Basic Thermodynamics: Software Solutions – Part V

Dr. M. Thirumaleshwar

bookboon.com The eBook company Dr. M. Thirumaleshwar

Basic Thermodynamics: Software Solutions – Part V

Real and Ideal gases and Gas mixtures

Basic Thermodynamics: Software Solutions – Part V 1st edition © 2014 Dr. M. Thirumaleshwar & <u>bookboon.com</u> ISBN 978-87-403-0705-4

Contents

Contents

Dedication	Part I
Message by Rev. Fr. Joseph Lobo, Director, SJEC	Part I
Preface	Part I
About the Author	Part I
About the Software used:	Part I
To the Student	Part I

CLIVER WYMAN

Oliver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk usep industry knows by events because expensions and by operations, take management, organizational transformation, and leadership development. With offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

Contents

1	Introduction to Software used	Part I
1.1	Introduction	Part I
1.2	About the Software used	Part I
1.3	'Free' Software	Part I
1.4	Summary	Part I
1.5	References	Part I
2	S.I. Units, Unit conversion, Pressure, Temperature etc.	Part I
2.1	Introduction	Part I
2.2	Intl. System of Units (S.I.)	Part I
2.3	Conversion of Units	Part I
2.4	Examples of Unit conversion	Part I
2.5	Examples of Pressure measurements with Manometers	Part I
2.6	Examples of Temperature measurements with Thermocouples	Part I
2.7	Constant Volume gas Thermometer	Part I
2.8	Resistance Thermometer Detectors (RTD)	Part I
2.9	Summary	Part I
2.10	References	Part I

Day one and you're ready

Day one. It's the moment you've been waiting for. When you prove your worth, meet new challenges, and go looking for the next one. It's when your dreams take shape. And your expectations can be exceeded. From the day you join us, we're committed to helping you achieve your potential. So, whether your career lies in assurance, tax, transaction, advisory or core business services, shouldn't your day one be at Ernst & Young?

What's next for your future? ey.com/careers

JERNST & YOUNG Quality In Everything We Do

© 2010 EYGM Limited. All Rig

Contents

3	Properties of Pure Substances	Part I
3.1	Introduction	Part I
3.2	Property diagrams for Water:	Part I
3.3	Property diagrams from Software:	Part I
3.3	1 Property diagrams using EES	Part I
3.4	Property diagrams and Tables:	Part I
3.5	Problems	Part I
3.6	Determination of 'quality' of wet steam:	Part I
3.7	Conclusion	Part I
3.8	References	Part I
3.9	Exercise problems	Part I
4	Work, Heat and I Law of Thermodynamics Applied to Closed systems	Part – II
4.1	Formulas used	Part – II
4.2	Problems solved with EES	Part – II
4.3	Problems solved with TEST	Part – II
4.4	References	Part – II

Click on the ad to read more

5	I Law of Thermodynamics Applied to Flow processes	Part – II
5.1	Formulas used	Part – II
5.2	Problems solved with EES	Part – II
5.3	Problems solved with TEST	Part – II
5.4	References	Part – II
6	II Law of Thermodynamics	Part – III
6.1	Definitions, Statements and Formulas used	Part – III
6.2	Problems solved with EES	Part – III
6.3	Problems solved with TEST	Part – III
6.4	References	Part – III
7	Entropy	Part – III
7.1	Definitions, Statements and Formulas used	Part – III
7.2	Problems solved with EES	Part – III
7.3	Problems solved with MathCad	Part – III
7.4	Problems solved with TEST	Part – III
7.5	References	Part – III

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

7

ANN & JERRY

Dove

8	Availability or 'Exergy' and Irreversibility	IV
8.1	Definitions, Statements and Formulas used:	IV
8.2	Problems solved with EES:	IV
8.3	Problems solved with TEST:	IV
8.4	References:	IV
9	Real and ideal gases and gas mixtures	9
9.1	Introduction:	9
9.2	Ideal, Perfect and Real Gases:	9
9.3	Ideal Gas Laws and Property diagrams for an Ideal (or perfect) gas [1, 2]:	10
9.4	Ideal gas equation of state:	12
9.5	Deviation from Ideal gas behavior – Compressibility factor:	14
9.6	Equations of state for 'Real gases':	20
9.7	Internal energy (u) and enthalpy (h) of an Ideal gas:	27
9.8	Specific heats of Ideal gases:	27
9.9	Some Processes with Ideal gases: (See Chapter 4)	30
9.10	Properties of Mixtures of Ideal gases [18]:	33
9.11	Problems solved with Mathcad:	41
9.12	Problems solved with EES:	70
9.13	Problems solved with TEST:	100
9.14	REFERENCES:	178
	Appendix	179
	To continue	183

9 Real and ideal gases and gas mixtures

Learning objectives:

- 1. 'Ideal gas', 'Perfect gas', 'Semi-perfect gases' and 'Real gas' are defined.
- 2. Various equations of state for Ideal as well as real gases are presented.
- 3. Next, 'compressibility factor' and 'principle of corresponding states' are discussed.
- 4. Topics of Internal energy, Enthalpy and Specific heats for Ideal gases are reviewed.
- 5. Next, properties of mixtures of ideal gases are dealt with.
- 6. Dalton's Law, Gibbs-Dalton Law, Avogadro's Law etc are stated. Procedures to calculate sp. heats, apparent Molecular weight, Gas constant, internal energy, enthalpy etc of a mixture of ideal gases is explained.
- 7. Above topics are illustrated by solving several problems.

9.1 Introduction:

In this chapter, we shall study the concept of 'Ideal gas', 'Perfect gas' and 'Real gases'. We shall deal with property diagrams and various equations of state. We shall also explain about the principle of corresponding states and the generalized compressibility chart in connection with the real gases. Calculation of specific heats at constant volume and constant pressure for gases will be enumerated next.

9.2 Ideal, Perfect and Real Gases:

For an *Ideal gas*:

- Molecule is treated as a 'point mass'
- It is assumed that gas molecules occupy negligible volume
- No molecular attraction
- Molecular collisions are elastic
- Follows the law: P.v = R.T, where P = pressure (Pa), v = sp. volume (m3/kg), T = temperature (K), and R = gas constant for that particular gas (J/kg.K)
- Specific heats are functions of temperature

For a *Perfect gas*:

• All the assumptions are the same, except that the specific heats are constants and do not vary with temperature

In reality, there is no ideal or perfect gas. H2, O2, N2, He etc behave nearly as perfect gases and are known as '*semi perfect gases*'.

For a *Realgas*:

- Molecular volumes and intermolecular attraction will be considered.
- Several equations of state have been proposed

9.3 Ideal Gas Laws and Property diagrams for an Ideal (or perfect) gas [1, 2]:

9.3.1 Boyle's Law:

It states: "Volume of a given mass of perfect gas varies inversely as the absolute pressure when the absolute pressure is constant". i.e.

 $P \cdot V = const$ for const. T.....(4.1)

9.3.2 Charles' Law:

"If any gas is heated at constant pressure, its volume changes directly as its absolute temperature". i.e.

$$\frac{V}{T}$$
=const when P is const......(4.2a)
i.e. $\frac{V1}{T1}$ = $\frac{V2}{T2}$ (4.2b)

9.3.3 P-V-T surface for Ideal gas:

Each point on the P-V-T surface represents an equilibrium point.

Note that P-V, P-T and T-V diagrams are the projections of this surface on the respective coordinates:

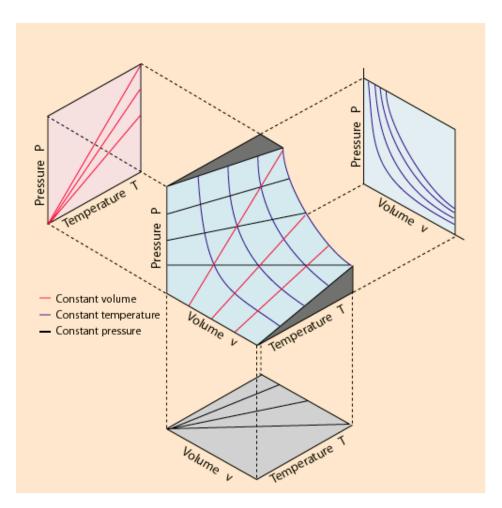


Fig. 9.1 P-V-T surface for an Ideal gas [13]

9.4 Ideal gas equation of state:

An equation of state gives a relation among the three measurable quantities P, V and T. Ideal gas equation of state is written in the following ways:

P·v=R·T(4.3a) P·V=m·R·T(4.3b) P=p·R·T(4.3c)

where:

- P = pressure (kPa), V= volume (m3), m = mass (kg), v = specific volume (m3/kg),
- T = absolute temperature (K), ρ = density (kg/m3),
- $R = particular gas constant (kJ/kg.K) = R_p/M$, where
- R_{μ} = Universal gas constant = 8.314 (kg/kmol.K), M = Molar mass for the gas,

= 8.314 (kPa.m3/kmol.K) = 0.08314 (bar.m3/kmol.K = 1.986 (Btu/lbmol.R) = 10.73 (psia.ft3/lbmol.R) = 1545 ft.lbf/lbmol.R)

Other forms of Ideal gas equation are:

```
P \cdot V = N \cdot R_u \cdot T \dots (4.4a)

P \cdot v bar = R_u \cdot T \dots (4.4b)

where N = no. of moles, vbar = molar sp. volume
```

Note that:

```
m=M·N kg.....(4.5)
```

Values of gas constant R for a few gases is given below:

	Gas Constant, R (kJ/kg-K)
Air	0.2870
Ammonia	0.4882
Carbon Dioxide	0.1889
Helium	2.0771
Hydrogen	4.1243
Nitrogen	0.2968
Oxygen	0.2598
R-12	0.06876
R-134a	0.08149

Table 9.1 Values of gas constant R for a few gases

Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

9.5 Deviation from Ideal gas behavior – Compressibility factor:

While the Ideal gas equation is very simple to use, it must be noted that it is mostly applicable for gases at low densities, i.e. at low pressures and high temperatures. Gases deviate considerably from ideal gas behavior at regions near the critical point and saturation lines. This is shown below:

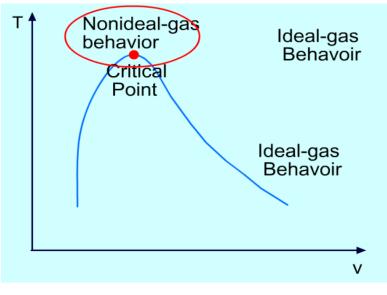


Fig. 9.2 Deviation from Ideal gas law [7]

Departure from Ideal gas behavior against pressure for some gases is illustrated below:

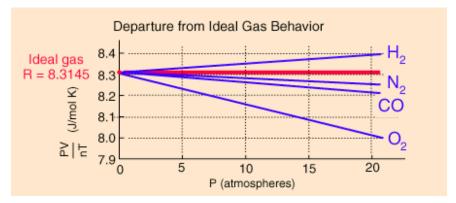


Fig. 9.3 Deviation from Ideal gas law for some gases [9]

For the specific case of Water/Steam, following graph illustrates the regions where Ideal gas law can be applied without much error. Note that around the critical point, the error is unacceptably high i.e. about 330%.

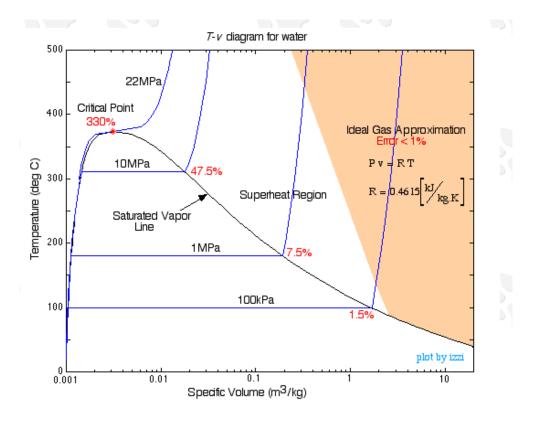


Fig. 9.4 Region where Ideal gas law is applicable for Water/Steam [8]

To account for the deviation from Ideal gas law, we introduce a correction factor, Z, called **'compressibility factor'**, as follows:

$$Z = \frac{P \cdot V}{R \cdot T} \qquad \dots \dots (4.6)$$

or,
$$P \cdot V = Z \cdot R \cdot T$$
(4.7)

Also,
$$Z = \frac{v \text{ actual}}{v \text{ ideal}}$$
(4.8)

where $v_{ideal} = \frac{R \cdot T}{P}$

Note that Z = 1 for Ideal gas.

Different gases behave differently with variation of pressure and temperature, but their behavior is observed to be identical when the pressures and temperatures are 'normalized' with respect to the critical pressures and temperatures of respective gases. So, we define:

$$P_{R} = \frac{P}{P_{cr}}$$
(4.9a), and
 $T_{R} = \frac{T}{T_{cr}}$ (4.9b)

Where P_{R} is called 'Reduced pressure' and T_{R} is called 'Reduced temperature'.

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**

Gas	Chemical	Pressure	Temperature	Specific Volume
	Formula	P _e bar	τ _ε κ	$\overline{v}_c m^3 / kg - mole$
Air		37.7	132.8	0.083
Ammonia	NH ₂	112.8	405.8	0.073
Argon	A	44.7	151.0	0.075
Carbon dioxide	CO2	73.8	304.2	0.094
Carbon monoxide	co	35.0	133.0	0.093
Freon-12	CCI ₂ F ₂	40.3	385.0	0.215
Helium	He	2.3	5.2	0.058
Hydrogen	Hz	13.0	33.2	0.065
Nitrogen	Nz	33.9	126.1	0.090
Oxygen	0-2	50.6	154.5	0.075
Sulphurdioxide	SO ₂	78.8	430.5	0.0123
Steam	H₂O	220.9	647.3	0.056

Values of 'critical parameters' for a few substances are given below:

And following table gives a more detailed information from TEST [15]:

Material Properties Useful for the Real Gas Model					
		Molar Mass	Critical-Po	oint Propert	ies
	Formula	inolar mass	Temperature	Pressure	Volume
Substance	Formula	м	Tor	Por	Vor
		kg/kmol	К	MPa	m ³ /kmol
Air		28.97	132.5	3.77	0.0883
Ammonia	NH3	17.03	405.5	11.28	0.0724
Argon	Ar	39.948	151	4.86	0.0749
Benzene	C6H6	78.115	562	4.92	0.2603
Bromine	Br2	159.808	584	10.34	0.1355
n-Butane	C4H10	58.124	425.2	3.8	0.2547
Carbon Dioxide	CO2	44.01	304.2	7.39	0.0943
Carbon Monoxide	co	28.011	133	3.5	0.093
Carbon Tetrachloride	CCI4	153.82	556.4	4.56	0.2759
Chlorine	CI2	70.906	417	7.71	0.1242
Chloroform	CHCI3	119.38	536.6	5.47	0.2403
Dichlorodifluoromethane (R-12)	CCI2F2	120.91	384.7	4.01	0.2179
Dichlorofluoromethane (R-21)	CHCI2F	102.92	451.7	5.17	0.1973
Ethane	C2H6	30.07	305.5	4.48	0.148
Ethyl-Alcohol	C2H5OH	46.07	516	6.38	0.1673
Ethylene	C2H4	28.054	282.4	5.12	0.1242
Helium	He	4.003	5.3	0.23	0.0578
n-Hexane	C6H14	86.179	507.9	3.03	0.3677
Hydrogen (normal)	H20	2.016	33.3	1.3	0.0649
Krypton	Kr	83.8	209.4	5.5	0.0924
Methane	CH4	16.043	191.1	4.64	0.0993
Methyl alcohol	снзон	32.042	513.2	7.95	0.118

Basic Thermodynamics: Software Solutions: Part V

Methyl chloride	СНЗСІ	50.488	416.3	6.68	0.143
Neon	Ne	20.183	44.5	2.73	0.0417
Nitrogen	N2	28.013	126.2	3.39	0.0899
Nitrous oxide	N20	44.013	309.7	7.27	0.0961
Oxygen	02	31.999	154.8	5.08	0.078
Propane	СЗН8	44.097	370	4.26	0.1998
Propylene	C3H6	42.081	365	4.62	0.181
Sulfur dioxide	SO2	64.063	430.7	7.88	0.1217
Tetrafluoroethane (R-134a)	CF3CH2F	102.03	374.3	4.067	0.1847
Trichlorofluoromethane (R-11)	CCI3F	137.37	471.2	4.38	0.2478
Water	H20	18.015	647.3	22.09	0.0568
Xenon	Xe	131.3	289.8	5.88	0.1186

Table 9.2

If values of Z determined from experiments for various gases are plotted against P_R and T_R , following plot is obtained:

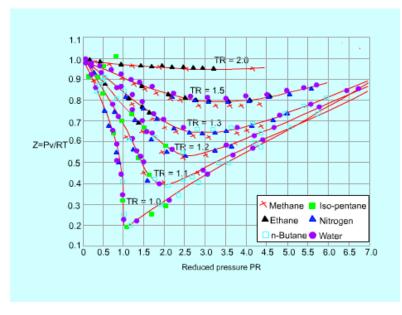
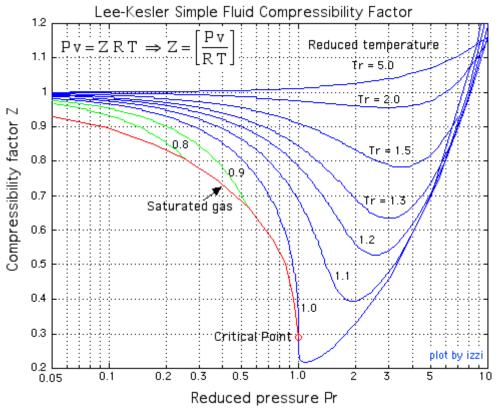



Fig. 9.5 Z values for various gases [7]

It is noted that 'Z factor is approximately the same for all gases at the same reduced pressure and temperature'. This is known as the *principle of corresponding states*.

In problem solving, generally, we use the Lee-Kesler compressibility chart, based on ideal fluid assumption:

Fig. 9.6 Lee-Kesler compressibility chart [8]

We note the following from the generalized compressibility chart:

- (i) At very low pressures, i.e. at $P_{R} \ll 1$, gases behave like an ideal gas irrespective of temperature
- (ii) At high temperatures, i.e. at $T_R > 2$, ideal gas behavior can be assumed irrespective of pressure, except at very high pressures of $P_R >> 1$
- (iii) Deviation from ideal gas behavior is most pronounced in the region near the critical point.

