & 1200.0 & 333.2 & & 0.1238 & 1404.74 & 1553.27 & 5.236
\end{tabular}

\section*{\# Mass, Energy, and Entropy Analysis Results:}
\(\# \quad\) Process-A: ie-State \(=\) State-3, State-Null; bf-State \(=\) State-1, State-2;
\# Given: W_ext= \(0.0 \mathrm{~kJ} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K}\);
\# Calculated: \(\mathbf{Q}=\mathbf{- 3 7 9 6 4 7 . 3} \mathbf{k J}\); S_gen= \(30.783335 \mathrm{~kJ} / \mathrm{K}\); Delta_E= 93206.055 kJ ; Jdot_net= 472853.38 kJ ;
\#
Delta_S=351.2871 kJ/K; Sdot_net= 1593.847 kJ ;

\section*{\(\mathrm{M}_{\S} \mathrm{M}\)}

MAASTRICHT SCHOOL OF MANAGEMENT


For almost 60 years Maastricht School of Management has been enhancing the management capacity of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open Enrollment Executive Programs offers you a unique interactive, stimulating and multicultural learning experience.

Be prepared for tomorrow's management challenges and apply today.

For more information, visit www.msm.nl or contact us at +31433870808 or via admissions@msm.nl
the globally networked management school



Prob. 5.39. A \(0.12 \mathrm{~m}^{\wedge} 3\) rigid tank initially contains refrigerant R134a at 1 MPa and \(100 \%\) quality. The tank is connected by a valve to a supply line that carries R134a at 1.2 MPa and 36 C . Now the valve is opened and the refrigerant is allowed to enter the tank. The valve is closed when it is observed that the tank contains sat. liquid at 1.2 MPa. Determine (a) the mass of R134a that has entered the tank (b) the amount of heat transfer [Ref. 1]

\section*{TEST Solution:}

This is a problem on charging a tank. i.e. Uniform State, Uniform Flow type of problem. See eqn. 5.14 at the beginning of this chapter.
1. Select System Analysis - Open - Unsteady Process daemon as shown below:

2. Choose PC model for Material model since R134a is the working substance:

3. Select R134a as the substance and enter data, i.e. P1, x1and Vol1 for State 1. Press Enter:

Open Process Daemon: Phase-Change (PC) Model
thermofluids.net > Daemons \(>\) Systems \(>\) Open \(>\) Process \(>\) PC-Model
क Home of
TEST


Observe that mass m 1 is immediately calculated.
4. Enter P2, x2 and Vol2 = Vol1 for State 2. Press Enter. Immediately, mass m2 is calculated:

5. Enter data i.e. \(\mathrm{P} 3, \mathrm{~T} 3\) and \(\mathrm{m} 3=(\mathrm{m} 2-\mathrm{m} 1)\) for the State 3, i.e. the R134a flowing in the line.

Press Enter:


6. Go to Process panel, enter i-state \(=\) State 3 , e-state \(=\) Null; and enter State 1 and State 2 for b-state and f-state respectively. Also, \(W\) _ext \(=0\), and press Calculate and SuperCalculate. We get:


Thus: \(\mathrm{Q}=1031.51 \mathrm{~kJ}\) (going in to the system), \(\mathrm{m} 3=\mathrm{mi}=(\mathrm{m} 2-\mathrm{ml})=128.25 \mathrm{~kg} \ldots\). Ans.
7. Get TEST code etc from the I/O panel:
\#~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:
\# Daemon Path: Systems \(>\) Open \(>\) Process \(>\) PC-Model; v-10.bb06
\#----------------------Start of TEST-code \(\qquad\)

\section*{States \{}

State-1: R-134a;
Given: \(\{\mathrm{p} 1=1000.0 \mathrm{kPa} ; \mathrm{x} 1=1.0\) fraction; Vell \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 1=0.0 \mathrm{~m} ; \operatorname{Vol} 1=0.12 \mathrm{~m} \wedge 3 ;\}\)
State-2: R-134a;
Given: \(\{\mathrm{p} 2=1200.0 \mathrm{kPa} ; \mathrm{x} 2=0.0\) fraction; Vel2 \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \mathrm{Vol} 2=\) "vol1" \(\mathrm{m} \wedge 3 ;\}\)
State-3: R-134a;
Given: \(\{\mathrm{p} 3=1200.0 \mathrm{kPa} ; \mathrm{T} 3=36.0\) deg-C; Vel3 \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 3=0.0 \mathrm{~m} ; \mathrm{m} 3=\) "m2-m1" kg; \}
\}