9.6 Equations of state for 'Real gases':

Several equations of state have been proposed in an attempt to predict P-V-T behavior of substances over a wider range of pressures and temperatures. We shall present a few of them below:

9.6.1 Van der Waal's equation of state:

This is one of the earliest attempts (1873) to increase the range of applicability of ideal gas equation by inserting factors to take into account the intermolecular attractions and the finite volume occupied by the molecules in a real gas. It is of the following form:

$$\left(\mathbf{P}+\frac{\mathbf{a}}{\mathbf{v}^2}\right)\cdot(\mathbf{v}-\mathbf{b})=\mathbf{R}\cdot\mathbf{T}$$
(4.10)

Here, the term (a/v^2) accounts for the intermolecular attraction and the term b accounts for the volume occupied by the molecules. The constants a and b are given *in terms of critical properties* as follows:

$$a = \frac{27 \cdot R^2 \cdot T_{cr}}{64 \cdot P_{cr}}$$
 and $b = \frac{R \cdot T_{cr}}{8 \cdot P_{cr}}$ (4.11)

To express Van der Waals equation in terms of mole basis, replace v by vbar and R by R_u in the above equations.

a and b can thus be calculated from the critical properties of a given gas.

Values of a and b for some common fluids are given below [17]

1. van der Waals and Redlich-Kwong: Constants for pressure in bar, specific volume in m3/kmol, and temperature in K				
	van der Waals		Redlich-Kv	/ong
Substance	$\operatorname{bar}\left(\frac{a}{\mathrm{kmol}}\right)^2$	$\frac{b}{m^3}$ kmol	$bar\left(\frac{a}{m^3}\right)^2 K^{1/2}$	$\frac{\frac{b}{\text{m}^3}}{\text{kmol}}$
Air	1.368	0.0367	15.989	0.02541
Butane (C ₄ H ₁₀)	13.86	0.1162	289.55	0.08060
Carbon dioxide (CO ₂)	3.647	0.0428	64.43	0.02963
Carbon monoxide (CO) Methane (CH ₄)	1.474 2.293	0.0395 0.0428	17.22 32.11	0.02737 0.02965
Nitrogen (N ₂)	1.366	0.0386	15.53	0.02903
Oxygen (O ₂)	1.369	0.0317	17.22	0.02197
Propane (C ₃ H ₈)	9.349	0.0901	182.23	0.06242
Refrigerant 12	10.49	0.0971	208.59	0.06731
Sulfur dioxide (SO ₂) Water (H ₂ O)	6.883 5.531	0.0569 0.0305	144.80 142.59	0.03945 0.02111

TABLE A-24 Constants for the van der Waals, Redlich-Kwong, and Benedict-Webb-Rubin Equations of State

Source: Calculated from critical data.

	<i>a</i> (L ² bar/mol ²)	<i>b</i> (L/mol)
Acetic acid	17.82	0.1068
Acetic anhydride	20.16	0.1263
Acetone	14.09	0.0994
Acetonitrile	17.81	0.1168
Acetylene	4.448	0.05136
<u>Ammonia</u>	4.225	0.03707
Argon	1.363	0.03219
Benzene	18.24	0.1154
<u>Bromobenzene</u>	28.94	0.1539
Butane	14.66	0.1226
Carbon dioxide	3.640	0.04267
Carbon disulfide	11.77	0.07685
Carbon monoxide	1.505	0.03985
Carbon tetrachloride	19.7483	0.1281
<u>Chlorine</u>	6.579	0.05622
Chlorobenzene	25.77	0.1453
<u>Chloroethane</u>	11.05	0.08651
<u>Chloromethane</u>	7.570	0.06483
Cyanogen	7.769	0.06901
Cyclohexane	23.11	0.1424

Van der Waal's constants for a few gases and liquids are given below:

X KBS Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

Diethyl ether	17.61	0.1344
Diethyl sulfide	19.00	0.1214
Dimethyl ether	8.180	0.07246
Dimethyl sulfide	13.04	0.09213
Ethane	5.562	0.0638
Ethanethiol	11.39	0.08098
Ethanol	12.18	0.08407
Ethyl acetate	20.72	0.1412
Ethylamine	10.74	0.08409
Fluorobenzene	20.19	0.1286
Fluoromethane	4.692	0.05264
Freon	10.78	0.0998
Germanium tetrachloride	22.90	0.1485
Helium	0.03457	0.0237
Hexane	24.71	0.1735
Hydrogen	0.2476	0.02661
Hydrogen bromide	4.510	0.04431
Hydrogen chloride	3.716	0.04081
Hydrogen selenide	5.338	0.04637
Hydrogen sulfide	4.490	0.04287
lodobenzene	33.52	0.1656
Krypton	2.349	0.03978
Mercury	8.200	0.01696
Methane	2.283	0.04278
Methanol	9.649	0.06702
Neon	0.2135	0.01709
Nitric oxide	1.358	0.02789
Nitrogen	1.408	0.03913
Nitrogen dioxide	5.354	0.04424
Nitrous oxide	3.832	0.04415
Oxygen	1.378	0.03183
Pentane	19.26	0.146
Phosphine	4.692	0.05156
Propane	8.779	0.08445
Silane	4.377	0.05786
Silicon tetrafluoride	4.251	0.05571
Sulfur dioxide	6.803	0.05636
Tin tetrachloride	27.27	0.1642
Toluene	24.38	0.1463
Water	5.536	0.03049
Xenon	4.250	0.05105

Table 9.3 Van der Waals constants for a few gases and volatile liquids [10]Source: Weast. R.C. (Ed.), Handbook of Chemistry and Physics (53rd Edn.), Cleveland: Chemical Rubber Co., 1972.

Basic Thermodynamics: Software Solutions: Part V

Units:

$$1 \text{ J} \cdot \text{m}^{3}/\text{mol}^{2} = 1 \text{ m}^{6} \cdot \text{Pa}/\text{mol}^{2} = 10 \text{ L}^{2} \cdot \text{bar}/\text{mol}^{2}$$

$$1 \text{ L}^{2}\text{atm}/\text{mol}^{2} = 101 \text{ 325 } \text{ J} \cdot \text{m}^{3}/\text{kmol}^{2} = 101 \text{ 325 } \text{ Pa} \cdot \text{m}^{6}/\text{kmol}^{2}$$

$$1 \text{ dm}^{3}/\text{mol} = 1 \text{ L}/\text{mol} = 1 \text{ m}^{3}/\text{kmol} \text{ (where kmol is kilomoles} = 1000 \text{ moles)}$$

In terms of 'reduced pressure, volume and temp:

If we define:

$$\begin{split} P_{f} &= \frac{P}{P_{c}} & \dots \text{reduced pressure} \\ v_{r} &= \frac{v}{v_{c}} & \dots \text{reduced sp. volume} \\ T_{r} &= \frac{T}{T_{c}} & \dots \text{reduced temperature} \end{split}$$

Then, Van der Waal's eqn. can be written as:

$$\left(P_{r} + \frac{3}{v_{r}^{2}}\right) \cdot \left(v_{r} - \frac{1}{3}\right) = \frac{8}{3} \cdot T_{r}$$

Note that this eqn. does not contain gas const. R or the constants a and b.

Though Van der Waals equation represents an early attempt to improve the range of ideal gas equation, its range is still very limited.

9.6.2 Beattie – Bridgeman equation of state:

This equation, proposed in 1928, takes the following form:

$$P = \frac{R_{u}T}{\nabla^{2}} \left(1 - \frac{c}{\nabla T^{3}} \right) (\nabla + B) - \frac{A}{\nabla^{2}} \quad \text{where}$$
$$A = A_{0} \left(1 - \frac{a}{\nabla} \right) \quad B = B_{0} \left(1 - \frac{b}{\nabla} \right) \quad \dots \dots \dots (4.12)$$

This equation is reasonably accurate for densities up to less than about 2.5 times the density at the critical point.

Gas	A ₀	а	B _o	Ь	С
Air	131.8441	0.01931	0.04611	-0.001101	43400
Argon, Ar	30.7802	0.02328	0.03931	0.0	59900
${\rm Carbon\ dioxide,\ CO_2}$	507.2836	0.07132	0.10476	0.07235	660000
Helium, He	2.1886	0.05984	0.01400	0.0	40
Hydrogen, H ₂	20.0117	-0.00506	0.02096	-0.04359	504
Nitrogen, N ₂	136.2315	0.02617	0.05046	-0.00691	42000
Oxygen, O ₂	151.0857	0.02562	004624	0.004208	48000

Values of constants in Beattie-Bridgeman equation for a few substances are given below:

Table 9.4 Values of constants in Beattie-Bridgeman equation [7]

While using the above Table, note that P is in kPa, $\overline{\vee}$ is in m³/kmol, T is in K and R_u is equal to 8.314 (kPa-m³)/(kmol-K).

ORACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

9.6.3 Benedict–Webb–Rubin (BWR) equation of state (1940):

In this equation number of constants is raised to 8. BWR equation is of following form:

$$P = \frac{R_{u}T}{\nabla} + \left(B_{0}R_{u}T - A_{0} - \frac{C_{0}}{T^{2}}\right)\frac{1}{\nabla^{2}} + \frac{bR_{u}T - a}{\nabla^{3}} + \frac{a\alpha}{\nabla^{6}} + \frac{c}{\nabla^{3}T^{2}}\left(1 + \frac{\gamma}{\nabla^{2}}\right)e^{-\gamma/\nabla^{2}} \qquad \dots (4.13)$$

Constants in eqn. (4.13) are given in the following Table:

Gas	а	A ₀	b	Bo	c×10 ⁻⁴	C ₀ ×10 ⁻⁵	α ×10 ⁵	γ
n-Butane, C ₄ H ₁₀	190.68	1021.6	0.039998	0.12436	3205	1006	110.1	0.0340
Carbon dioxide, CO ₂	13.86	277.30	0.007210	0.04991	151.1	140.4	8.470	0.0054
Carbon monoxide, CO	3.71	135.87	0.002632	0.05454	10.54	8.673	13.50	0.0060
Methane, CH ₄	5.00	187.91	0.003380	0.04260	25.78	22.86	12.44	0.0060
Nitrogen, N ₂	2.54	106.73	0.002328	0.04074	7.379	8.164	12.72	0.0053

Table 9.5 Values of constants in BWR equation [7]

Here, note that P is in kPa, \sqrt{v} is in m³/kmol, T is in K and R_u is 8.314 (kPa-m³)/(kmol-K).

BWR equation is accurate at densities up to 2.5 times the density at the critical point.

In 1962, Strobridge improved this equation further by raising the number of constants to 16. It is therefore, more suitable for computer analysis.

9.6.4 Redlich – Kwong equation of state [5]:

$$P = \frac{RT}{V_m - b} - \frac{a}{\sqrt{T}V_m (V_m + b)} \qquad \dots (4.14)$$

where

$$a = \frac{0.42748 R^2 T_c^{2.5}}{p_c} \qquad \dots (4.15)$$

$$b = \frac{0.08662 \, R \, T_c}{p_c} \qquad \dots (4.16)$$

Download free eBooks at bookboon.com

Here, R is the Universal gas constant = 8.314472 J/mol.K. V_m is the molar volume, i.e. volume of 1 mole of liquid or gas; P_c is the pressure at the critical point; V_c is the molar volume at the critical point. R-K equation performs poorly for liquid phase. It is suitable for gas phase calculation when $P_R < (T_R/2)$.

9.6.5 Peng-Robinson equation of state (1976) [5]:

This equation is most widely used in chemical engineering thermodynamics. It gives better prediction of liquid states as compared to other equations of state. This equation of state requires three inputs per compound: T_c , P_c and the acentric factor ω . This equation has the following form:

$$\mathbf{P} = \frac{RT}{V_m - b} - \frac{a\,\alpha}{V_m^2 + 2bV_m - b^2} \qquad \dots (4.17)$$

where

$$a = \frac{0.45724 R^2 T_c^2}{p_c} \qquad \dots (4.18)$$

$$b = \frac{0.07780 R T_c}{p_c} \qquad \dots (4.19)$$

$$\alpha = \left(1 + \left(0.37464 + 1.54226 \,\omega - 0.26992 \,\omega^2\right) \left(1 - T_r^{0.5}\right)\right)^2 \qquad \dots (4.20)$$

and,

$$T_r = \frac{T}{T_c} \quad \dots (4.21)$$

Also, Universal gas constant R = 8.314472 J/mol.K. V_m is the molar volume, i.e. volume of 1 mole of liquid or gas; P_c is the pressure at the critical point; V_c is the molar volume at the critical point.

The Peng-Robinson equation is *particularly useful* for all calculations of all fluid properties in *Natural gas processes*. Further, this equation has reasonable accuracy near the critical point; therefore, it is suitable to calculate the compressibility factors and liquid density.

9.6.6 Virial equation of state [5]:

All the above equations of state depend on measured properties of fluids. But, the virial equation of state is derived directly from statistical mechanics. It is of following form:

$$\frac{P}{RT} \frac{V_m}{RT} = 1 + \frac{B}{V_m} + \frac{C}{V_m^2} + \frac{D}{V_m^3} + \dots$$
(4.22)

And,

$$B = -V_c$$
(4.23)

$$C = \frac{V_c^2}{3}$$
(4.24)

Here, R is the Universal gas constant = 8.314472 J/mol.K. V_m is the molar volume, i.e. volume of 1 mole of liquid or gas; P_c is the pressure at the critical point; V_c is the molar volume at the critical point. Accuracy can be increased by increasing the number of terms in eqn. (4.22).

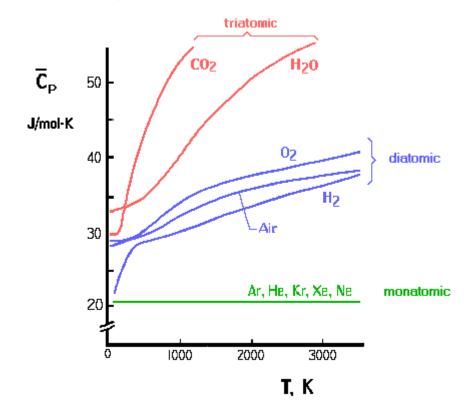
9.7 Internal energy (u) and enthalpy (h) of an Ideal gas:

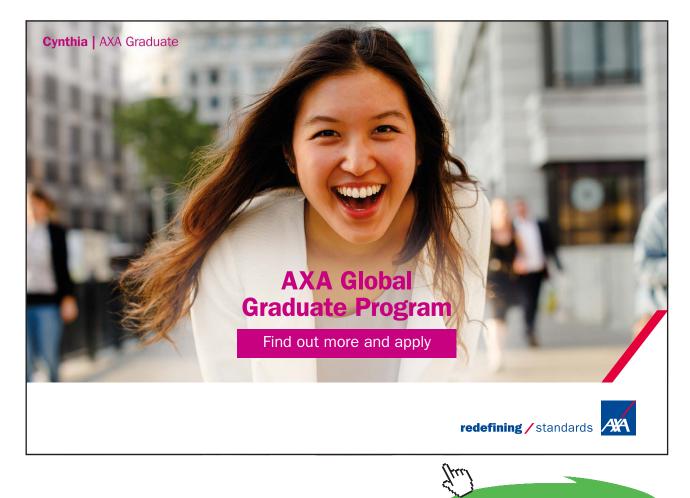
Joule's Law: "Specific internal energy of a gas is a function of temp only and is independent of both pressure and volume"

i.e. u = f(T) only.

And, for enthalpy:

h = u + P * v = u + R * T


i.e. h = f(T) only.


9.8 Specific heats of Ideal gases:

For an Ideal gas:

$$c_v = \frac{du}{dT}$$
 ...sp.heat at const. vol....for any process
 $c_p = \frac{dh}{dT}$...sp.heat at const. pressure..
 $c_p - c_v = R$...where R is Gas constant.

Isobaric sp. heats for several gases [16]:

Click on the ad to read more Download free eBooks at bookboon.com

Sp. heats of Ideal gas are functions of temp only.

	c _p	C _v	c _p	Cu	C _p	C _v	c _p	Cu	C _p	C _v	c _p	C _v	
Temp.							Ca	rbon	Car	bon			Temp.
K	А	ir	Nitrog	en, N ₂	Oxyg	en, O ₂	Dioxid	e, CO ₂	Monox	ide, CO	Hydrog	gen, H ₂	K
250	1.003	0.716	1.039	0.742	0.913	0.653	0.791	0.602	1.039	0.743	14.051	9.927	250
300	1.005	0.718	1.039	0.743	0.918	0.658	0.846	0.657	1.040	0.744	14.307	10.183	300
350	1.008	0.721	1.041	0.744	0.928	0.668	0.895	0.706	1.043	0.746	14.427	10.302	350
400	1.013	0.726	1.044	0.747	0.941	0.681	0.939	0.750	1.047	0.751	14.476	10.352	400
450	1.020	0.733	1.049	0.752	0.956	0.696	0.978	0.790	1.054	0.757	14.501	10.377	450
500	1.029	0.742	1.056	0.759	0.972	0.712	1.014	0.825	1.063	0.767	14.513	10.389	500
550	1.040	0.753	1.065	0.768	0.988	0.728	1.046	0.857	1.075	0.778	14.530	10.405	550
600	1.051	0.764	1.075	0.778	1.003	0.743	1.075	0.886	1.087	0.790	14.546	10.422	600
650	1.063	0.776	1.086	0.789	1.017	0.758	1.102	0.913	1.100	0.803	14.571	10.447	650
700	1.075	0.788	1.098	0.801	1.031	0.771	1.126	0.937	1.113	0.816	14.604	10.480	700
750	1.087	0.800	1.110	0.813	1.043	0.783	1.148	0.959	1.126	0.829	14.645	10.521	750
800	1.099	0.812	1.121	0.825	1.054	0.794	1.169	0.980	1.139	0.842	14.695	10.570	800
900	1.121	0.834	1.145	0.849	1.074	0.814	1.204	1.015	1.163	0.866	14.822	10.698	900
1000	1.142	0.855	1.167	0.870	1.090	0.830	1.234	1.045	1.185	0.888	14.983	10.859	1000

Ideal gas sp. heats of some common gases are presented below in a Table, easy to use [17]:

Table T-10 Ideal Gas Specific Heats of Some Common Gases (kJ/kg · K)

Source: Tables T-10 are adapted from K. Wark, Thermodynamics, 4th ed., McGraw-Hill, New York, 1983, as based on "Tables of Thermal Properties of Gases," NBS Circular 564, 1955.

Generally, variation of sp. heats for different ideal gases are expressed as *third order polynomials in T*, and are available in Thermodynamics Text books / handbooks.

As an example:

$cp_bar = a + b * T + c * T² + d * T³$

where T is in Kelvin, cp_bar in kJ/kmol.K

And a, b, c and d for some gases are [1]:

Substance	а	b	с	d
Air	28.11	0.1967E-2	0.4802E-5	-1.966E-9
N2	28.9	-0.1571E-2	0.8081E-5	-2.873E-9
02	25.48	1.520E-2	-0.7155E-5	1.312E-9
CO2	22.26	5.981E-2	-3.501E-5	7.469E-9
СО	28.16	0.1675E-2	0.5372E-5	-2.222E-9
H2	29.11	-0.1916E-2	0.4003E-5	-0.8704E-9
Water vapor	32.24	0.1923E-2	1.055E-5	-3.595E-9
Ammonia (NH3)	27.568	2.5630E-2	0.99072E-5	-6.6909E-9
Methane (CH4)	19.89	5.024E-2	1.269E-5	-11.01E-9

9.9 Some Processes with Ideal gases: (See Chapter 4)

9.9.1 Work:

Work = Force x distance, N.m (= 1 Joule)

Work is a 'path function' i.e. an inexact differential.