Analysis \{
Process-A: ie-State \(=\) State-3, State-Null; bf-State \(=\) State-1, State-2;
Given: \(\left\{\mathrm{W} \_\right.\)ext \(=0.0 \mathrm{~kJ} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K}\); \}
\}
\#------------------------End of TEST-code \(\qquad\)
\#---------Property spreadsheet starts:
\begin{tabular}{llllllll} 
\# State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & x & \(\mathrm{v}(\mathrm{m} 3 / \mathrm{kg})\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\# 01 & 1000.0 & 312.5 & 1.0 & 0.0204 & 250.17 & 270.55 & 0.913 \\
\# 02 & 1200.0 & 319.4 & 0.0 & \(9.0 \mathrm{E}-4\) & 116.05 & 117.12 & 0.421 \\
\# 03 & 1200.0 & 309.2 & & \(9.0 \mathrm{E}-4\) & 100.82 & 101.85 & 0.373
\end{tabular}

\section*{\# Mass, Energy, and Entropy Analysis Results:}
\(\# \quad\) Process-A: ie-State \(=\) State-3, State-Null; bf-State \(=\) State-1, State-2;
\# Given: W_ext= \(0.0 \mathrm{~kJ} ; \mathrm{T}\) _B= \(298.15 \mathrm{~K} ;\)
\# Calculated: \(\mathbf{Q}=1031.5059 \mathrm{~kJ}\); S_gen \(=-0.12388586 \mathrm{~kJ} / \mathrm{K}\); Delta_E= 14094.179 kJ ; Jdot_ net \(=13062.673 \mathrm{~kJ}\);
\# Delta_S=51.161983 kJ/K; Sdot_net= 47.826183 kJ ;

Prob.5.40. A 100-L rigid tank contains carbon dioxide gas at \(1 \mathrm{MPa}, 300 \mathrm{~K}\). A valve is cracked open, and carbon dioxide escapes slowly until the tank pressure has dropped to 500 kPa . At this point the valve is closed. The gas remaining inside the tank may be assumed to have undergone a polytropic expansion, with polytropic exponent \(n=1.15\). Find the final mass inside and the heat transferred to the tank during the process. [Ref:2]

Note that this problem is the same as Prob.5.19, which was solved earlier with EES.

Now, we shall solve it with TEST:

\section*{TEST Solution:}

This is a problem on discharging a tank. i.e. Uniform State, Uniform Flow type of problem. See eqn. 5.14 at the beginning of this chapter.
1. Select System Analysis - Open - Unsteady Process daemon as shown below:


\section*{DESTINATIONS}


\section*{OLIVER WYMAN}

GET THERE FASTER
Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.
Discover the world of Oliver Wyman at oliverwyman.com/careers COMPANIES
2. Choose PG model for Material model since CO 2 is the working substance. Select CO 2 as the working substance and enter data, i.e. P1, T1 and Voll for State 1. Press Enter:


\section*{Note that ml is calculated as 1.76449 kg .}
3. Enter P2, T2, Vol2 = Vol1 for State 2; press Enter:


Note that m 2 is calculated as 0.96573 kg .
4. State 3 is the state of gas flowing out. Its enthalpy goes on changing during the 'flowing out' process. Let us take the enthalpy as the average of that at the beginning and end of flow, i.e. \(h 3\) is average of h1 and h2. And m3 is equal to (m1-m2). Press Enter:

5. Go to Process panel, enter i-state \(=\) Null, e-state \(=\) State 3 ; and enter State 1 and State 2 for b-state and f-state respectively. Also, W_ext \(=0\). Click on Calculate and SuperCalculate. We get:


Thus: \(\mathrm{Q}=20.13 \mathrm{~kJ}\) (heat transferred in to the \(\operatorname{tank}\) ), \(\mathrm{m} 2=0.966 \mathrm{~kg}, \mathrm{~T} 2=274.1 \mathrm{~K} \ldots\). Ans.
6. TEST code and other details can be seen in the I/O panel:
```

\#~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:
\# Daemon Path: Systems>Open>Process>PG-Model; v-10.bb05

```

```

States {
State-1: CO2;
Given: $\{\mathrm{pl}=1000.0 \mathrm{kPa} ; \mathrm{Tl}=300.0 \mathrm{~K} ;$ Vel1 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ;$ Vol1 $=0.1 \mathrm{~m} \wedge 3 ;\}$
State-2: CO2;
Given: \{ p2 = $500.0 \mathrm{kPa} ; \mathrm{T} 2=$ "T1 ${ }^{*}(\mathrm{P} 2 / \mathrm{P} 1)^{\wedge}((1.15-1) / 1.15)$ " $\mathrm{K} ; \mathrm{Vel2}=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m}$; Vol2= "Vol1" m^3; \}
State-3: CO2;
Given: $\{\mathrm{h} 3=$ " $(\mathrm{h} 1+\mathrm{h} 2) / 2$ " kJ/kg; Vel3 $=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z3}=0.0 \mathrm{~m} ;\}$
\}
Analysis \{
Process-A: ie-State $=$ State-Null, State-3; bf-State $=$ State-1, State-2;
Given: \{ W_ext= $0.0 \mathrm{~kJ} ; \mathrm{T}$ _B $=298.15 \mathrm{~K}$; \}
\}
\#----------------------End of TEST-code

```


```

\#****** DETAILED OUTPUT:

Evaluated States:

State-1: CO2 > PG-Model;

Given: pl= 1000.0 kPa; T1=300.0 K; Vel1= 0.0 m/s;

zl= 0.0 m; Vol1= 0.1 m^3;
Calculated: $\mathrm{vl}=0.0567 \mathrm{~m} \wedge 3 / \mathrm{kg} ; \mathrm{ul}=-8996.77 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 1=-8940.098 \mathrm{~kJ} / \mathrm{kg}$;
s1=4.4304 kJ/kg.K; el= -8996.771 kJ/kg; jl= -8940.098 kJ/kg;
ml= 1.7645 kg; MM1= 44.01 kg/kmol; R1= 0.1889 kJ/kg.K;
c_pl= 0.8437 kJ/kg.K; c_vl= 0.6548 kJ/kg.K; k1= 1.2885 UnitLess;
State-2: CO2 > PG-Model;
Given: p2= 500.0 kPa; T2= "T1* (P2/P1)^((1.15-1)/1.15)" K; Vel2= 0.0 m/s;
z2= 0.0 m; Vol2= "Vol1" m^3;
Calculated: v2= 0.1036 m^3/kg; u2= -9013.751 kJ/kg; h2= -8961.977 kJ/kg;
s2= 4.4851 kJ/kg.K; e2= -9013.751 kJ/kg; j2= -8961.977 kJ/kg;
m2= 0.9657 kg; MM2= 44.01 kg/kmol; R2= 0.1889 kJ/kg.K;
c_p2= 0.8437 kJ/kg.K; c_v2= 0.6548 kJ/kg.K; k2= 1.2885 UnitLess;
State-3: CO2 > PG-Model;
Given: h3= "(h1+h2)/2" kJ/kg; Vel3= 0.0 m/s; z3= 0.0 m;
Calculated: T3=287.0334 K; u3=-9005.262 kJ/kg; e3= -9005.262 kJ/kg;
j3=-8951.037 kJ/kg; m3= 0.7988 kg; MM3 = 44.01 kg/kmol;
R3= 0.1889 kJ/kg.K; c_p3= 0.8437 kJ/kg.K; c_v3= 0.6548 kJ/kg.K;
k3= 1.2885 UnitLess;