9.9.2 pdV- work or displacement work: $dW = p \cdot dV$

$$W_{12} = \int_{V1}^{V2} p \, dV$$
Integration performed on a quasi-static path

- 9.9.3 pdV- work in various quasi-static processes:
 - (a). Constant pressure (isobaric) process:

$$W_{12} = p \cdot (V2 - V1)$$

(b). Constant volume (isochoric) process:

$$W_{12} = 0$$

(c). For a process in which pV = const....Isothermal process:

$$W_{12} = p1 \cdot V1 \cdot ln \left(\frac{p1}{p2}\right)$$

(d). For a process in which pV^y = const....reversible adiabatic or isentropic process:

$$W_{12} = \frac{p1 \cdot V1 - p2 \cdot V2}{\gamma - 1} = \frac{R \cdot (T1 - T2)}{\gamma - 1} = \frac{p1 \cdot V1}{n - 1} \cdot \left[1 - \left(\frac{p2}{p1}\right)^{\frac{\gamma}{\gamma}}\right]$$

Basic Thermodynamics: Software Solutions: Part V

Real and ideal gases and gas mixtures

Also, for a perfect gas:

 $p \cdot v = R \cdot T$

And for isentropic process, pv/ = const., we have:

$$T \cdot v^{\gamma - 1} = \text{constant}$$

 $\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^{\gamma}$

$$\frac{T2}{T1} = \left(\frac{v1}{v2}\right)^{\gamma-1}$$
$$\frac{\gamma-1}{\frac{T2}{T1}} = \left(\frac{p2}{p1}\right)^{\gamma}$$

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on **+44 (0)20 7000 7573**.

* Figures taken from London Business School's Masters in Management 2010 employment report

31

Basic Thermodynamics: Software Solutions: Part V

(e). For a process in which pVⁿ = const....polytropic process:

$$W_{12} = \frac{p1 \cdot V1 - p2 \cdot V2}{n-1} = \frac{p1 \cdot V1}{n-1} \cdot \left[1 - \left(\frac{p2}{p1}\right)^n \right]$$

i.e.
$$W_{12} = \frac{R \cdot (T1 - T2)}{n - 1}$$

Also: for a polytropic process:

$$\frac{p^2}{p^1} = \left(\frac{v^1}{v^2}\right)^n$$

$$\frac{T^2}{T^1} = \left(\frac{v^1}{v^2}\right)^{n-1}$$

$$\frac{T^2}{T^1} = \left(\frac{p^2}{p^1}\right)^n$$

For a perfect gas:

$$p \cdot v = R \cdot T$$
 $du = cv \cdot dT$
 $\gamma = \frac{c_p}{c_v}$ $c_p - c_v = R$
i.e. $c_v = \frac{R}{\gamma - 1}$

Then, heat transfer during a polytropic process (for a perfect gas):

 $Q = (u2 - u1) + W = c_v \cdot (T2 - T1) + R \cdot (T1 - T2)$

Simplifying, we get:

$$Q_{\text{poly}} = \frac{\gamma - n}{\gamma - 1} \cdot \frac{R \cdot (T1 - T2)}{n - 1}$$

i.e.
$$Q_{poly} = \frac{\gamma - n}{\gamma - 1} \cdot W_{poly}$$

Polytropic sp. heat:

Polytr. sp. heat: $c_n = c_v \cdot \frac{\gamma - n}{1 - n}$

9.10 Properties of Mixtures of Ideal gases [18]:

9.10.1 Dalton's Law:

The pressure of a mixture of gases is equal to the sum of the partial pressures of the constituents.

The partial pressure of each constituent is that pressure which the gas would exert if it occupied alone that volume occupied by the mixture at the same temperature.

Considering a mixture of two Ideal gases A and B:

 $m = m_A + m_B$ and, $p = p_A + p_B$...by Dalton's Law

For a mixture of i no. of ideal gases:

$$m = m_A + m_B + m_C + \dots + m_i$$

 $p = p_A + p_B + p_C + \dots + p_i$

Or,

$$m = \Sigma m_{_i}$$

and,

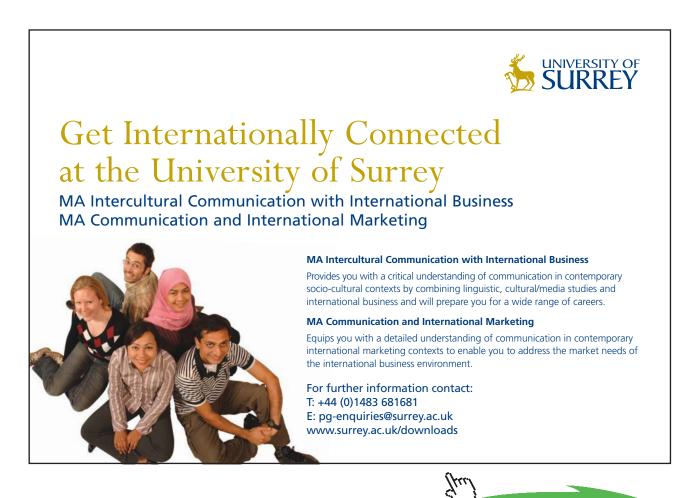
 $p = \Sigma p_i$

9.10.2 Gibbs-Dalton Law:

The internal energy, enthalpy and entropy of a gaseous mixture are respectively equal to the sums of the internal energies, enthalpies and entropies of the constituents.

Each constituent has that internal energy, enthalpy and entropy which it could have if it occupied alone that volume occupied by the mixture at the temperature of the mixture.

Basic Thermodynamics: Software Solutions: Part V


Real and ideal gases and gas mixtures

i.e. we have:

 $m \cdot u = m_{A} \cdot u_{A} + m_{B} \cdot u_{B} + \dots$ $m \cdot h = m_{A} \cdot h_{A} + m_{B} \cdot h_{B} + \dots$ $m \cdot s = m_{A} \cdot s_{A} + m_{B} \cdot s_{B} + \dots$

Or,

 $m.u = \Sigma m_i * u_i$ $m.h = \Sigma m_i * h_i$ $m.s = \Sigma m_i * s_i$

Click on the ad to read more

Download free eBooks at bookboon.com

9.10.3 Volumetric analysis of a gas mixture:

Consider a volume V of a gaseous mixture at a temp T consisting of three constituents A, B and C. Let each of the constituents be compressed to the total pressure p of the mixture and let the temp remain constant. The partial volumes occupied by the constituents will then be V_A , V_B and V_C .

And, we get:

$$V_A = \frac{p_A}{p} \cdot V$$
etc.

In general:

$$V_i = \frac{p_i}{p} \cdot V$$

i.e. Σ Vi = Σ ($p_i * V$) / p = (V / P) * Σ p_i

But,
$$p = \Sigma p_i$$

```
Therefore: \Sigma Vi = V
```

Thus, "volume of a mixture of gases is equal to the sum of the volumes of the individual constituents when each exists alone at the pressure and temp of mixture." ... This is known as Amagat's Law.

Remember:

n = m / M where

n is the no. of moles, m = mass of gas, and M = molecular weight of gas

Avogadro's Law: "number of moles of any gas is proportional to the volume of the gas at a given pressure and temperature".

So, total number of moles in a vessel containing a mixture of gases must equal the sum of the moles of the individual constituents.

i.e.

 $n = n_A + n_B + n_c + ...$

i.e. $n = \sum n_i$

9.10.4 Apparent Molecular weight and Gas constant:

If a gas mixture, with total number of moles n, occupies a total volume of V, at a temperature T, then:

$$p * V = R_u * T * \Sigma n_i$$

i.e. $p * V = n * R_{\mu} * T$ where R_{μ} is the Universal gas const.

Apparent mol. weight is defined as: M = m / n

where, m = the mass of the mixture, and n = no. of moles in the mixture

Apparent Gas constant for the mixture is defined as $R = R_u / M$

It can be assumed that the mixture of perfect gases behaves like a perfect gas and obeys the perfect gas laws.

Apparent gas constant of mixture in terms of individual gas constants:

$$R = \Sigma (mi / m) R_i$$

where (mi / m) = mass fraction of constituent i

Also note that:

$$\frac{p_i}{p} = \frac{n_i}{n} = \frac{V_i}{V}$$

i.e. Molar analysis is identical with the volumetric analysis, and both are equal to the ratio of partial pressure to the total pressure.

Also:

 $M = \Sigma (n_i / n) . M_i$

And,

$$M = 1 \ / \ \Sigma \ (m_{_{fi}} \ / \ M_{_i})$$

where m_{f_i} is the mass fraction of species i, M_i is its mol. wt.

9.10.5 Sp. heats of a Gas mixture:

$$c_v = \Sigma (m_i / m). c_{vi}$$
, and

$$c_p = \Sigma (m_i / m). c_{pi}$$

 $\mathbf{R} = \mathbf{c}_{p} - \mathbf{c}_{v} = \boldsymbol{\Sigma} \ (\mathbf{m}_{i} / \mathbf{m}). \ \mathbf{R}_{i} \dots$ gives for the mixture

For the mixture, we can also write:

 $\gamma = c_p / c_v$

$$c_p = \gamma$$
. R/ $(\gamma - 1)$

 $c_v = R / (\gamma - 1)$

Molar sp. heats:

$$C_p = M. c_p$$

$$C_v = M. c_v$$

37

 $C_p - C_v = M$. $R = R_u \dots$ the Universal Gas const.

Also,

 $U = n. C_v. T$ and,

$$H = n. C_n T$$

And,

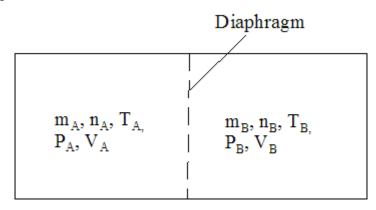
 $C_v = \Sigma (n_i / n) \cdot C_{vi}$

 $C_{p} = \Sigma (n_{i} / n).C_{pi}$

9.10.6 Mixing of two Ideal gases at same P and T [Ref: 2]:

Let a mass m_A of ideal gas A at a given P and T be mixed with m_B of ideal gas B at the same P and T, such that the final ideal gas mixture is also at P and T. Then, entropy change for the process is:

$$\Delta S_{mix} = -m_{A} \cdot R_{A} \cdot ln(y_{A}) - m_{B} \cdot R_{B} \cdot ln(y_{B})$$


i.e.
$$\Delta S_{mix} = -n_A \cdot R_u \cdot ln(y_A) - n_B \cdot R_u \cdot ln(y_B)$$

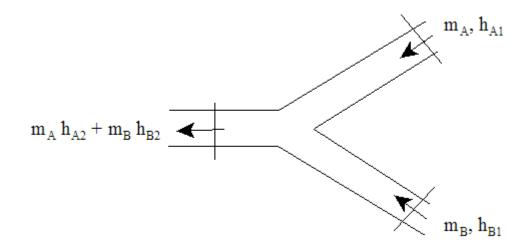
Note that increase in entropy depends only on the no. of moles of component gases and is *independent* of the composition of the gas.

9.10.7 Adiabatic mixing of two Ideal gases: [Ref: 18]:

Two cases are considered:

1. Two compartments, separated by a membrane contain two ideal gases A and B, one in each compartment.

Now, the membrane is removed and the gases mix:


The process is equivalent to free expansion of each gas. So, **equating the total internal energies before and after mixing**, we get:

 $U_1 = n_A \cdot Cv_A \cdot T_A + n_B \cdot Cv_B \cdot T_B$ $U_2 = (n_A \cdot Cv_A + n_B \cdot Cv_B) \cdot T$

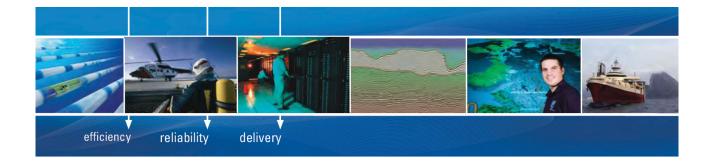
 $T = \frac{n_{\mathrm{A}} \cdot \mathrm{Cv}_{\mathrm{A}} \cdot \mathrm{T}_{\mathrm{A}} + n_{\mathrm{B}} \cdot \mathrm{Cv}_{\mathrm{B}} \cdot \mathrm{T}_{\mathrm{B}}}{n_{\mathrm{A}} \cdot \mathrm{Cv}_{\mathrm{A}} + n_{\mathrm{B}} \cdot \mathrm{Cv}_{\mathrm{B}}}$

and,

2. If two streams of fluid meet to form a common stream in **steady flow**, we apply **steady flow energy eqn** to the mixing section. Neglecting the changes in P.E. and K.E. we get:

 $m_{A} \cdot h_{A1} + m_{B} \cdot h_{B1} + Q = m_{A} \cdot h_{A2} + m_{B} \cdot h_{B2} + W$

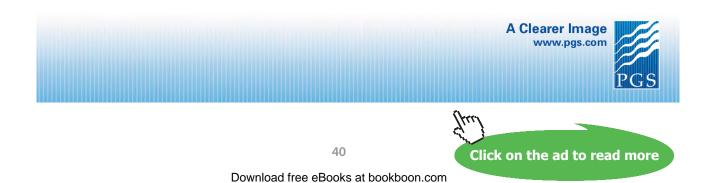
For adiabatic flow, Q = 0, Also W = 0. Then, we get:


$$m_A \cdot h_{A1} + m_B \cdot h_{B1} = m_A \cdot h_{A2} + m_B \cdot h_{B2}$$

Now, h = cp. T. Therefore:

 $m_A \cdot cp_A \cdot T_A + m_B \cdot cp_B \cdot T_B = m_A \cdot cp_A \cdot T + m_B \cdot cp_B \cdot T$

and, $T = \frac{m_{A} \cdot cp_{A} \cdot T_{A} + m_{B} \cdot cp_{B} \cdot T_{B}}{m_{A} \cdot cp_{A} + m_{B} \cdot cp_{B}}$


T is the temp after mixing.

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

In terms of moles of gases:

 $T = \frac{n_A \cdot Cp_A \cdot T_A + n_B \cdot Cp_B \cdot T_B}{n_A \cdot Cp_A + n_B \cdot Cp_B}$ where $Cp = M \cdot cp$ and, $M = \frac{m}{n}$ and $n \cdot Cp = m \cdot cp$

9.11 Problems solved with Mathcad:

Prob. 9.1 Sp. vol. of CO2 at 120 C is 1.2 m³/kg. Determine the pressure exerted by CO2 (i) by Ideal gas eqn. (ii) by Van der Waals eqn. [VTU – Jan. 2004]

Mathcad Solution:

Data:

Calculations:

(i) By Ideal gas eqn.:

$$R := \frac{R_u}{M}$$
 i.e. $R = 188.964$ J.kg.K

Therefore: $p := \frac{m \cdot R \cdot T}{V}$ Pa

i.e.
$$p = 6.189 \times 10^4$$
 Pa.... Ans.

Real and ideal gases and gas mixtures

(ii) By Van der Waals eqn.:

We have he Van der Waal's constants for CO2:

a = 3.647 bar.(m^3/kmol)^2 = 364700 Pa.(m^3/kmol)^2

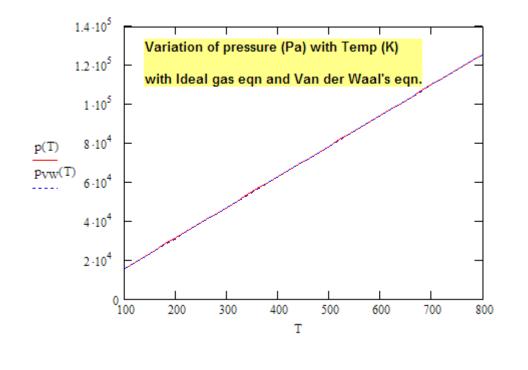
b = 0.0428 m^3/Imol

i.e. For CO2:

a := 364700 Pa.(m³/kmol)² b := 0.0428 m³/lmol vbar := $\frac{V}{\left(\frac{m}{M}\right)}$ vbar = 52.8 m3/kg.mol

i.e. For CO2:

a := 364700 Pa.(m^A3/kmol)^A2 b := 0.0428 m^A3/lmol
vbar :=
$$\frac{V}{\left(\frac{m}{M}\right)}$$
 vbar = 52.8 m3/kg.mol
 $p_{VW} := \frac{R_u \cdot T}{vbar - b} - \frac{a}{vbar^2}$ Van der waal's eqn. for pressure
i.e. $p_{VW} = 6.18 \times 10^4$ Pa.....Pressure as per Van der Waal's eqn...Ans.


In addition:

Plot the variation of p with T as T varies from 100 K to 800 K, using Ideal gas eqn and Van der Waal's eqn:

$$\begin{split} p(T) &:= \frac{m \cdot R \cdot T}{V} & \dots \text{define } p \text{ as a function of } T \\ p_{VW}(T) &:= \frac{R_u \cdot T}{v bar - b} - \frac{a}{v bar^2} & \dots \text{define } p VW \text{ as a function of } T \end{split}$$

Download free eBooks at bookboon.com

```
T := 100,120...800 ....define a range variable T
```


Prob.9.2. Determine the pressure exerted by CO2 in a container of 1.5 m³ capacity when it contains 6 kg at 27 C (i) by Ideal gas eqn. (ii) by Van der Waals eqn, (iii) by Beattie Bridgman eqn.

Mathcad Solution:

Data:

R_u := 8314.4 J/kg.mole.K m := 6 kg T := 300 K V := 1.5 m3

M := 44 Mol. wt of CO2

Calculations:

(i) By Ideal gas eqn.:

$$R := \frac{R_u}{M} \quad \text{i.e.} \quad R = 188.964 \quad J/kg.K$$
$$p := \frac{m \cdot R \cdot T}{V} \quad Pa \quad \text{i.e.} \quad p = 2.268 \times 10^5 \quad Pa....Pressure by Ideal gas eqn....Ans$$

(ii) By Van der Waals eqn.:

For CO2: a := 364700 Pa.(m^3/kmol)^2 b := 0.0428 m^3/kmol

vbar :=
$$\frac{V}{\left(\frac{m}{M}\right)}$$
 vbar = 11 m3/kg.mol

$$p_{VW} := \frac{R_u \cdot T}{vbar - b} - \frac{a}{vbar^2}$$
Van der Waals eqn.

i.e. $p_{VW} = 2.246 \times 10^{2}$ Pa....Pressure by Van der Waal's eqn.... Ans

(iii) By Beattie Bridgeman eqn.:

For CO2 we have:

```
aa := 0.07132 bb := 0.07235 cc := 66 \cdot 10^4 A<sub>0</sub> := 507.2836 B<sub>0</sub> := 0.10476
```


Download free eBooks at bookboon.com

Real and ideal gases and gas mixtures

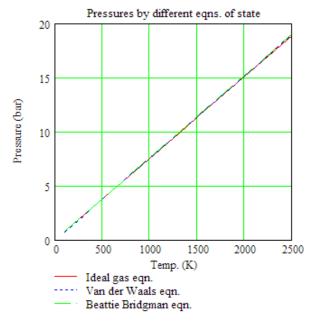
$$A := A_0 \cdot \left(1 - \frac{aa}{vbar}\right) \qquad A = 503.995$$

$$B := B_0 \cdot \left(1 - \frac{bb}{vbar}\right) \qquad B = 0.104$$

$$\varepsilon := \frac{cc}{(vbar \cdot T^3)} \qquad \varepsilon = 2.222 \times 10^{-3}$$

$$p_{BB} := \frac{R_u \cdot T \cdot (1 - \varepsilon)}{vbar^2} \cdot (vbar + B) - \frac{A}{vbar^2} \qquad \dots Beattie Bridgeman eqn.$$

i.e. $p_{BB} = 2.284 \times 10^5$ Pa....Pressure by Beattie Bridgeman eqn.... Ans.


To draw a graph of p for various T:

T := 100,200..2500define a range variable

$$p_{ideal}(T) := \frac{m \cdot R \cdot T}{V} \qquad \dots \text{Ideal gas eqn.}$$

 $p_{VW}(T) := \frac{R_u T}{vbar - b} - \frac{a}{vbar^2} \qquad \dots Van \text{ der Waals eqn.}$

$$p_{BB}(T) := \frac{R_u \cdot T \cdot (1 - \epsilon)}{v bar^2} \cdot (v bar + B) - \frac{A}{v bar^2} \quad ... Beattie Bridgeman eqn.$$

Prob.9.3. Determine the pressure in a steel vessel having a volume of 15 L and containing 3.4 kg of nitrogen at 400 C using: (i) Ideal gas eqn. (ii) Van der Waals eqn. [VTU – Feb. 2002]

Mathcad Solution:

Data:

$$R_u := 8314.4$$
 J/kgmol.K
 $m := 3.4$ kg
 $T := 400 + 273$ K
 $V := 15 \cdot 10^{-3}$ m3
 $M := 28$ Mol. wt of N2

Calculations:

(i) By Ideal gas eqn.:

- $R := \frac{R_u}{M} \qquad \text{i.e.} \qquad R = 296.943 \quad J/kg.K$ $p := \frac{m \cdot R \cdot T}{V} \qquad \text{Pa..... by Ideal gas eqn.}$
- i.e. $p = 4.53 \times 10^7$ Pa.... by Ideal gas eqn.

(ii) By Van der Waals eqn.:

For N2, we have:

$$T_c := 126.2$$
 K $P_c := 3.39 \cdot 10^6$ Pa

Therefore:

$$a := \frac{27 \cdot R_u^2 \cdot T_c^2}{64 \cdot P_c} \qquad b := \frac{R_u \cdot T_c}{8 \cdot P_c} \qquad \dots \text{Van der Waal's constants}$$

i.e. $a = 1.37 \times 10^5 \text{ Pa.}(\text{m}^3/\text{kmol})^2 \qquad b = 0.039 \quad \text{m}^3/\text{kmol}$

Real and ideal gases and gas mixtures

vbar :=
$$\frac{V}{\left(\frac{m}{M}\right)}$$
 vbar = 0.124 m3/kg.mol
 $p_{VW} := \frac{R_u \cdot T}{vbar - b} - \frac{a}{vbar^2}$...Van der Waal's eqn.

 $p_{VW} = 5.698 \times 10^7$ Pa.... by Vqan der Waals eqn.

Compressibility factor:

$$Z := \frac{p_{VW} \cdot V}{R \cdot T} \qquad \dots \text{by definition of } Z$$

i.e. Z = 4.277Ans

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/

> Phone: +61 8 9321 1702 Email: training@idc-online.com Website: www.idc-online.com

ELECTRONICS

AUTOMATION & PROCESS CONTROL

MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS

ELECTRICAL POWER

Click on the ad to read more

Download free eBooks at bookboon.com

Prob.9.4. Pressure and temp. of a mixture of 3 kg of N2 and 5 kg of CO2 are 3 bar and 20 C respectively. For the mixture, determine the following:(i) mole fraction of each component (ii) Avg. Mol. wt. and specific gas constant (iii) partial pressures and partial volumes of CO2 and N2, and (iv) volume & density of the mixture.

Mathcad Solution:

Data:

Calculations:

(i) Mole fractions:

$$n_{N2} := \frac{m_{N2}}{M_{N2}}$$
 $n_{N2} = 0.107$...No. of moles of N2

$$n_{CO2} := \frac{m_{CO2}}{M_{CO2}}$$
 $n_{CO2} = 0.114$...No. of moles of CO2

 $\mathbf{n} \coloneqq \mathbf{n}_{CO2} + \mathbf{n}_{N2} \qquad \mathbf{n} = 0.221 \qquad ... \text{Total no. of moles}$

 $y_{CO2} := \frac{n_{CO2}}{n}$ $y_{CO2} = 0.515$ Mole fraction of O2....Ans.

$$y_{N2} := \frac{n_{N2}}{n}$$
 $y_{N2} = 0.485$ Mole fraction of N2....Ans.

(ii) Avg. Mol. wt.:

 $m_m := m_{CO2} + m_{N2}$ total mass

$$M_m := \frac{m_m}{n}$$
 $M_m = 36.235$ Avg. Mol. wt. of mixture....Ans.

(iii) Specific gas constant:

$$R_{m} := \frac{R_{u}}{M_{m}} \qquad R_{m} = 229.456 \qquad \text{J/kg.K....Specific gas constant....Ans.}$$
Alternatively:
$$R_{mix} := \left(\frac{m_{CO2}}{m_{m}}\right) \cdot \left(\frac{R_{u}}{M_{CO2}}\right) + \left(\frac{m_{N2}}{m_{m}}\right) \cdot \left(\frac{R_{u}}{M_{N2}}\right) \qquad R_{mix} = 229.456 \qquad \dots \text{verified.}$$

(iv) Partial pressures and partial Volumes and Density:

$$p_{N2} := y_{N2} \cdot p$$
 $p_{N2} = 1.456 \times 10^5$ **Pa....Ans.**

 $p_{CO2} := y_{CO2} \cdot p \quad p_{CO2} = 1.544 \times 10^5 \quad Pa....Ans.$

v = v_{CO2} + v_{N2} Mixture vol....by Amagat's Law...at same P & T as mixture

$$V_{CO2} := m_{CO2} \cdot \frac{R_u}{M_{CO2}} \cdot \frac{T}{p}$$
 i.e $V_{CO2} = 0.939$ m3....partial vol. of CO2

 $V_{N2} := m_{N2} \cdot \frac{R_u}{M_{N2}} \cdot \frac{T}{p}$ i.e $V_{N2} = 0.885$ m3....partial vol. of N2

Therefore,

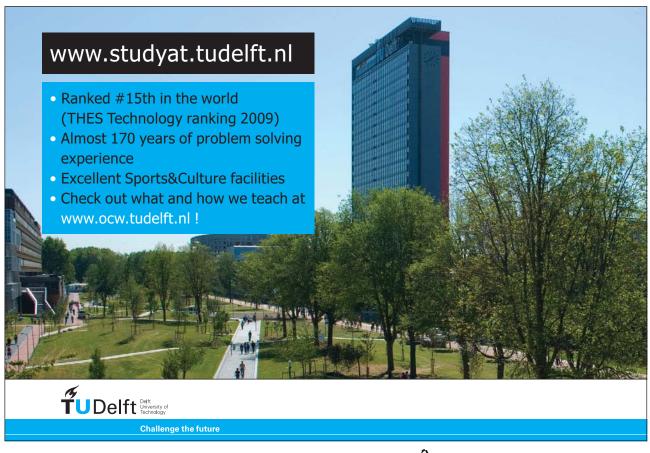
 $V := V_{CO2} + V_{N2}$ total volume

i.e. V = 1.823 m3...Mixture vol...Ans.

Verify:
$$V = \frac{(m \cdot R \cdot T).mix}{p} = \frac{(m_{CO2} + m_{N2}) \cdot R_m \cdot T}{p} = 1.823$$
 ...verified.

Density: $\frac{m_{CO2} + m_{N2}}{V} = 4.387$ kg/m3....Ans.

Prob. 9.5. (a) The above mixture is heated at const. vol. from 25 C to 40 C. Find change in int. energy, enthalpy and entropy of mixture.


(b) if the heating is performed at const. pr. to the same temp. find the change in int. energy, enthalpy and entropy of mixture.

Given: Cp of N2 = 1.04 kJ/kg.K and Cp of CO2 = 0.755 kJ/kg.K

Mathcad Solution:

Data:

 $C_{PN2} := 1.04$ kJ/kg.K $C_{PCO2} := 0.755$ kJ/kg.K $T_1 := 298$ K $T_2 := 313$ K

Real and ideal gases and gas mixtures

Calculations:

(i) Sp. heats of mixture:

 $m_m := m_{CO2} + m_{N2}$ i.e. $m_m = 8$ kg....mass of mixture

Then:

$$Cp_{mix} \coloneqq \frac{(m_{CO2} \cdot Cp_{CO2} + m_{N2} \cdot Cp_{N2})}{m_m}$$

i.e. Cp_{mix} = 0.862 kJ/kg.K....Ans.

And,

$$Cv_{CO2} := Cp_{CO2} - \frac{R_{u} \cdot 10^{-3}}{M_{CO2}}$$

i.e. $Cv_{CO2} = 0.566$ kJ/kg.K

$$Cv_{N2} := Cp_{N2} - \frac{R_u \cdot 10^{-3}}{M_{N2}}$$

And:

$$Cv_{mix} := \frac{\left(m_{CO2} \cdot Cv_{CO2} + m_{N2} \cdot Cv_{N2}\right)}{m_m}$$

i.e. Cv_{mix} = 0.632 kJ/kg.K....Ans.

(ii) Changes in int. energy, enthalpy & entropy of mixture:

$$\Delta U := m_{m} \cdot C v_{mix} \cdot (T_2 - T_1)$$

 $\Delta H := m_m \cdot Cp_{mix} \cdot (T_2 - T_1)$

i.e. ΔH = 103.425 kJ....Ans.

 $\Delta S := m_{m} \cdot Cv_{mix} \cdot \ln \left(\frac{T_{2}}{T_{1}}\right) \qquad kJ/K....for const. vol. process$

i.e. $\Delta S = 0.248$ kJ/K....for const. vol. process..Ans.

(b) Changes in int. energy, enthalpy & entropy of mixture, for const. pressure process:

 $\Delta U := m_{m} \cdot C v_{mix} \cdot (T_2 - T_1)$

i.e. $\Delta U = 75.89$ kJ....Ans....same as earlier..

 $\Delta H := m_m \cdot Cp_{mix} \cdot (T_2 - T_1)$

i.e. $\Delta H = 103.425$ kJ....Ans.....same as earlier..

 $\Delta S := m_{m} \cdot Cp_{mix} \cdot \ln \left(\frac{T_{2}}{T_{1}}\right) \qquad kJ/K....for const. pressure process$ i.e. $\Delta S = 0.339 \qquad kJ/K....for const. pressure process..Ans.$

Prob.9.6. A mixture of Ideal gases contains 3 kg of N2 and 5 kg of CO2. The partial pressure of CO2 in the mixture is 155 kPa. Find: (i) partial pressure of N2 (ii) Gas const. for the mixture, and (iii) Mol. wt. of the mixture . [VTU – Jan. 2006]

Mathcad Solution:

Data:

Calulations:

(i) Mole fractions:

$$n_{CO2} := \frac{m_{CO2}}{M_{CO2}}$$
 i.e. $n_{CO2} = 0.114$...No. of moles of CO2

$$\mathbf{n}_{N2} := \frac{\mathbf{m}_{N2}}{\mathbf{M}_{N2}} \qquad \qquad \text{i.e.} \quad \mathbf{n}_{N2} = 0.107 \qquad \dots \text{No. of moles of N2}$$

 $n := n_{CO2} + n_{N2}$ i.e. n = 0.221 ...Total no. of moles

 $y_{CO2} := \frac{n_{CO2}}{n}$ i.e. $y_{CO2} = 0.515$ Mole fraction of CO2....Ans.

 $y_{N2} := \frac{n_{N2}}{n}$ i.e. $y_{N2} = 0.485$ Mole fraction of N2....Ans.

Therefore,
$$P_{tot} := \frac{PCO2}{yCO2}$$
 i.e. $P_{tot} = 301.143$ kPa....Ans.
And, $p_{N2} := y_{N2} \cdot P_{tot}$ i.e. $p_{N2} = 146.143$ kPa ... Ans.

(ii) Avg. Mol. wt.:

$$M_m := \frac{m_{CO2} + m_{N2}}{n}$$
 i.e. $M_m = 36.235$ Avg. Mol. wt. of mixture....Ans.

(iii) Specific gas constant:

$$R_m := \frac{R_u}{M_m}$$

i.e. R_m = 229.456 J/kg.K....Specific gas constant....Ans.

Prob.9.7. Pressure and temperature of a mixture of 4 kg of O2 and 6 kg of N2 are 4 bar and 27 C respectively. For the mixture, determine the following: (i) mole fraction of each component (ii) Avg. Mol. wt. (iii) specific gas constant (iv) volume and density. [VTU – Jan. 2005]

Mathcad Solution:

Data:

Real and ideal gases and gas mixtures

Calculations:

(i) Mole fractions:

$$n_{O2} := \frac{m_{O2}}{M_{O2}}$$
 i.e. $n_{O2} = 0.125$...No. of moles of O2

- $n_{N2} := \frac{m_{N2}}{M_{N2}} \qquad \qquad \text{i.e.} \quad n_{N2} = 0.214 \qquad \dots \text{No. of moles of N2}$
- $n := n_{O2} + n_{N2}$ i.e. n = 0.339 ... Total no. of moles

 $y_{O2} := \frac{n_{O2}}{n}$ i.e. $y_{O2} = 0.368$ Mole fraction of O2....Ans.

 $y_{N2} := \frac{n_{N2}}{n}$ i.e. $y_{N2} = 0.632$ Mole fraction of N2....Ans.

(ii) Avg. Mol. wt.:

$$M_m := \frac{m_{O2} + m_{N2}}{n}$$
 i.e. $M_m = 29.474$ Avg. Mol. wt. of mixture....Ans.

(iii) Specific gas constant:

$$R_m := \frac{R_u}{M_m}$$
 i.e. $R_m = 282.096$...J/kg.K Ans.

(iv) Volume and Density:

 $v = v_{O2} + v_{N2}$ Mixture vol....by Amagat's Law...at same P & T as mixture

$$\begin{split} v_{O2} &\coloneqq m_{O2} \cdot \frac{R_u}{M_{O2}} \cdot \frac{T}{p} & \text{i.e.} \quad V_{O2} &= 0.779 \quad \text{m3....partial vol. of O2} \\ v_{N2} &\coloneqq m_{N2} \cdot \frac{R_u}{M_{N2}} \cdot \frac{T}{p} & \text{i.e.} \quad V_{N2} &= 1.336 \quad \text{m3....partial vol. of N2} \end{split}$$

Therefore,

 $\mathrm{V} := \mathrm{V}_{O2} + \mathrm{V}_{N2} \quad \dots \text{mixture volume}$

i.e. V = 2.116 m3...Mixture vol...Ans.

Density:

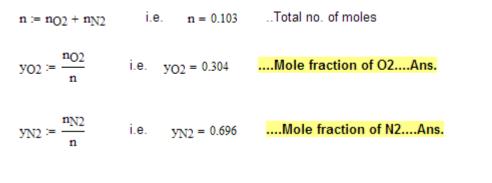
 $\frac{m_{O2} + m_{N2}}{v} = 4.727$ kg/m3....Ans.

Prob.9.8. A gaseous mixture consists of 1 kg of O2 and 2 kg of N2 at a pressure of 150 kPa and temp of 20 C. For the mixture, determine the following:(i) specific gas constant (ii) Avg. Mol. wt. (iii) sp. heats Cp and Cv (iv) change in entropy of the mixture if the mixture is heated at constant volume to a temp. of 100 C. Given: Cv of N2 = 0.743 kJ/kg.K and Cv of O2 = 0.65 kJ/kg.K. [VTU – July, 2004]

Mathcad Solution:

Data:

m _{O2} := 1 kg	M _{O2} := 32	
$m_{N2} := 2$ kg	M _{N2} := 28	
p := 150·10 ³ Pa	R _u := 8314.4	J/kg.mole.K


 $T_1 := 20 + 273$ K $T_2 := 100 + 273$ K

 $Cv_{O2} := 0.65$ kJ/kg.K $Cv_{N2} := 0.743$ kJ/kg.K

Calculations:

- (i) Mole fractions:
- $$\label{eq:nO2} \begin{split} n_{O2} &:= \frac{m_{O2}}{M_{O2}} & \text{i.e.} \quad n_{O2} = 0.031 & \dots \text{No. of moles of O2} \\ \\ n_{N2} &:= \frac{m_{N2}}{M_{N2}} & \text{i.e.} \quad n_{N2} = 0.071 & \dots \text{No. of moles of N2} \end{split}$$

Real and ideal gases and gas mixtures

(ii) Avg. Mol. wt.:

 $M_m := \frac{m_{O2} + m_{N2}}{n}$ i.e. $M_m = 29.217$ Avg. Mol. wt. of mixture....Ans.

(iii) Specific gas constant:

$$R_m := \frac{R_u}{M_m}$$
 i.e. $R_m = 284.57$ J/kg.K....Specific gas constant....Ans

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

Download free eBooks at bookboon.com

(iv) Sp. heats of mixture:

 $m_m := m_{O2} + m_{N2}$ i.e. $m_m = 3$ kg....mass of mixture

$$Cv_{mix} \coloneqq \frac{(m_{O2} \cdot Cv_{O2} + m_{N2} \cdot Cv_{N2})}{m_m} \qquad i.e. \qquad Cv_{mix} = 0.712 \qquad \frac{\text{kJ/kg.K....Ans.}}{\text{kJ/kg.K....Ans.}}$$

$$Cp_{O2} := Cv_{O2} + \frac{R_u \cdot 10^{-3}}{M_{O2}}$$
 i.e. $Cp_{O2} = 0.91$ kJ/kg.K

$$Cp_{N2} := Cv_{N2} + \frac{R_u \cdot 10^{-3}}{M_{N2}}$$
 i.e. $Cp_{N2} = 1.04$ kJ/kg.K

$$Cp_{mix} := \frac{\left(m_{O2} \cdot Cp_{O2} + m_{N2} \cdot Cp_{N2}\right)}{m_m} \qquad i.e. \quad Cp_{mix} = 0.997 \quad kJ/kg.K...Ans.$$

(v) Change in entropy:

$$\Delta S := m_{m} \cdot \left(Cv_{mix} \cdot ln \left(\frac{T_2}{T_1} \right) \right) \qquad \dots \text{at const. volume}$$

i.e. $\Delta S = 0.516$ kJ/K....Ans.

Prob.9.9. Pressure and temperature of a mixture of 1 kg of O2 and 2 kg of N2 are 150 kPa and 20 C respectively. If the mixture is heated at constant pressure to a temp. of 100 C, determine the following: (i) change in enthalpy (ii) change in entropy (iii) change in int. energy.