```
\#--------Property spreadsheet starts:
\begin{tabular}{llllllll} 
\# & State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & \(\mathrm{v}(\mathrm{m} \wedge 3 / \mathrm{kg})\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\(\#\) & 1 & 1000.0 & 300.0 & 0.0567 & -8996.77 & -8940.1 & 4.43 \\
\(\#\) & 2 & 500.0 & 274.1 & 0.1035 & -9013.75 & -8961.98 & 4.485 \\
\# & 3 & & 287.0 & & -9005.26 & -8951.04 &
\end{tabular}
\#--------Property spreadsheet ends- \(\qquad\)

\section*{\# Mass, Energy, and Entropy Analysis Results:}
\# Process-A: ie-State \(=\) State-Null, State-3; bf-State \(=\) State-1, State-2;
\# Given: W_ext= \(0.0 \mathrm{~kJ} ; \mathrm{T}\) _B= 298.15 K ;
\# Calculated: \(\mathbf{Q}=\mathbf{2 0 . 1 3 2 6 4 8} \mathbf{~ k J}\); Delta_E= 7169.9126 kJ ; Jdot_net= 7149.78 kJ ; Delta_S= -3.4860783 kJ/K;

Prob.5.41. A rigid tank has a volume of \(0.06 \mathrm{~m} \wedge 3\) and initially contains two phase liquid-vapour mixture of H 2 O at a pressure of 15 bar and a quality of \(20 \%\). As the tank contents are heated, a pressure regulating valve keeps the pressure constant in the tank by allowing sat. vap. to escape. Neglecting KE and PE changes (a) determine the total mass in the tank, in kg and the amount of heat transfer, in kJ , if heating continues until the final quality is 0.5 (b) plot the total mass in the tank, and the amount of heat transfer versus final quality, \(x\), ranging from \(x=0.2\) to 1 . [Ref. 3]

\section*{TEST Solution:}

This is a problem on discharging a tank. i.e. Uniform State, Uniform Flow type of problem. See eqn. 5.14 at the beginning of this chapter.
1. Select System Analysis - Open - Unsteady Process daemon as shown below:

2. Choose PC model for Material model since H 2 O is the working substance.


In the past four years we have drilled

\section*{\(81,000 \mathrm{~km}\)}

That's more than twice around the world.

\section*{Who are we?}

We are the world's leading oilfield services company. Working globally—often in remote and challenging locations-we invent, design, engineer, manufacture, apply, and maintain technology to help customers find and produce oil and gas safely.

\section*{Who are we looking for?}

We offer countless opportunities in the following domains:
- Engineering, Research, and Operations
- Geoscience and Petrotechnical
- Commercial and Business

If you are a self-motivated graduate looking for a dynamic career, apply to join our team.

What will you be?
careers.slb.com
Sathlumheryger
3. Select H 2 O as the working substance and enter data, i.e. \(\mathrm{P} 1, \mathrm{x} 1\) and Voll for State 1.

Press Enter:

Open Process Daemon: Phase-Change (PC) Model
5tir \(\overline{-1}\)

4. Enter \(\mathrm{P} 2=\mathrm{P} 1, \mathrm{x} 2\) and \(\mathrm{Vol} 2=\mathrm{Vol} 1\) for State 2, press Enter:

5. For the fluid flowing out, it is State 3 . Enter \(\mathrm{P} 3=\mathrm{P} 1, \mathrm{x} 3=1\) (since, by data, it is sat. vap.) and \(\mathrm{m} 3=(\mathrm{m} 1-\mathrm{m} 2)\). Press Enter:

6. Go to Process panel. Enter i-state \(=\) Null, e-state \(=\) State 3 (i.e. fluid flowing out). Also, enter States 1 and 2 for b-state and f-state respectively. Enter W_ext \(=0\). Press Enter. We get:


Note that \(Q\) is calculated as: \(Q=2545.65 \mathrm{~kJ} \ldots=\) heat supplied.... Ans.
7. Click on SuperCalculate: Go to I/O panel to see TEST code etc:
\#~~~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:
\# Daemon Path: Systems \(>\) Open \(>\) Process \(>\) PC-Model; v-10.cb01
\#----------------------Start of TEST-code \(\qquad\)

States \{
State-1: H2O;
Given: \(\{\mathrm{pl}=15.0\) bar; \(\mathrm{x} 1=0.2\) fraction; Vel \(1=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 1=0.0 \mathrm{~m} ; \operatorname{Vol} 1=0.06 \mathrm{~m} \wedge 3 ;\}\)
State-2: H2O;
Given: \(\{\mathrm{p} 2=\) " p 1 " bar; \(\mathrm{x} 2=0.5\) fraction; Vel2 \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m} ; \operatorname{Vol} 2=\) "vol1" \(\mathrm{m} \wedge 3 ;\}\)
State-3: H2O;
Given: \(\{\mathrm{p} 3=\) "p1" bar; \(\mathrm{x} 3=1.0\) fraction; Vel3 \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 3=0.0 \mathrm{~m} ; \mathrm{m} 3=\) " \(\mathrm{m} 1-\mathrm{m} 2\) " \(\mathrm{kg} ;\}\) \}

Analysis \{
Process-A: ie-State \(=\) State-Null, State-3; bf-State \(=\) State-1, State-2;
Given: \(\left\{\right.\) W_ext \(\left.=0.0 \mathrm{~kJ} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K} ;\right\}\)
\}
\#-----------------------End of TEST-code \(\qquad\)
```

\#******DETAILED OUTPUT:

Evaluated States:

State-1: H2O > Saturated Mixture;
Given: pl= 15.0 bar; xl= 0.2 fraction; Vell= 0.0 m/s;
zl= 0.0 m; Voll=0.06 m^3;
Calculated: T1 = 198.3066 deg-C; yl= 0.9662 fraction; v1 = 0.0273 m^3/kg;
ul= 1193.3645 kJ/kg; hl= 1234.291 kJ/kg; s1=3.1409 kJ/kg.K;
el= 1193.3645 kJ/kg; j1= 1234.291 kJ/kg; ml= 2.1979 kg;
MM1= 18.0 kg/kmol;
State-2: H2O > Saturated Mixture;
Given: p2= "p1" bar; x2= 0.5 fraction; Vel2= 0.0 m/s;
z2= 0.0 m; Vol2= "vol1" m^3;
Calculated: T2 = 198.3066 deg-C; y2= 0.9913 fraction; v2= 0.0665 m^3/kg;
u2= 1718.751 kJ/kg; h2= 1818.4697 kJ/kg; s2= 4.3799 kJ/kg.K;
e2= 1718.751 kJ/kg; j2= 1818.4697 kJ/kg; m2= 0.902 kg;
MM2= 18.0 kg/kmol;

```


Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research \& Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

\# State-3: H2O > Saturated Mixture;
\# Given: p3= "p1" bar; x3= 1.0 fraction; Vel3= \(0.0 \mathrm{~m} / \mathrm{s}\);
\# \(\quad \mathrm{z} 3=0.0 \mathrm{~m} ; \mathrm{m} 3=\) " \(\mathrm{m} 1-\mathrm{m} 2\) " kg ;
\# Calculated: T3 = 198.3066 deg-C; y3= 1.0 fraction; \(\mathrm{v} 3=0.1319 \mathrm{~m} \wedge 3 / \mathrm{kg}\);
\# u3 = \(2594.395 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{h} 3=2792.101 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{s} 3=6.445 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}\);
\# \(\quad e 3=2594.395 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{j} 3=2792.101 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{Vol} 3=0.1709 \mathrm{~m} \wedge 3\);
\# MM3 \(=18.0 \mathrm{~kg} / \mathrm{kmol}\);
\#---------Property spreadsheet starts:
\begin{tabular}{llccclll} 
\# State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & x & \(\mathrm{v}(\mathrm{m} 3 / \mathrm{kg})\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\# 01 & 1500.0 & 471.5 & 0.2 & 0.0273 & 1193.36 & 1234.29 & 3.141 \\
\# 02 & 1500.0 & 471.5 & 0.5 & 0.0665 & 1718.75 & 1818.47 & 4.38 \\
\# 03 & 1500.0 & 471.5 & 1.0 & 0.1319 & 2594.4 & 2792.1 & 6.445
\end{tabular}
\# Mass, Energy, and Entropy Analysis Results:
\# Process-A: ie-State \(=\) State-Null, State-3; bf-State \(=\) State-1, State-2;
\# Given: W_ext= \(0.0 \mathrm{~kJ} ; \mathrm{T}_{-} \mathrm{B}=298.15 \mathrm{~K}\);
\# Calculated: Q=2545.6465 kJ; S_gen=-3.1388645 kJ/K; Delta_E=-1072.5034 kJ; Jdot_ net \(=-3618.15 \mathrm{~kJ}\);
\#
Delta_S \(=-2.9524584 \mathrm{~kJ} / \mathrm{K}\); Sdot_net \(=-8.351734 \mathrm{~kJ}\);