Given: Cv of N2 = 0.743 kJ/kg.K and Cv of O2 = 0.65 kJ/kg.K. [VTU – Jan, 2005]

Mathcad Solution:

Data:

Calculations:

(i) Sp. heats of mixture:

 $\mathbf{m}_m \coloneqq \mathbf{m}_{O2} + \mathbf{m}_{N2} \qquad \quad \text{i.e.} \quad \mathbf{m}_m = \textbf{3} \qquad \text{kg....mass of mixture}$

$$Cv_{mix} := \frac{(m_{O2} \cdot Cv_{O2} + m_{N2} \cdot Cv_{N2})}{m_m}$$
 i.e. $Cv_{mix} = 0.712$ kJ/kg.K....Ans.

$$Cp_{O2} := Cv_{O2} + \frac{R_u \cdot 10^{-3}}{M_{O2}}$$
 i.e. $Cp_{O2} = 0.91$ kJ/kg.K

 $Cp_{N2} := Cv_{N2} + \frac{R_u \cdot 10^{-3}}{M_{N2}}$ i.e. $Cp_{N2} = 1.04$ kJ/kg.K

 $Cp_{mix} := \frac{\left(m_{O2} \cdot Cp_{O2} + m_{N2} \cdot Cp_{N2}\right)}{m_m} \qquad i.e. \quad Cp_{mix} = 0.997 \qquad kJ/kg.K....Ans.$

(ii) Change in enthalpy:

 $\Delta H := m_m \cdot Cp_{mix} \cdot (T_2 - T_1)$ i.e. $\Delta H = 239.177$ kJ....Ans.

(iii) Change in entropy:

 $\Delta S := m_{m} \cdot \left(C p_{mix} \cdot ln \left(\frac{T_{2}}{T_{1}} \right) \right) \qquad \dots at \text{ const. pressure}$

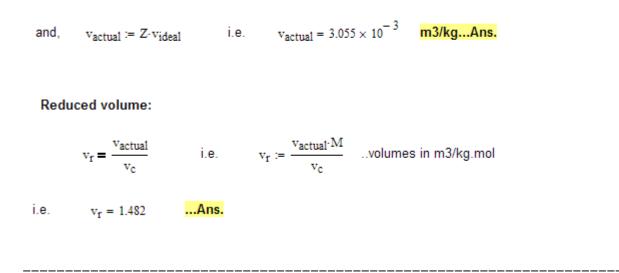
i.e. $\Delta S = 0.722$ kJ/K....Ans.

(iv) Change in internal energy:

$$\Delta U := m_{m} \cdot Cv_{mix} \cdot (T_{2} - T_{1})$$

i.e. $\Delta U = 170.88$ kJ....Ans.

Prob.9.10. Neon, with Mol. wt :M=20.183, and critical properties: Tc = 44.5 K, pc = 2.73 MPa, Vc= 0.0416 m3/kg.mol. Reading from compressibility chart for a reduced pressure pr = 2 and reduced temp Tr = 1.3, the compressibility factor is Z=0.7. Find corresponding sp. vol., pressure, temp and reduced


Data:

$$\begin{split} M &\coloneqq 20.183 \quad T_c \coloneqq 44.5 \quad K \qquad p_c \coloneqq 2.73 \cdot 10^3 \quad k\text{Pa} \qquad v_c \coloneqq 0.0416 \quad \text{m3/kmol} \\ p_r &\coloneqq 2 \quad T_r \coloneqq 1.3 \quad Z \coloneqq 0.7 \quad R_u \coloneqq 8314 \quad \text{J/kmol.K} \end{split}$$

Calculations:

 $p := p_c \cdot p_r$ i.e. $p = 5.46 \times 10^3$ kPa....Ans. T := T_c·T_r i.e. T = 57.85 K....Ans.

Now, $Z = \frac{v_{actual}}{v_{ideal}}$ and, $v_{ideal} := \frac{\frac{R_u}{M} \cdot T}{n \cdot 10^3}$ i.e. $v_{ideal} = 4.365 \times 10^{-3}$ m3/kg

Prob.9.11. Find increase in entropy when 2 kg of O2 at 60 C mixes with 6 kg of N2 at the same temp. The initial pressure of each constituent is 103 kPa and is the same as that of the mixture. [VTU – Jan. 2005]

Download free eBooks at bookboon.com

Mathcad Solution:

Data:

$$m_{O2} := 2$$
 kg $M_{O2} := 32$
 $m_{N2} := 6$ kg $M_{N2} := 28$
 $p := 103 \cdot 10^3$ Pa $R_u := 8314.4$ J/kg.mole.K
 $T_1 := 60 + 273$ K

Calculations:

(i) Mole fractions:

$$\label{eq:nO2} \begin{split} n_{O2} &:= \frac{m_{O2}}{M_{O2}} & \mbox{i.e.} \quad n_{O2} = 0.063 & \mbox{...No. of moles of O2} \\ n_{N2} &:= \frac{m_{N2}}{M_{N2}} & \mbox{i.e.} \quad n_{N2} = 0.214 & \mbox{...No. of moles of N2} \end{split}$$

 $\mathbf{n} \coloneqq \mathbf{n}_{O2} + \mathbf{n}_{N2} \qquad \text{i.e.} \quad \mathbf{n} = 0.277 \qquad .. \text{Total no. of moles}$

 $y_{O2} := \frac{n_{O2}}{n}$ i.e. $y_{O2} = 0.226$ Mole fraction of O2....Ans.

 $y_{N2} := \frac{n_{N2}}{n}$ i.e. $y_{N2} = 0.774$ Mole fraction of N2....Ans.

(ii) Change in entropy:

$$\Delta S := R_{u} \cdot \left(n_{O2} \cdot \ln \left(\frac{1}{y_{O2}} \right) + n_{N2} \cdot \ln \left(\frac{1}{y_{N2}} \right) \right)$$

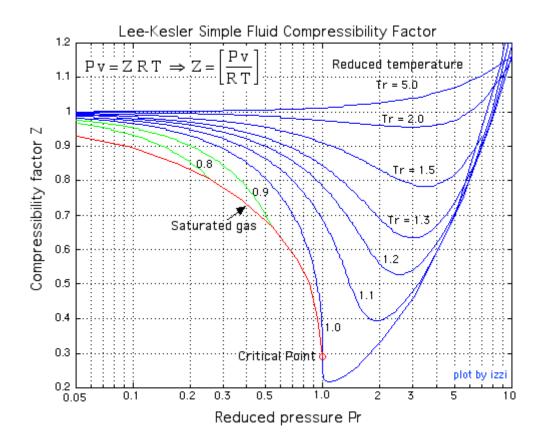
i.e. $\Delta S = 1.229 \times 10^3$ J/kg.mole.K....Ans.

62

Prob.9.12. Determine the sp. vol. of H2 gas at 100 K, when its pressure is 60 bar, (i) by using compressibility chart (ii) by Van der Waals eqn. Values of critical properties Pc and Tc for H2 are given, and also the values of a and b in Van der Waals eqn. [VTU – Jan. 2004]

Mathcad Solution:

Data:


Calculations:

(i) By compressibility chart:

$$T_r := \frac{T}{T_c}$$
 i.e. $T_r = 3.008$

$$p_r := \frac{p_{VW}}{P_c}$$
 i.e. $p_r = 4.644$

Then, read Z from compressibility chart:

64

Click on the ad to read more

Download free eBooks at bookboon.com

Real and ideal gases and gas mixtures

We get: Z := 0.99

For Ideal gas: $Z = \frac{p \cdot v}{R \cdot T}$ Then, v can be calculated.

Then:
$$v_{ideal} := \frac{Z \cdot \frac{R_u}{M} \cdot T}{\frac{P_{ideal}}{P_{ideal}}}$$

i.e. videal = 0.069 m^3....sp.vol. according to Ideal gas Law ... Ans.

(ii) By Van der Waals eqn.:

pVW := 60.10⁵ Pa

Use the Solve block of Mathcad to find vbar:

Given

$$p_{VW} = \frac{R_u \cdot T}{v bar - b} - \frac{a}{v bar^2}$$

Find(vbar) = 0.141

i.e. vbar := 0.141

Now,

vbar =
$$\frac{V}{\left(\frac{m}{M}\right)}$$

Therefore, $V := vbar \cdot \frac{m}{M}$

i.e. V = 0.071 m3.sp. vol. according to Van der Waals eqn.....Ans.

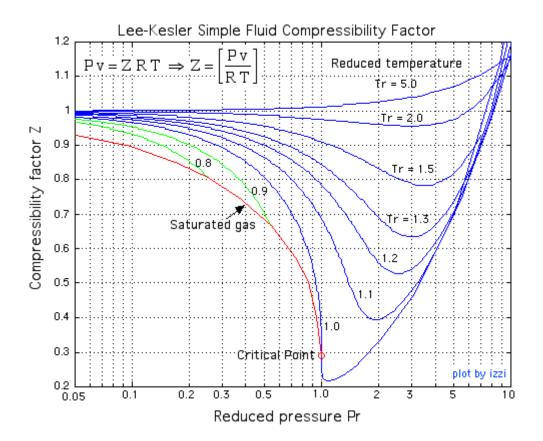
Prob.9.13. Determine the compressibility factor for Oxygen at (i) 100 bar and -75 C, and (ii) 5 bar and 35 C.

Mathcad Solution:

Data:

For O2, we have the critical properties:

T_c := 154.88 K P_c := 50.6 bar R_u := 8314.4 J/kg.K


Calculations:

Case 1: P = 100 bar, T = -75 C:

For this case, reduced pressure and reduced temp:

$$p_r := \frac{P}{P_c}$$
 i.e. $p_r = 1.976$
 $T_r := \frac{T}{T_c}$ i.e. $T_r = 1.278$

Now, from compressibility chart, read the value of Z, the compressibility factor:

OLIVER WYMAN

Cliver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk management, organizational transformation, and leadership development. With offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at **oliverwyman.com/careers**

Real and ideal gases and gas mixtures

We get: Z = 0.7 ... compressibility factor ... Ans.

Case 2: P = 5 bar, T = 35 C

For this case, reduced pressure and reduced temp:

For this case, reduced pressure and reduced temp:

$$T := 35 + 273$$
 K $P := 5$ bar
 $p_r := \frac{P}{P_c}$ i.e. $p_r = 0.099$
 $T_r := \frac{T}{T_c}$ i.e. $T_r = 1.989$

Now, from compressibility chart, read the value of Z, the compressibility factor:

We get: Z = 1 ...approx. ...compressibility factor ... Ans.

i.e. at low pressures and high temps, real gas eqn approaches ideal gas eqn.

Prob.9.14. One kg.mol of CO2 undergoes a reversible, non-flow isothermal compression from 0.2 m³/ kg to 0.05 m⁵/kg, and the initial temp is 40 C. If the gas obeys Van der Waals eqn, determine the work done and the final pressure.

Mathcad Solution:

Data:

Critical properties for CO2:

sp. volumes:

 $v_1 := 0.2 \cdot M$ i.e. $v_1 = 8.8$ m^3/kg.mol $v_2 := 0.05 \cdot M$ i.e. $v_2 = 2.2$ m^3/kg.mol

Van der Waals constants for CO2:

- a := 364700 Pa.(m^3/kmol)^2
- b := 0.0428 m^3/kmol

Van der Waals eqn:

$$\begin{pmatrix} p + \frac{a}{v^2} \end{pmatrix} \cdot (v - b) = R_u \cdot T$$

i.e. $p(v) := \frac{R_u \cdot T}{v - b} - \frac{a}{v^2} \qquad \dots define \text{ pressure as a function of sp. volume, } v$

(i) Therefore, Work done, W:

$$\mathrm{W} := \int_{v_1}^{v_2} p(v) \; dv$$

i.e. $W = -3.522 \times 10^6$ J/kg.mol Ans.

Note: the negative sign indicates that work is done on the CO2.

Note also the ease with which this integration is done in Mathcad.

(ii) Final pressure, P2:

 $P2 := p(v_2)$...using the function for pressure, written above

i.e. $P2 = 1.131 \times 10^6$ Pa = 11.31 bar Ans.

9.12 Problems solved with EES:

"**Prob. 9.15.** An ideal gas cycle consisting of 3 processes uses Argon (M = 40) as working substance. Process 1-2 is a reversible adiabatic process from 0.014 m^3, 700 kPa and 280 C to 0.056 m^3. Process 2-3 is a reversible isothermal process. Process 3-1 is an isobaric process. Sketch the cycle on P-v and T-s diagrams, and find: (i) the work transfer in process 1-2, (ii) work transfer in process 2-3, (iii) net work output from the cycle (assume gamma = 1.67), and (iv) change in enthalpy for each process. [VTU – July 2004]:"

EES Solution:

D 2010 EYGM Lir

"Data:"

M = 40 "... Mol. wt. of Argon" R_u = 8.314 "kJ/kg.mol -K" R = R_u / M "kJ/kg.K Gas const. for Argon" V1 = 0.014"m^3" P1 = 700 "kPa" T1 = 280 + 273 "K" V2 = 0.056 "m^3" T2 = T3 "...Process 2-3 is Isothermal"

Day one and you're ready

Day one. It's the moment you've been waiting for. When you prove your worth, meet new challenges, and go looking for the next one. It's when your dreams take shape. And your expectations can be exceeded. From the day you join us, we're committed to helping you achieve your potential. So, whether your career lies in assurance, tax, transaction, advisory or core business services, shouldn't your day one be at Ernst & Young?

What's next for your future? ey.com/careers

ERNST & YOUNG Quality In Everything We Do

Real and ideal gases and gas mixtures

Q_12 = 0 "...Process 1-2 is adiabatic" P3 = P1 "Process 3-1 is isobaric" gamma = 1.67

"Calculations:"

cp / cv = gamma "...by definition gamma = cp / cv" cp - cv = R "Gas constant" m_Ar = (P1 * V1) / (R * T1) "kg ... mass of Argon"

"Process 1-2:"

P1 * V1^gamma = P2 * V2^gamma "...finds P2" P1 * V1 / T1 = P2 * V2 / T2 "...finds T2" W_12 = (P1 * V1 - P2 * V2) / (gamma -1) "kJ" Q_12 = dU_12 + W_12 "....finds dU_12, change in int. energy during Process 1-2"

"Process 2-3"

W_23 = m_Ar * R * T2 * ln (V3 / V2) "kJ" dU_23 = 0 "...since Isothermal" Q_23 = W_23 + dU_23 "kJ" P2 * V2 = P3 * V3 "...finds V3"

"Process 3-1:"

W_31 = P3 * (V1 - V3) "kJ ... work in process 3-1" Q_31 = dU_31 + W_31"kJ heat transfer in process 3-1" dU_31 = m_Ar * cv * (T1 - T3) "kJ...change in int. energy during 3-1" W_net = W_12 + W_23 + W_31"kJ.... net work output"

"Check:"

 $Q_{net} = Q_{12} + Q_{23} + Q_{31}$ "...for a closed cycle 1-2-3, this should be equal to W_net"

"Changes in enthalpy for each process:"

 $dH_{12} = m_Ar * cp * (T2 - T1) "kJ"$ $dH_{23} = 0 "kJ since T2 = T3"$ $dH_{31} = m_Ar * cp * (T1 - T3) "kJ"$

Results:

Unit Settings: SI C kPa kJ mass deg

cp = 0.5181 [kJ/kg-K]	cv = 0.3102 [kJ/kg-K]	dH ₁₂ =-14.78 [kJ]
dH ₂₃ = 0 [kJ]	dH ₃₁ = 14.78 [kJ]	dU ₁₂ = -8.849 [kJ]
dU ₂₃ = 0 [kJ]	dU ₃₁ = 8.849 [kJ]	γ = 1.67 [-]
M = 40 [kg/kg-mole]	m _{Ar} = 0.08526 [kg]	P1 = 700 [kPa]
P2 = 69.13 [kPa]	P3 = 700 [kPa]	Q ₁₂ =0 [kJ]
Q ₂₃ =-8.962 [kJ]	Q ₃₁ = 14.78 [kJ]	Q _{net} = 5.815 [kJ]
R = 0.2079	R _u = 8.314 [kJ/kg-mole-K]	T1 = 553 [K]
T2 = 218.4 [K]	T3 = 218.4 [K]	V1 = 0.014 [m ³]
∨2 = 0.056 [m ³]	∨3 = 0.00553 [m ³]	W ₁₂ = 8.849 [kJ]
W ₂₃ = -8.962 [kJ]	W ₃₁ = 5.929 [kJ]	W _{net} = 5.815 [kJ]

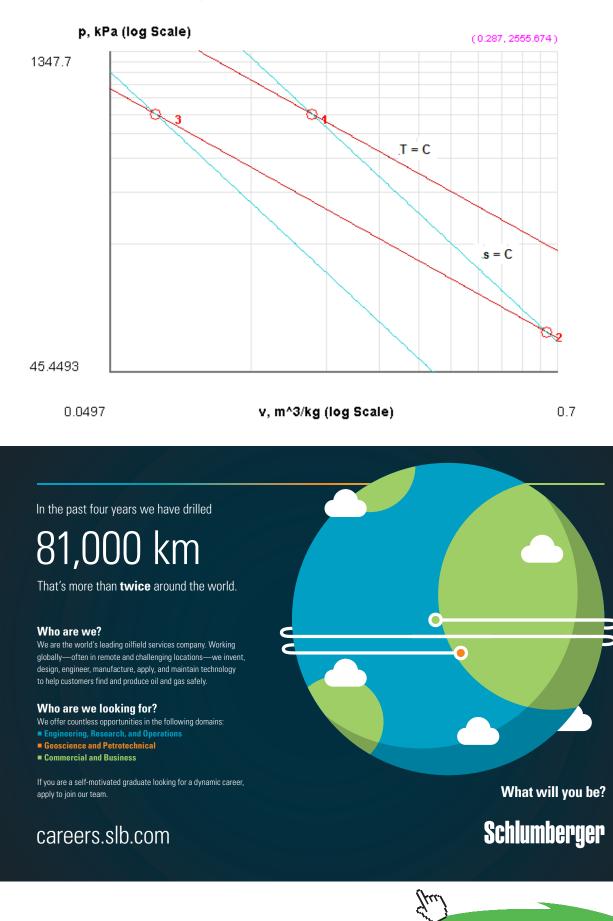
Thus:

Work transfer in process 1-2 = W_12 = 8.849 kJ ... Ans.

Work transfer in process $2-3 = W_2 = -8.962 \text{ kJ} \dots$ negative sign showing that work is done on the gas ...Ans.

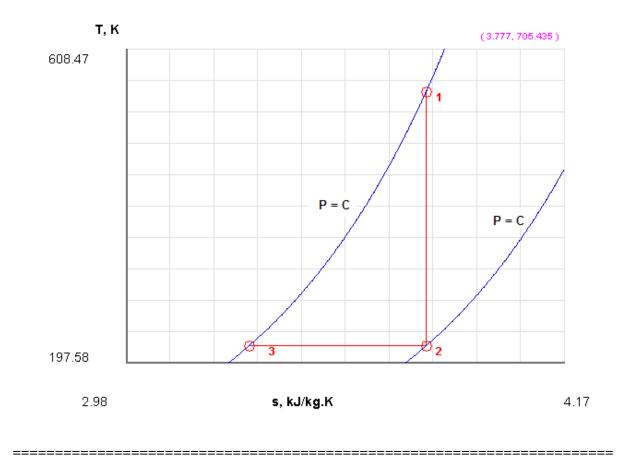
Net work output from the cycle = W_net = 5.815 kJ Ans.