\section*{(b) Plot m2, Q against final quality, x2:}

The procedure is simple: Go to State 2 , change 2 to desired value, press Calculate, and then SuperCalculate. All calculations are immediately up-dated. Read the values of m 2 from State 2, and Q from the Process panel. Do this for all desired values of x 2 and tabulate as shown below:
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{x 2}\) & \(\mathbf{m 2} \mathbf{( k g )}\) & \(\mathbf{Q}(\mathbf{k J )}\) \\
\hline 0.2 & 2.19789 & 0 \\
\hline 0.3 & 1.486 & 1398.07 \\
\hline 0.4 & 1.123 & 2112.21 \\
\hline 0.5 & 0.902 & 2545.65 \\
\hline 0.6 & 0.754 & 2836.7 \\
\hline 0.7 & 0.648 & 3045.63 \\
\hline 0.8 & 0.567 & 3202.9 \\
\hline 0.9 & 0.505 & 3325.56 \\
\hline 1 & 0.455 & 3423.9 \\
\hline
\end{tabular}

\section*{Now, plot the results in EXCEL:}



Prob.5.42. A well insulated rigid tank of volume \(10 \mathrm{~m}^{\wedge} 3\) is connected to a large steam line through which steam flows at 15 bar and 280 C. The tank is initially evacuated. Steam is allowed to flow into the tank until the pressure inside is P. (a) Determine the amount of mass in the tank, and the temp in the tank, when \(\mathrm{P}=15\) bar (b) Plot the quantities in part (a) versus P ranging from 0.1 to 15 bar. [Ref. 3]

\section*{TEST Solution:}

This is a problem on charging a tank. i.e. Uniform State, Uniform Flow type of problem. See eqn. 5.14 at the beginning of this chapter.


\section*{1. Select System Analysis - Open - Unsteady Process daemon as shown below:}

2. Choose PC model for Material model since H 2 O is the working substance.

3. Select H 2 O as the working substance and enter data, i.e. \(\mathrm{P} 1=0, \mathrm{~m} 1=0\) (since evacuated tank), and Vol1 \(=10 \mathrm{~m}^{\wedge} 3\) for State 1. Press Enter:

4. For State 2, enter P2, Vol2, and \(\mathrm{u} 2=\mathrm{h} 3\) for filling an evacuated tank (see eqn. 5.14 at the beginning of this chapter). Press Enter:

5. State 3 refers to the fluid in the line. Enter P3, T3 and m3 \(=\mathrm{m} 2\). Press Enter:

6. Now, go to Process Panel. Enter i-state \(=\) State 3 , e-state \(=\) Null, and enter States 1 and 2 for b-state and f-state respectively. Also, enter \(\mathrm{Q}=\mathrm{o}\) (since the tank is insulated) and W_ext \(=\mathrm{o}\) (since no external work). Press Calculate:

7. Now, click on SuperCalculate. Go to States panel. We get:

\section*{State 1:}


State 2:


We see that: \(\mathrm{T} 2=423.99 \mathrm{C}, \mathrm{m} 2=46.46 \mathrm{~kg} \ldots\) Ans.
8. I/O panel gives TEST code etc:
\#~~~~~~~~~~~~~~~~~~~~OUTPUT OF SUPER-CALCULATE:

\section*{Daemon Path: Systems>Open>Process>PC-Model; v-10.cb01}
\#-- \(\qquad\) Start of TEST-code \(\qquad\)

\section*{States \{}

State-1: H2O;
Given: \(\{\mathrm{pl}=0.0 \mathrm{bar} ;\) Vell \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{zl}=0.0 \mathrm{~m} ; \mathrm{ml}=0.0 \mathrm{~kg} ;\) Vol1 \(=10.0 \mathrm{~m} \wedge 3 ;\}\)
State-2: H2O;
Given: \(\{\mathrm{p} 2=15.0\) bar; \(\mathrm{u} 2=\) "h3" \(\mathrm{kJ} / \mathrm{kg} ; \operatorname{Vel} 2=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 2=0.0 \mathrm{~m}\); Vol2="vol1" \(\mathrm{m} \wedge 3 ;\}\)
State-3: H2O;
Given: \(\{\mathrm{p} 3=15.0\) bar; T3 \(=280.0\) deg-C; Vel3 \(=0.0 \mathrm{~m} / \mathrm{s} ; \mathrm{z} 3=0.0 \mathrm{~m} ; \mathrm{m} 3=\) " m 2 " \(\mathrm{kg} ;\}\) \}
\#-------------------------End of TEST-code \(\qquad\)
\#---------Property spreadsheet starts:
\begin{tabular}{llllllll} 
\# State & \(\mathrm{p}(\mathrm{kPa})\) & \(\mathrm{T}(\mathrm{K})\) & x & \(\mathrm{v}(\mathrm{m} 3 / \mathrm{kg})\) & \(\mathrm{u}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{h}(\mathrm{kJ} / \mathrm{kg})\) & \(\mathrm{s}(\mathrm{kJ} / \mathrm{kg})\) \\
\# 01 & 0.0 & 0.0 & 0.0 & Infinity & 0.0 & 0.0 & 0.0 \\
\# 02 & 1500.0 & 697.1 & & 0.2107 & 2991.81 & 3307.88 & 7.341 \\
\# 03 & 1500.0 & 553.2 & & 0.1626 & 2747.96 & 2991.81 & 6.834
\end{tabular}

\section*{(b) Plot m2, T2 against final pressure P2:}

Procedure: Go o State 2, change P2 to desired value, and click on Calculate, and SuperCalculate. Immediately, all calculations are updated. Read the values of T2 and m2. Repeat this procedure for all desired values of P2. Tabulate the results as shown below:
\begin{tabular}{|c|c|c|}
\hline P2(bar) & \(\mathbf{m 2}\) (kg) & T2 (deg.C) \\
\hline 0.1 & 0.315 & 414.05 \\
\hline 0.5 & 1.577 & 414.31 \\
\hline 1 & 3.154 & 414.65 \\
\hline 2 & 6.31 & 415.32 \\
\hline 4 & 12.63 & 416.67 \\
\hline 6 & 18.95 & 418.01 \\
\hline 8 & 25.27 & 419.35 \\
\hline 10 & 31.60 & 420.68 \\
\hline 13 & 41.11 & 422.0 \\
\hline 15 & 47.46 & 422.67 \\
\hline 2 & & \\
\hline
\end{tabular}

\section*{Grant Thornton-araly great place to work.}

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute \({ }^{\text {TM }}\) for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.


Audit •Tax • Advisory www.GrantThornton.ca/Careers

An instinct for growth"

Download free eBooks at bookboon.com

\section*{Now, plot the results in EXCEL:}



\subsection*{5.4 References:}
1. Yunus A. Cengel \& Michael A. Boles, Thermodynamics, An Engineering Approach, \(7^{\text {th }}\) Ed. McGraw Hill, 2011.
2. Sonntag, Borgnakke \& Van Wylen, Fundamentals of Thermodynamics, \(6^{\text {th }}\) Ed. John Wiley \& Sons, 2005.
3. Michel J. Moran \& Howard N. Shapiro, Fundamentals of Engineering Thermodynamics, \(4^{\text {th }}\) Ed. John Wiley \& Sons, 2000.
4. P.K. Nag, Engineering Thermodynamics, \(2^{\text {nd }}\) Ed. Tata McGraw Hill Publishing Co., 1995.
5. R.K. Rajput, A Text Book of Engineering Thermodynamics, Laxmi Publications, New Delhi, 1998.

To see Part III, download:
Basic Thermodynamics: Software Solutions - Part III```