Check: W_net = Q_net = 5.815 kJO.K.


Changes in enthalpy:

Process 1-2: dH_12 = -14.78 kJ ... Ans.

Process 2-3: dH_23 = 0 kJ ... Ans.


Process 3-1: dH_31 = 14.78 kJ ... Ans.

Plot the cycle on P-v and T-s diagrams (from TEST):

Download free eBooks at bookboon.com

Click on the ad to read more

"**Prob.9.16.** Determine the pressure exerted by CO2 in a container of 1.5 m3 capacity when it contains 4 kg at 30 C (i) using Ideal gas eqn. (ii) using Van der Waal's eqn, and (iii) using Beattie-Bridgeman eqn."

EES Solution:

Following are the three Equations of State:

Ideal Gas eqn:

$$p_{ideal} = mass \cdot R \cdot \frac{T}{V} Pa$$

Van der Waal's eqn:

$$p_{VW} = \frac{R_u \cdot T}{\overline{v} - b} - \frac{a}{\overline{v}^2} Pa$$

Beattie Bridgeman eqn:

$$p_{BB} = \frac{R_u \cdot T \cdot (1 - \epsilon)}{\overline{v}^2} \cdot (\overline{v} + BBB) - \frac{AAA}{\overline{v}^2} Pa$$

Constants in the above three eqns. are given below:

"Data:"

R_u = 8314.4"J/kg.mol.K"

M = 44"Mol. wt."

V = 1.5"m3"

mass = 4.0 "kg"

T = 303 **"K"**

a = 3.647E05 "Nm^4/kgmol^2....const. in Van der Waal's eqn."

b = 0.0428"m3/kgmol....const. in Van der Waal's eqn."

 $epsilon = cc / (v_bar * T^3)$ "..factor in Beattie Bridgeman eqn."

 $AAA = A_0 * (1-aa / v_bar)$ ".factor A in Beattie Bridgeman eqn."

 $BBB = B_0 * (1 - bb / v_bar)$ "..factor B. in Beattie Bridgeman eqn."

A_0 = 507.2836"..const. in Beattie Bridgeman eqn."

aa = 0.07132"..const. in Beattie Bridgeman eqn."

B_0 = 0.10476"...const. in Beattie Bridgeman eqn."

bb = 0.07235"..const. in Beattie Bridgeman eqn."

cc = 66E04"..const. in Beattie Bridgeman eqn."

"_____"

"(i) Ideal gas eqn.:"

 $R = R_u / M$ "...specific gas constant"

p_ideal = mass * R * T/V "Pa"

Real and ideal gases and gas mixtures

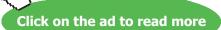
"(ii) Van der Waal's eqn.:"

v_bar = V / (mass/M) "m3/kgmole....molar volume"

 $p_VW = ((R_u * T) / (v_bar - b)) - (a / v_bar^2) "Pa"$

"(iii) Beattie Bridgeman eqn.:"

 $p_BB = ((R_u * T * (1 - epsilon)) / (v_bar)^2) * (v_bar + BBB) - AAA / (v_bar)^2 "Pa"$



Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Dove

Results:

Unit Settings: SI C kPa kJ mass deg

a= 364700 [Nm ⁴ /kg-mol ²]	aa = 0.07132
AAA = 505.1	A ₀ = 507.3
b = 0.0428 [m ³ /kgmol]	bb = 0.07235
BBB = 0.1043	B ₀ = 0.1048
cc = 660000	ε = 0.001438
M = 44	mass = 4 [kg]
p _{BB} =153425 [Pa]	p _{ideal} = 152683 [Pa]
p _{VW} = 151740 [Pa]	R = 189 [J/kg-K]
R _u = 8314 [J/kg-mol-K]	T = 303 [K]
∨ = 1.5 [m ³]	⊽ = 16.5 [m ³ /kg-mol]

Thus:

Pressure as per Ideal Gas eqn. = p_ideal = 152683 Pa Ans.

Pressure as per Van der Waals eqn. = p_VW = 151740 Pa Ans.

Pressure as per Beattie Bridgeman eqn. = p_BB = 153425 Pa Ans.

"**Prob.9.17.** A cylinder 0.01 m³ volume is filled with 0.727 kg of n-octane (C8H18) at 427.85 K. Assuming that n-octane obeys the Van der Waals eqn of state, calculate the pressure of the gas in the cylinder. Take constants a and b as $3.789 \text{ Pa} (\text{m}^3/\text{mol})^2$ and $2.37 \text{ E-04 m}^3/\text{mol}$ respectively. [VTU – Dec. 2008–Jan. 2009]"

EES Solution:

"Data:"

 $R_u = 8314.4$ "J/kg.mol.K"

M = 114.232"Mol. wt."

V = 0.01"m3"

mass = 0.727"kg.."

T = 427.85 **"K"**

a = 3.789E05 "Nm^4/kgmol^2....const. in Van der Waal's eqn."

b = 2.37E-04"m3/kgmol....const. in Van der Waal's eqn."

"Van der Waal's eqn.:"

v_bar = V / (mass/M) "m3/kgmol....molar volume"

 $p_VW = ((R_u * T) / (v_bar - b)) - (a / v_bar^2) "Pa"$

Results:

Unit Settings: SI C kPa kJ mass deg

a= 378900 [Nm ⁴ /kg-mol4]	b=0.000237 [m³/kgmol]	M = 114.2
mass = 0.727 [kg]	p _{VW} = 2.111E+06 [Pa]	R _u = 8314 [J/kg-mol-K]
T = 427.9 [K]	V = 0.01 [m ³]	⊽ = 1.571 [m ³ /kg-mol]

Thus:

Pressure = p_VW = 21.11E05 Pa = 21.11 bar Ans.

"**Prob.9.18**. If the above gas undergoes an isothermal compression to a volume of 0.005 m³, find out the final pressure, and change in entropy."

EES Solution:

"Data:"

 $R_u = 8314.4$ "J/kg.mol.K"

M = 114.232 "Mol. wt."

 $R = R_u / M$ "J/kg.K..Gas const. for n-octane"

V1 = 0.01"m3 ... initial volume"

mass = 0.727"kg.."

T = 427.85 **"K**"

a = 3.789E05 "Nm^4/kgmol^2....const. in Van der Waal's eqn."

b = 2.37E-04"m3/kgmol....const. in Van der Waal's eqn."

"Initial pressure:"

v1_bar = V1 / (mass/M) "m3/kgmole....molar volume"

 $p1_VW = ((R_u * T) / (v1_bar - b)) - (a / v1_bar^2) "Pa"$

"Final pressure:"

V2 = 0.005 "m^3"

v2_bar = V2 / (mass/M) "m3/kgmole....molar volume"

p2_VW = ((R_u * T) / (v2_bar - b)) - (a / v2_bar^2) "Pa final pressure"

"Change in entropy: ... at constant T:"

 $dS = - mass * R * ln (p2_VW / p1_VW) "J/K"$

Results:

Unit Settings: SI C kPa kJ mass deg

a= 378900 [Nm ⁴ /kg-mol ²]	b = 0.000237 [m ³ /kgmol]
dS =-32.69 [J/K]	M = 114.2
mass = 0.727 [kg]	p1 _{VW} = 2.111E+06 [Pa]
p2 _{VW} = 3.915E+06 [Pa]	R = 72.79 [J/kg-K]
R _u = 8314 [J/kg-mol-K]	T = 427.9 [K]
∨1 = 0.01 [m ³]	√1 = 1.571 [m ³ /kg-mol]
∨2 =0.005 [m ³]	√2 = 0.7856 [m ³ /kg-mol]

Thus:

Final pressure = p2_VW = 3.915E06 Pa = 39.15 bar ... Ans.

Change in entropy – dS = -32.69 J/K ...entropy decreases in compression... Ans.

"Prob.9.19. If the temp of the gas in Prob.9.17 changes to 700 K, volume remaining constant at 0.01 m^3, find out the final pressure, and changes in enthalpy and entropy.

Given: sp. heat at constant pressure for n-octane is given by:

 $cp = C_0 + C_1 * theta + C_2 * theta^2 + C_3 * theta^3$, kJ/kg.K where

theta = T(Kelvin)/1000. Values of C_0, C_1, C_2 and C_3 are given below. (Ref:2)"

EES Solution:

"Data:"

R_u = 8314.4"J/kg.mol.K"

M = 114.232"Mol. wt."

 $R = R_u / M$ "J/kg.K..Gas const. for n-octane"

V1 = 0.01"m3 ... initial volume"

Click on the ad to read more

mass = 0.727"kg.."

T1 = 427.85 **"K**"

T2 = 700 **"K**"

a = 3.789E05 "Nm⁴/kgmol²....const. in Van der Waal's eqn."

b = 2.37E-04"m3/kgmol....const. in Van der Waal's eqn."

"To find cp of n-octane:"

 $C_0 = -0.053$ $C_1 = 6.75$ $C_2 = -3.67$ $C_3 = 0.775$

 $T_avg = (T1 + T2)/2$ "...find the average temp."

theta = T_avg/1000 "...at an average temp"

 $cp = C_0 + C_1 * theta + C_2 * theta^2 + C_3 * theta^3 "kJ/kg.K ... sp. heat ct const. pressure"$

 $cp * 10^3 - cv = R$ "... finds cv in J/kg.K"

"Initial pressure:"

v1_bar = V1 / (mass/M) "m3/kgmole....molar volume"

 $p1_VW = ((R_u * T1) / (v1_bar - b)) - (a / v1_bar^2) "Pa"$

"Final pressure:"

p2_VW = ((R_u * T2) / (v1_bar - b)) - (a / v1_bar^2) "Pa final pressure"

"Change in internal energy:"

dU = mass * cv * (T2 - T1) "J"

Real and ideal gases and gas mixtures

"Change in enthalpy:"

dH = mass * cp * (T2 – T1) "J"

"Change in entropy: ... at constant volume:"

dS = mass * cv * ln (T2/T1) "J/K"

Results:

Unit Settings: SI C kPa kJ mass deg

a= 378900 [Nm ⁴ /kg-mol ²]	b =
cv = 2653 [J/kg-K]	C0=
C ₂ =-3.67	C3=
dS = 949.4 [J/K]	dU
mass = 0.727 [kg]	p1 _V
R = 72.79 [J/kg-K]	R _u
T2 = 700 [K]	θ=
∨1 = 0.01 [m ³]	√1 =

b = 0.000237 [m ³ /kgmol]
C ₀ = -0.053
C ₃ = 0.775
dU = 524823 [J]
p1 _{VW} = 2.111E+06 [Pa]
R _u = 8314 [J/kg-mol-K]
0 = 0.5639
√1 = 1.571 [m ³ /kg-mol]

cp = 2.725 [kJ/kg-K]
C ₁ = 6.75
dH = 539.2 [J]
M = 114.2
p2 _{VW} = 3.551E+06 [Pa]
T1 = 427.9 [K]
T _{avg} = 563.9 [K]

Thus:

Final pressure = p2_VW = 3.551E06 Pa = 35.51 bar ... Ans.

cp = 2.725 kJ/kg.K ... sp. heat at const. pressure.

cv = 2.653 kJ/kg.K ... sp. heat at const. vol.

Change in internal energy = $dU = 524.823 \text{ kJ} \dots \text{ Ans.}$

Change in enthalpy = dH = 539.2 J Ans.

Change in entropy = dS = 949.4 J/K ... Ans.

"Prob.9.20. A vessel of capacity 3 m³ contains 1 kgmole of N2 at 90 C.

Calculate: (i) the pressure and sp. volume of the gas (ii) If the ratio of sp. heats is 1.4, obtain cp and cv (iii) Subsequently, the gas cools to atm. temp of 20 C; evaluate the final pressure of gas (iv) Evaluate the increase in sp. internal energy, the increase in sp. enthalpy, increase in sp. entropy and heat transfer. [VTU – Dec. 2009–Jan. 2010]:"

Real and ideal gases and gas mixtures

EES Solution:

"Data:"

M = 28 "... Mol. wt. of N2"

- $R_u = 8314 \text{ "J/kg.mol -K"}$
- $R = R_u / M "J/kg.K \dots$ Gas const. for N2"
- V1 = 3 "m^3"
- T1 = 90 + 273 "K"

T2 = 20 + 273 "K"

gamma = 1.4 "...ratio of sp. heats"

mass_N2 = 28 "kg..mass of N2..since one kmol = M kg"

Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

Real and ideal gases and gas mixtures

"Calculations:"

cp / cv = gamma "...by definition gamma = cp / cv"

cp - cv = R "...finds cp and cv "

mass_N2 = (P1 * V1) / (R * T1) "finds Pressure P1 of N2, in Pa"

"Therefore: sp. vol. of N2"

v_N2 = V1/mass_N2 "m^3/kg ... sp. vol. of N2"

"Pressure of gas when temp is T2 (=20 C):"

P1/ T1 = P2 / T2 "by Ideal gas Law at const. vol....finds P2"

"Increase in specific internal energy: i.e. for 1 kg"

du = cv * (T2 - T1) "J"

"Increase in sp. enthalpy:"

dh = cp * (T2 - T1) "J"

"Increase in sp. entropy: ... at const. vol."

ds = cv * ln (T2/T1) "J/K"

"Heat transfer:"

Q = dU + W ". J/kg ...by I Law"

W = 0 "...since it is a const. vol. process"

Results:

Unit Settings: SI C kPa kJ mass deg

cp = 1039 [J/kg-K]	cv = 742.3 [J/kg-K]	dh=-72747 [J/kg]
ds=-159 [J/kg-K]	du=-51962 [J/kg]	γ = 1.4 [-]
M = 28 [kg/kg-mole]	mass _{N2} = 28 [kg]	P1 = 1.006E+06 [Pa]
P2 = 812001 [Pa]	Q =-51962 [J/kg]	R = 296.9 [J/kg-K]
R _u = 8314 [kJ/kg-mole-K]	T1 = 363 [K]	T2 = 293 [K]
V1 = 3 [m ³]	v _{N2} = 0.1071 [m ³ /kg]	W = 0 [J]

Thus:

Pressure of gas = P1 = 10.06 bar , sp. vol. = $v_N 2 = 0.1071 \text{ m}^3/\text{kg} \dots$ Ans.

cp = 1039 J/kg.K and cv = 742.3 J/kg.K Ans.

Pressure of gas when temp is $20 \text{ C} = P2 = 8.12 \text{ bar} \dots \text{ Ans.}$

Change in sp. int. energy = du = -51962 J/kg ... decrease since -ve,.... Ans.

Change in sp. enthalpy = dh = -72747 J/kg ... decrease since -ve,.... Ans.

Change in sp. entropy = ds = -159 J/kg.K ... decrease since -ve,.... Ans.

Heat transfer = Q = du = -51962 J/kg ... decrease since -ve,.... Ans.

"**Prob. 9.21.** Find the gas constant and apparent molar mass of a mixture of 2 kg O2 and 3 kg of N2, given that universal gas constant is 8314.3 J/kgmol.K, molar masses of O2 and N2 are respectively 32 and 28. [VTU – July 2006]:"

EES Solution:

"Data:"

M_N2 = 28 "... Mol. wt. of N2"

M_O2 = 32 "... Mol. wt. of O2"

 $mass_N2 = 3$ "kg...mass of N2"

Real and ideal gases and gas mixtures

 $mass_O2 = 2$ "kg ... mass of O2"

R_u = 8314.3 "J/kg.mol -K"

"Calculations:"

 $mass_mix = mass_N2 + mass_O2$

- n_N2 = mass_N2 / M_N2 "...no. of moles of N2"
- $n_O2 = mass_O2 / M_O2$ "...no. of moles of O2"

n_tot = n_N2 + n_O2 "...total no. of moles in mixture"

"Avg. Mol. wt."

 $M_{mix} = mass_{mix} / n_{tot}$

"Sp. gas const. of mixture:"

 $R_mix = R_u / M_mix "J/kg.K .."$

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**

86

Real and ideal gases and gas mixtures

Results:

Unit Settings: SI C kPa kJ mass deg

mass _{mix} = 5 [kg]	mass _{N2} = 3 [kg]	mass ₀₂ = 2 [kg]
M _{mix} = 29.47	M _{N2} = 28	M _{O2} = 32
n _{N2} = 0.1071	n _{O2} = 0.0625	n _{tot} = 0.1696
R _{mix} = 282.1 [J/kg-K]	R _u = 8314 [kJ/kg-mole-K]	

Thus:

Mol. wt. of mixture = M_mix = 29.47 Ans.

Gas const. of mixture = R_mix = 282.1 J/kg.K Ans.

"**Prob. 9.22.** A gaseous mixture consists of 1 kg of Oxygen and 2 kg of Nitrogen initially at a pressure of 150 kPa and temp of 20 C. It is heated at constant pressure until its temp reaches 100 C. Determine: (i) change in enthalpy, (ii) change in entropy and (iii) change in internal energy. Given: Cp of N2 = 1.04 kJ/kg.K and Cp of O2 = 0.922 kJ/kg.K [VTU – Jan.–Feb. 2005]:"

EES Solution:

"Data:"

M_N2 = 28 "... Mol. wt. of N2"

- M_O2 = 32 "... Mol. wt. of O2"
- $mass_N2 = 2$ "kg...mass of N2"
- mass_O2 = 1 "kg ... mass of O2"

 $R_u = 8314.3$ "J/kg.mol -K"

cp_O2 = 0.922 "kJ/kg.K"

cp_N2 = 1.04 "kJ/kg.K"

P1 = 150 "kPa ... initial pressure"

Real and ideal gases and gas mixtures

T1 = 20 + 273 "K ... initial temp."

T2 = 100 + 273 "K ... final temp."

P2 = P1 "...by data"

"Calculations:"

mass_mix = mass_N2 + mass_O2 "kg mass of mixture"

"Sp. heats of mixture:"

cp_mix = (mass_N2 * cp_N2 + mass_O2 * cp_O2) / (mass_N2 + mass_O2) "kJ/kg.K"

 $cv_N2 = cp_N2 - R_u * 10^{(-3)} M_N2 "kJ/kg.K"$

 $cv_O2 = cp_O2 - R_u * 10^{(-3)} M_O2 "kJ/kg.K"$

"Therefore: cv of mixture:"

cv_mix = (mass_N2 * cv_N2 + mass_O2 * cv_O2) / (mass_N2 + mass_O2) "kJ/kg.K"

"Change in enthalpy:"

 $dH = mass_mix * cp_mix * (T2 - T1) "kJ"$

"Change in Int. energy:"

 $dU = mass_mix * cv_mix * (T2 - T1) "kJ"$

"Change in entropy:"

dS = mass_mix * cp_mix * ln (T2 / T1) "kJ/K for constant pressure process"

Real and ideal gases and gas mixtures

Results:

Unit Settings: SI C kPa kJ mass deg

cp _{mix} = 1.001 [kJ/kg-K]	ср _{N2} = 1.04 [kJ/kg-K]	cp ₀₂ = 0.922 [kJ/kg-K]
cv _{mix} = 0.7161 [kJ/kg-K]	cv _{N2} = 0.7431 [kJ/kg-K]	cv ₀₂ = 0.6622 [kJ/kg-K]
dH = 240.2 [kJ]	dS = 0.7247 [kJ/K]	dU = 171.9 [kJ]
mass _{mix} = 3 [kg]	mass _{N2} = 2 [kg]	mass ₀₂ = 1 [kg]
M _{N2} = 28	M _{O2} = 32	P1 = 150 [kPa]
P2 =150 [kPa]	R _u = 8314 [kJ/kg-mole-K]	T1 = 293 [K]

Thus:

T2 = 373 [K]

Change in enthalpy = $dH = 240.2 \text{ kJ} \dots \text{ Ans.}$

Change in entropy = $dS = 0.7247 \text{ kJ/K} \dots \text{Ans.}$

Change in Int. energy = $dU = 171.9 \text{ kJ} \dots \text{ Ans.}$

¾ RBS Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

89

"**Prob.9.23.** 0.1 m³ of H2, initially at 1.2 MPa and 200 C, undergoes a reversible isothermal expansion to 0.1 MPa. Determine: (i) the work done during the process (ii) heat transferred, and (iii) the change in entropy of gas. Take R = 8.3143 kJ/kg.K, cp = 14.4 kJ/kg.K and Mol. wt = 2.016. [VTU – Dec. 2010]"

EES Solution:

"Data:"

M_H2 = 2.016 "... Mol. wt. of H2"

- R_u = 8.3143 "J/kg.mol -K universal gas const."
- cp_H2 = 14.4 "kJ/kg.K sp. heat of H2 at const. pressure"
- P1 = 1200 "kPa ... initial pressure"
- V1 = 0.1 "m³ ... initial volume"
- T1 = 200 + 273 "K ... initial temp."
- T2 = T1 "K ... final temp since isothermal expansion."
- P2 = 100 "kPa...final pressure"

"Calculations:"

 $R_H2 = R_u / M_H2$ "kJ/kg.K gas const. for H2"

mass_H2 = (P1 * V1) / (R_H2 * T1) "kg mass of H2"

"To find final volume, V2:"

P1* V1 = P2 * V2 " at const. temp finds V2"

"Work done, W:"

W = R_H2 * T1 * ln (V2 / V1) "kJ ... work done"

"Change in Int. energy:"

dU = 0 "kJ since temp is constant"

Real and ideal gases and gas mixtures

"Therefore: heat transferred:"

Q = dU + W "kJ by I Law for the process"

"Change in entropy:"

dS = mass_H2 * R_H2 * ln (V2/V1) "kJ/K for isothermal process"

Results:

Unit Settings: SI C kPa kJ mass deg

cp _{H2} =14.4 [kJ/kg-K]	dS = 0.6304 [kJ/K]	dU = 0 [kJ]
mass _{H2} = 0.06152 [kg]	M _{H2} = 2.016	P1 = 1200 [kPa]
P2 =100 [kPa]	Q = 4847 [kJ]	R _{H2} = 4.124 [kJ/kg-K]
R _u = 8.314 [kJ/kg-mole-K]	T1 = 473 [K]	T2 = 473 [K]
∨1 = 0.1 [m ³]	∨2 =1.2 [m ³]	W = 4847 [kJ]

Thus:

Work done = W = 4847 kJ ...work done by the gas, so +ve... Ans.

Heat transferred = Q = 4847 kJ ...heat supplied, since +ve Ans.

Change in entropy = $dS = 0.6304 \text{ kJ/K} \dots \text{Ans.}$

"Prob.9.24. Determine the pressure of water vapor at 350 C and 0.03524 m^3/kg, using (i) ideal gas eqn
(ii) generalized compressibility chart. Take for water vapor: R = 0.4615 kJ/kg.K. [VTU – Dec. 2010]"

EES Solution:

"Data:"

T1 = 350 + 273 "K"

V1 = 0.03524 "m^3"

mass = 1 "kg"

R_H2O = 0.4615 "kJ/kg.K"

M_H2O = 18 "...Mol. wt. of H2O"

Real and ideal gases and gas mixtures

"(i) Using Ideal gas eqn.:"

P1 *V1 = mass * R_H2O * T1 "... finds P1 in kPa"

"(ii) Using compressibility chart:"

"We have for Water vapor:"

P_c = 22090 "kPa,"

 $T_c = 647.3$ "K"

"Now:"

"P = (Z R T / v). and

 $p_r = p / p_c = Z * R * T / (p_c * v) = A * Z.$

 $A = R_H2O * T1 / (P_c * V1)$

"We get: A = 0.3693

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

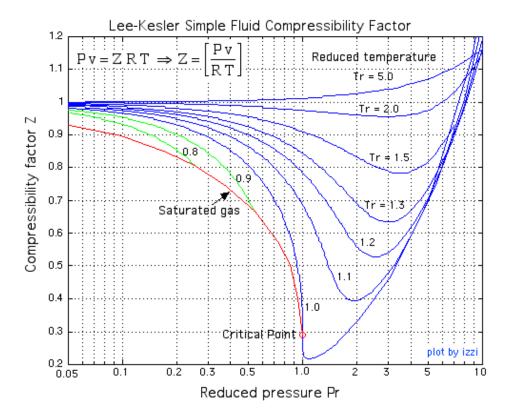
Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

Click on the ad to read more


i.e. P_r = 0.3693 * Z"

 $T_r = T1 / T_c$ "...reduced temp."

"We get T_r = 0.9625"

"Now, go to the Generalized compressibility chart and by trial and error, find Pr and Z on

Tr = 0.9625 line:

We get: Pr = 0.34, Z = 0.84"

"i.e. P = 0.34 * P_c = 7510 kPa."

Results:

Unit Settings: SI C kPa kJ mass deg

A = 0.3693	mass = 1 [kg]	M _{H20} = 18
P1 = 8159 [kPa]	P _c = 22090 [kPa]	R _{H20} = 0.4615 [kJ/kg-K]
T1 = 623 [K]	Т _с = 647.3 <mark>[K]</mark>	T _r = 0.9625
∨1 = 0.03524 [m ³]		

Thus:

Pressure according to Ideal gas eqn = P1 = 8158 kPa Ans.

Pressure from generalized compressibility chart, = 7510 kPa ... Ans.

"**Prob.9.25.** A vessel of 1.5 m³ volume containing oxygen at 8 bar and 50 C is connected to another vessel of 3.5 m³ volume containing CO at 1 bar and 25 C. A connecting value is opened and the gases mix adiabatically. Calculate: (i) final temp and pressure of the mixture, and (ii) change in entropy of the system. Take for O2: Cv = 21.07 kJ/mole.K, for CO, Cv = 20.86 kJ/mole.K"

EES Solution:

"Data:"

 $P_{O2} = 8E05 "Pa"$

- P_CO = 1E05 "Pa"
- V_O2 = 1.5 "m^3"
- $R_u = 8314$ "J/kg.mole.K"
- $T_O2 = 50 + 273$ "K"

T_CO = 25+273 **"K"**

V_CO = 3.5 "m^3"

Cv_O2 = 21.07"kJ/mole.K"

CV_CO = 20.86 "kJ/mole.K"

"Calculations:"

"No. of moles:"

n_O2 = (P_O2 * V_O2) / (R_u * T_O2) "...no. of moles of O2"

n_CO = (P_CO * V_CO) / (R_u * T_CO) "...no. of moles of CO"

"Final temp and pressure:"

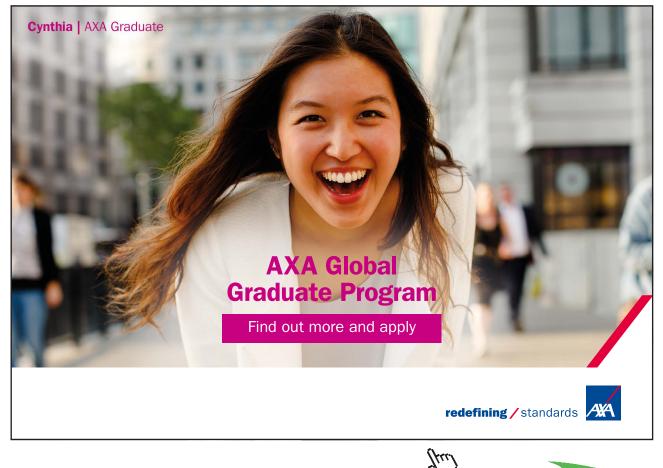
U1 = n_O2 * Cv_O2 * T_O2 + n_CO * Cv_CO * T_CO "kJ ...initial int. energy"

 $U2 = T_f^* (n_O2^* Cv_O2 + n_CO^* Cv_CO)$ "kJ ... final int. energy, where T_f is the final mixture temp"

"But, U1 = U2 for this case:"

U1 = U2 "...determines mixture temp T_f"

"Then, final, mixture pressure, P_f:"


 $P_f = ((n_O2 + n_CO) * R_u * T_f) / (V_O2 + V_CO) "Pa...final, mixture pressure"$

V_f = V_O2 + V_CO "...final vol. of mixture"

"Changes in entropy:"

"For O2:"

 $dS_O2 = n_O2 * Cv_O2 * \ln(T_f / T_O2) + n_O2 * R_u*10^{-3} * \ln(V_f / V_O2)^{*}kJ/K^{*}$

Click on the ad to read more

95

"For CO:"

 $dS_CO = n_CO * Cv_CO * \ln(T_f / T_CO) + n_CO * R_u * 10^{(-3)*} \ln(V_f / V_CO)^{(*kJ/K)}$

"Total change in entropy for the system:"

 $dS_{sys} = dS_{O2} + dS_{CO} "kJ/K"$

Results:

Unit Settings: SI C kPa kJ mass deg

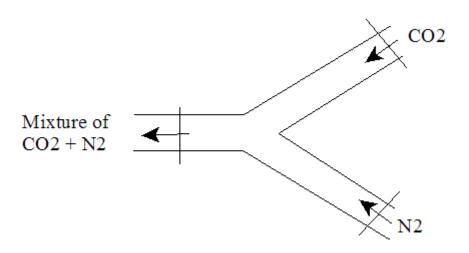
CV _{C0} = 20.86 [kJ/mole-K]	Cv ₀₂ = 21.07 [kJ/mole-K]	dS _{C0} = 0.6014 [kJ/K]
dS ₀₂ = 4.298 [kJ/K]	dS _{sys} = 4.899 [kJ/K]	n _{CO} = 0.1413
n _{O2} = 0.4469	P _{CO} = 100000 [Pa]	P _f = 310045 [Pa]
P ₀₂ = 800000 [Pa]	R _u = 8314 [kJ/kg-mole-K]	T _{CO} = 298 [K]
T _f = 317 [K]	T _{O2} = 323 [K]	U1 = 3919 [kJ]
U2 = 3919 [kJ]	V _{CO} = 3.5 [m ³]	∨ _f = 5 [m ³]
V ₀₂ = 1.5 [m ³]		

Thus:

Final temp of mixture = $T_f = 317$ K ... Ans.

Final pressure of mixture = $P_f = 310045 Pa = 3.1 bar \dots Ans$.

Entropy change for O2 = dS_O2 = 4.298 kJ/K ... Ans.


Entropy change for CO = dS_CO = 0.6014 kJ/K ... Ans.

Entropy change for the system = dS_sys = 4.899 kJ/K .. Ans.

"**Prob.9.26.** 4 kg of CO2 at 40 C and 1.5 bar are mixed with 8 kg of N2 at 150 C and 1 bar to form a mixture at a final pressure of 0.8 bar. The process occurs adiabatically in a steady flow apparatus. Calculate: (i) the final temp of mixture, and (ii) change in entropy.

Take: cp for CO2 = 0.85 kJ/kg.K and cp for N2 = 1.04 kJ/kg.K"

Fig.Prob.9.26

EES Solution:

"Data:"

P1_CO2 = 1.5E05 "Pa"

- $m1_CO2 = 4$ "kg"
- $T1_CO2 = 40 + 273$ "K"
- P1_N2= 1E05 "Pa"
- $m1_N2 = 8$ "kg"
- $T1_N2 = 150 + 273$ "K"
- $P_f = 0.8E05"Pa"$
- $R_u = 8314$ "J/kg.mole.K"
- cp_CO2 = 0.85"kJ/kg.K"
- cp_N2 = 1.04 "kJ/kg.K"
- M_CO2 = 44 "...Mol. wt. of CO2"
- M_N2 = 28 "...Mol.wt. of N2"

Real and ideal gases and gas mixtures

"Calculations:"

"No. of moles of CO2 and N2:"

n_CO2 = m1_CO2 / M_CO2 "...no. of moles of CO2"

- n_N2 = m1_N2 / M_N2 ".no. of moles of N2"
- $n_{tot} = n_{CO2} + n_{N2}$ "...total no. of moles"
- y_CO2 = n_CO2 / n_tot "...mole fraction of CO2"
- $y_N2 = n_N2 / n_tot$ "...mole fraction of N2"
- p_CO2 = y_CO2 * P_f "...Pa ... partial pressure of CO2 in final mixture"
- p_N2 = y_N2 * P_f "...Pa ... partial pressure of N2 in final mixture"
- $R_CO2 = R_u / M_CO2 "J/kg.K ... Gas const. for CO2"$
- $R_N2 = R_u / M_N2 "J/kg.K ... Gas const. for N2"$

"Final temp is calculated by applying the steady flow energy eqn.:"

"Here Q = 0 and W = 0.

Therefore:"

m1_CO2 * cp_CO2 * T1_CO2 + m1_N2 * cp_N2 * T1_N2 = m1_CO2 * cp_CO2 * T_f + m1_N2 * cp_N2 * T_f "...finds final temp, T_f"

"Changes in entropy:"

"For CO2:"

 $dS_CO2 = m1_CO2 * (cp_CO2 * ln (T_f / T1_CO2)) - m1_CO2 * R_CO2 * ln(-3) * ln(p_CO2 / P1_CO2)"kJ/K"$

"For N2:"

 $dS_N2 = m1_N2 * (cp_N2 * ln (T_f / T1_N2)) - m1_N2 * R_N2 * 10^{-3} * ln(p_N2 / P1_N2)^{*}kJ/K^{*}$

Real and ideal gases and gas mixtures

"For the system of (CO2 + N2):"

 $dS_sys = dS_CO2 + dS_N2$ "kJ/K"

Results:

Unit Settings: SI C kPa kJ mass deg

ср_{СО2}= 0.85

dS_{N2} = 0.5337 [kJ/K] m1_{N2} = 8 [kg] n_{C02} = 0.09091 P1_{C02} = 150000 [Pa] P_f = 80000 [Pa] R_{N2} = 296.9 [J/kg-K] T1_{N2} = 423 [K] y_{N2} = 0.7586 cp_{N2} = 1.04 [kJ/kg-K] dS_{sys} = 2.84 [kJ/K] M_{C02} = 44 n_{N2} = 0.2857 $P1_{N2}$ = 100000 [Pa] p_{N2} = 60690 [Pa] R_u = 8314 [kJ/kg-mole-K] T_f = 391.1 [K] dS_{CO2} = 2.307 [kJ/K] m1_{CO2} = 4 [kg] M_{N2} = 28 n_{tot} = 0.3766 p_{CO2} = 19310 [Pa] R_{CO2} = 189 [J/kg-K] T1_{CO2} = 313 [K] y_{CO2} = 0.2414

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on **+44 (0)20 7000 7573**.

* Figures taken from London Business School's Masters in Management 2010 employment report

99

Real and ideal gases and gas mixtures

Thus:

Final temp of mixture = $T_f = 391.1 \text{ K} \dots \text{ Ans.}$

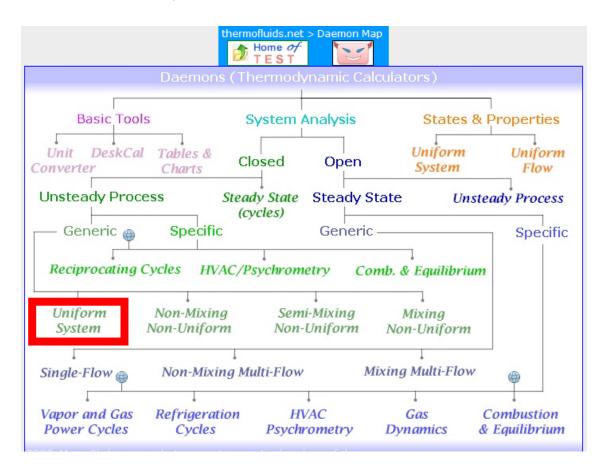
Entropy change for CO2 = dS_CO2 = 2.307 kJ/K ... Ans.

Entropy change for N2 = dS_N2 = 0.5337 kJ/K ... Ans.

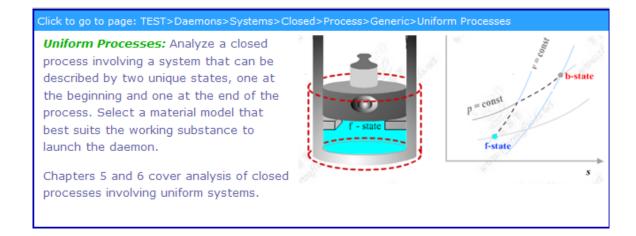
Entropy change for the system = dS_sys = 2.84 kJ/K .. Ans.

9.13 Problems solved with TEST:

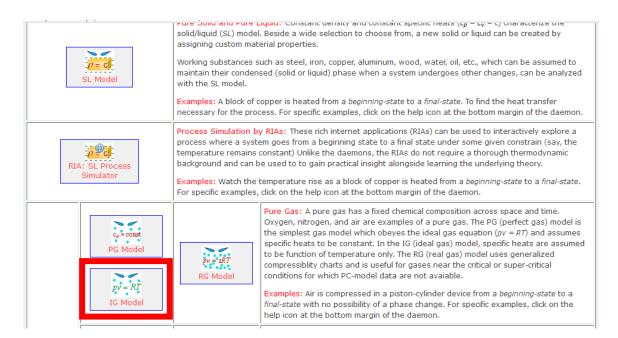
Prob.9.27. An ideal gas cycle consisting of 3 processes uses Argon (M = 40) as working substance. Process 1-2 is a reversible adiabatic process from 0.014 m^3, 700 kPa and 280 C to 0.056 m^3. Process 2-3 is a reversible isothermal process. Process 3-1 is an isobaric process. Sketch the cycle on P-v and T-s diagrams, and find: (i) the work transfer in process 1-2, (ii) work transfer in process 2-3, (iii) net work output from the cycle (assume gamma = 1.67), and (iv) change in enthalpy for each process. [VTU – July 2004]


This problem is the same as Prob.9.15, which was solved with EES.

But, see how easily it is solved in TEST:


TEST Solution:

Following are the steps:


 After going to TEST, in the Daemon tree choose System Analysis – Colsed _Uniform System:

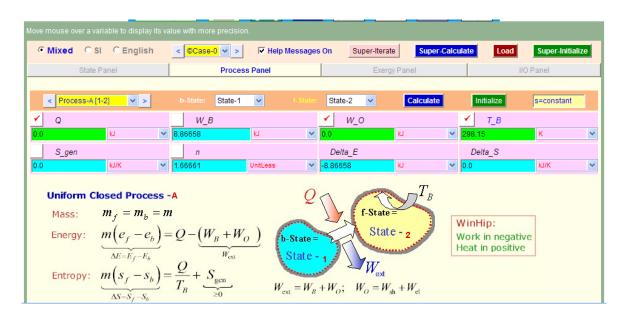
Hovering the mouse pointer over *Uniform System* brings up the following explanatory pop-up:

2. For Material model, select Ideal Gas (IG) Model, as shown below:

Download free eBooks at bookboon.com

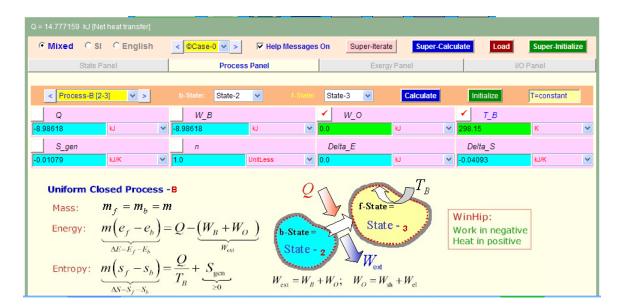
3. Choose Argon for the substance, enter p1, T1, Vol1 for State 1. Hit Enter. Remaining properties are calculated immediately. We get:

Generic, Uniform-System, Closed Process Daemon: IG Model											
the	ermofluids.net > D Home <i>of</i> TEST	aemons > Sys	stems > Closed	$>$ Process \Rightarrow $\int_{\delta}^{f} () dt$	Generic > Unife	prm > IG-Mod pv = RI					
v1 = 0.1644516 m^3/kg [Specific volume]											
Mixed O SI O Engli	ish <mark>< Case-</mark>	0 🗸 > 🔽	Help Messages (On Super-	terate Super	-Calculate	Load Su	per-Initialize			
State Panel		Process Pane	el	E	xergy Panel		I/O Pane	1			
< <mark>©State-1 </mark>	Calculate	No-Plots 💌	Initialize	Formatio	on Enthalpy: 📿 🌔	No 💿 Yes	Ar	~			
🖌 p1	🖌 T1		rho1		v1		u1				
700.0 kPa 😪	280.0	deg-C 🛛 🔽 🧧	.08082	kg/m^3 🛛 💙	0.16445	m^3/kg 💌	17.56037	kJ/kg 💙			
h1	s1	•	Vel1		🖌 z1		e1				
132.6765 kJ/kg 💙	3.7953 kJ	/kg.K 🔽 🔽	.0	m/s 🗸	0.0	m 🗸	17.56037	kJ/kg 💙			
j1	phi1		psi1		m1		✓ Vol1				
132.6765 kJ/kg ↔	k	kJ/kg 🔽		kJ/kg 🛛 💙	0.08513	kg 💌	0.014	m^3 💙			
MM1	R1		c_p1								
39.95 kg/kmol 💉	0.20811 k.	J/kg.K 🔽 🔽	.5203 k	J/kg.K 💌							

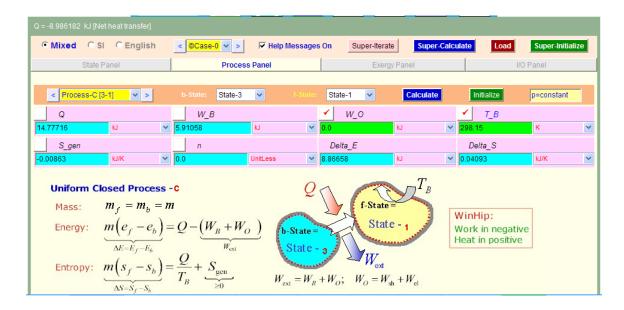

4. For State 2, enter $s_2 = s_1$ (since isentropic), Vol2 and $m_2 = m_1$. Hit Enter. We get:

Move mouse over a variable to display its value with more precision.														
• Mixed	O SI O	Engl	ish <mark><</mark> ©Ca	ase-0 💙 >		Help Messages	On	Super-	Iterate	Super-Calculate		Load	Super-Initia	alize
	State Panel			Process	Pane			E	Exergy Panel			I/O I	Panel	
< ©Stat	e-2 💙 >		Calculate	No-Plots	*	Initialize		Formati	on Enthalpy:	⊖No ⊙Yes		Ar		*
p2			T2			rho2			v2			u2		
69.45394	kPa	~	-53.61601	deg-C	× 1.	5202	kg/m^3	~	0.65781	m^3/kg	۷	-86.59129	kJ/kg	*
h2			🖌 s2			Vel2			🖌 z2			e2		
-40.90404	kJ/kg	~	=s1	kJ/kg.K	۷ 0.	0	m/s	*	0.0	m	۷	-86.59129	kJ/kg	~
j2			phi2			psi2			🖌 m2			✓ Vol2		
-40.90404	kJ/kg	~		kJ/kg	∽ [kJ/kg	~	=m1	kg	۷	0.056	m^3	~
MM2			R2			c_p2								
39.95	kg/kmol	~	0.20811	kJ/kg.K	✓ 0.	5203	kJ/kg.K	~						

5. For State 3: enter $p_3 = p_1$, $T_3 = T_2$, $m_3 = m_2$ and press Enter. We get:


Mixed O SI O En	nglish <mark>< ©C</mark> a	ase-0 💙 >	Help Messages	On Super-	-Iterate Su	per-Calculate	Load	Super-Initialize
State Panel		Process I	Panel		Exergy Panel		I/O Pa	nel
< <mark>©State-3</mark> 🗸 >	Calculate	No-Plots	v Initialize	Formati	ion Enthalpy: 🛛 🤇	ONo ⊙Yes	Ar	~
✔ p3	🖌 T3		rho3		v3		u3	
p1 kPa	✓ =T2	deg-C 💉	15.32156	kg/m^3 🛛 💙	0.06527	m^3/kg 🛛 👻	-86.59129	kJ/kg 💊
h3	s3		✓ Vel3		🖌 z3		e3	
40.90404 kJ/kg	✓ 3.31448	kJ/kg.K	0.0	m/s 🗸	0.0	m 🗸	-86.59129	kJ/kg 💉
j3	phi3		psi3		🖌 m3		Vol3	
40.90404 kJ/kg	v	kJ/kg 💊	•	kJ/kg 💙	=m2	kg 🗸 🗸	0.00556	m^3 🗸

6. Now, go to Process Panel. For Process A, enter State 1 and State 2 for b-State and f-State, W_O = 0 (i.e. work other than Boundary work) and Q = 0. Press Calculate (or, hit Enter). We get:


See that: W_B for Process 1-2 is calculated as 8.867 kJ.....Ans.

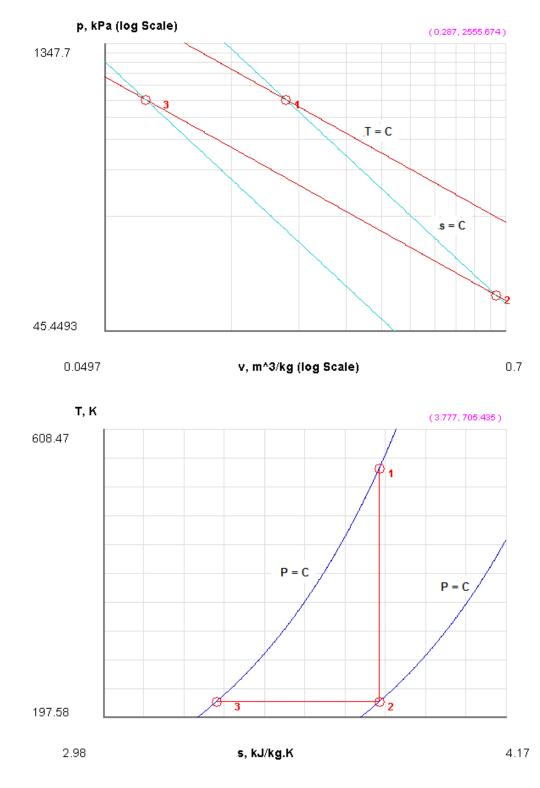
7. Now, for Process B i.e. Process 2-3: Enter State 2 and State 3 for b-State and f-State respectively. And W_O = 0. Hit Enter. We get:

Note that for Process 2-3, W_B = -8.986 kJ, Q = -8.986 kJ ... Ans.

8. Now, for Process 3-1, i.e. Process C: Enter State 3 and State13 for b-State and f-State respectively. And W_O = 0. Hit Enter. We get:

i.e. For Process 3-1: W_B = 5.9106 kJ, Q = 14.777 kJ ... Ans.

And, net work output of cycle = 8.867 + (-8.986) + 5.916 = 5.797 kJ ... Ans.



Change in enthalpy for Process 1-2: $(h2 - h1) = -173.581 \text{ kJ/kg} \dots \text{ Ans.}$

Change in enthalpy for Process 2-3: $(h3 - h2) = h3-h2 = 0 kJ/kg \dots Ans.$

Change in enthalpy for Process 3-1: $(h3 - h1) = -173.581 \text{ kJ/kg} \dots$ Ans.

9. Get the p-v and T-s plots by electing accordingly from the Plots widget:

Download free eBooks at bookboon.com

10. Click on **SuperCalculate** and get the TEST code etc. from the I/O Panel:

#~~~~~OUTPUT OF SUPER-CALCULATE

#

#Daemon Path: Systems>Closed>Process>Generic>Uniform>IG-Model; v-10.ca08

#

#-----Start of TEST-code-----

States {

```
State-1: Ar;
Given: { p1= 700.0 kPa; T1= 280.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; Vol1= 0.014 m^3; }
State-2: Ar;
Given: { s2= "s1" kJ/kg.K; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; Vol2= 0.056 m^3; }
```

```
State-3: Ar;
Given: { p3= "P1" kPa; T3= "T2" deg-C; Vel3= 0.0 m/s; z3= 0.0 m; m3= "m2" kg; }
}
```

Analysis {

```
Process-A: b-State = State-1; f-State = State-2;

Given: { Q= 0.0 kJ; W_O= 0.0 kJ; T_B= 298.15 K; }

Process-B: b-State = State-2; f-State = State-3;

Given: { W_O= 0.0 kJ; T_B= 298.15 K; }

Process-C: b-State = State-3; f-State = State-1;

Given: { W_O= 0.0 kJ; T_B= 298.15 K; }

}

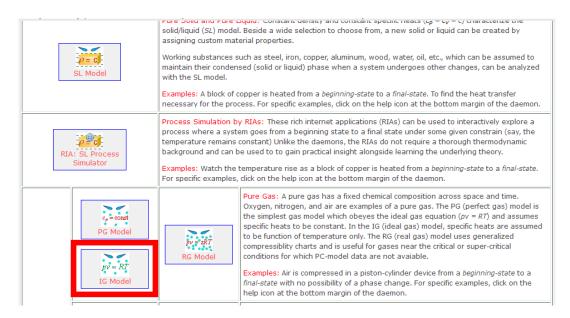
#------End of TEST-code-----
```

Real and ideal gases and gas mixtures

#Property spreadsheet starts:										
#										
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)			
#	1	700.0	553.2	0.1645	17.56	132.68	3.795			
#	2	69.45	219.5	0.6578	-86.59	-40.9	3.795			
#	3	700.0	219.5	0.0653	-86.59	-40.9	3.314			
#										
#Property spreadsheet ends										

Mass, Energy, and Entropy Analysis Results:

Process-A: b-State = State-1; f-State = State-2; Given: Q= 0.0 kJ; W_O= 0.0 kJ; T_B= 298.15 K; # Calculated: W_B= 8.86658 kJ; S_gen= -0.0 kJ/K; n= 1.6666132 UnitLess; Delta_E= -8.86658 kJ; # Delta_S= -0.0 kJ/K; # Process-B: b-State = State-2; f-State = State-3; # # Given: W_O= 0.0 kJ; T_B= 298.15 K; Calculated: Q= -8.986182 kJ; W_B= -8.986182 kJ; S_gen= -0.010793186 kJ/K; n= 1.0 UnitLess; # # Delta_E= -0.0 kJ; Delta_S= -0.040932987 kJ/K; # Process-C: b-State = State-3; f-State = State-1; # # Given: W_O= 0.0 kJ; T_B= 298.15 K; Calculated: Q= 14.777159 kJ; W_B= 5.910579 kJ; S_gen= -0.008629847 kJ/K; n= 0.0 UnitLess; # Delta_E= 8.86658 kJ; Delta_S= 0.040932987 kJ/K;

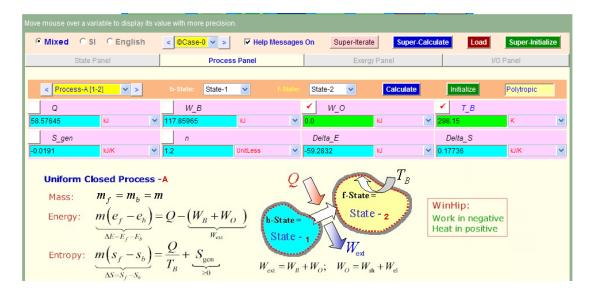

Prob.9.28. 1 kg of air at a pressure of 8 bar and temp 100 C undergoes a reversible, ploytropic process following the law $p.v^{1.2} = constant$. If the final pressure is 1.8 bar, determine: (i) final sp. volume, temp and increase in entropy, and (ii) work done and heat transfer. [VTU – BTD – Dec. 06–Jan. 07]

TEST Solution:

Following are the steps:

- ermofluids.net > Daemon Map Home of 00 TEST Basic Tools System Analysis States & Properties 1 Unit DeskCal Tables & Uniform Uniform Closed Open System Flow Converter Charts Unsteady Process Steady State Steady State Unsteady Process (cycles) Generic 👜 Specific Generic -Specific Reciprocating Cycles HVAC/Psychrometry Comb. & Equilibrium Non-Mixing Semi-Mixing Uniform Mixing Non-Uniform Non-Uniform System Non-Uniform Τ Single-Flow Non-Mixing Multi-Flow Mixing Multi-Flow Vapor and Gas Refrigeration HVAC Gas Combustion **Power Cycles** Cycles Psychrometry Dvnamics & Equilibrium
- 1. From the Daemons tree, select System Analysis Closed Uniform System:

2. For the Material model, select IG Model:


3. Select Air as the substance, enter for State 1 values of p1, T1 and m1, and hit Enter. We get:

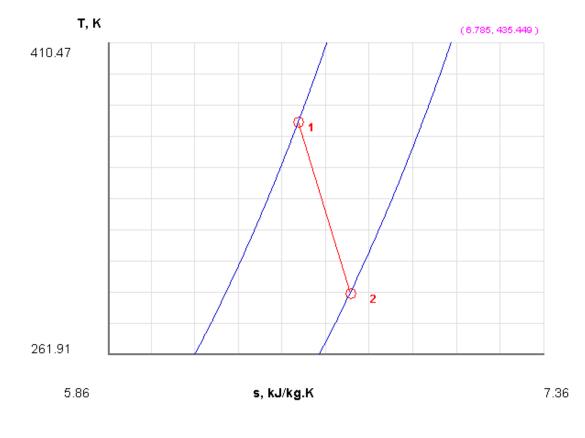
	Generic, Uniform-System, Clos	sed Process Daemon: IG Model	1
	fluids.net > Daemons > Systems > Clo Iome of EST	sed > Process > Generic > Uniform > $\int_{a}^{b} () dt$	IG-Model w = RT
love mouse over a variable to display its	s value with more precision.	es On Super-Iterate Super-Calcula	ate Load Super-Initialize
State Panel	Process Panel	Exergy Panel	I/O Panel
< <mark>@State-1</mark> ❤ > Ca	Iculate No-Plots 🗸 Initializ	e Formation Enthalpy: 🔘 No 🔍 Ye	es Air 🗸
🖌 p1 🖌	T1 rho1	v1	u1
800.0 kPa 💉 100.	0 deg-C 🍸 7.47042	kg/m^3 ↔ 0.13386 m^3/kg	✓ -31.37871 kJ/kg ✓
h1	s1 🖌 Vel1	🖌 z1	e1
75.71031 kJ/kg 💉 6.51	633 kJ/kg.K 💙 0.0	m/s 🖌 0.0 m	✓ -31.37871 kJ/kg ✓
j1 pl	hi1 psi1	✓ m1	Vol1
75.71031 kJ/kg 👻	kJ/kg 🗸	kJ/kg 💙 1.0 kg	✓ 0.13386 m ⁴ 3 ✓
MM1 R	1 c_p1		
28.97 kg/kmol 💉 0.28	699 kJ/kg.K 🛛 1.0152	kJ/kg.K 💙	

4. For State 2: enter p2, m2 = m1 and v2 = $(p1 * v1^{1.2} / p2)$ and hit Enter. We get:

• Mixed C SI C Engl	ish <mark>< ©Case-0 ∨</mark> >	✓ Help Messages On	Super-Iterate Super-Calcul	ate Load Super-Initialize
State Panel	Process	Panel	Exergy Panel	I/O Panel
< <mark>©State-2</mark> V >	Calculate No-Plots	V Initialize	Formation Enthalpy: ON0 OY	ies <mark>Air v</mark>
🖌 p2	T2	rho2	🖌 v2	u2
180.0 kPa 😪	17.86399 deg-C N	✓ 2.15525 kg/m ³	(p1*v1^1.2/p2)^i m^3/kg	✓ -90.66191 kJ/kg ✓
h2	s2	✓ Vel2	🖌 z2	e2
-7.14481 kJ/kg 💙	6.69369 kJ/kg.K	✓ 0.0 m/s	✓ 0.0 m	✓ -90.66191 kJ/kg ✓
j2	phi2	psi2	🖌 m2	Vol2
-7.14481 kJ/kg 💙	kJ/kg	kJ/kg	👻 =m1 kg	✓ 0.46398 m^3 ✓
MM2	R2	c_p2		
28.97 kg/kmol 💙	0.28699 kJ/kg.K	1.00347 kJ/kg.K	~	

5. Go to Process Panel. For Process A, enter State 1 and State 2 for b-State and f-State, and W_O = 0 and hit Enter. We get:

Download free eBooks at bookboon.com


6. Note that Heat transfer, Q = 58.576 kJ, Work done, W_B = 117.86 kJ. . Ans.

At State 2:

sp. vol. v2 = 0.464 m³, temp, T2 = 17.864 C, and

change in entropy = $(s_2 - s_1) = 0.177 \text{kJ/K} \dots \text{Ans}.$

7. Draw the T-s diagram from the Plots widget:

8. Click on SuperCalculate, and get the TEST code etc from the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE

#

#Daemon Path: Systems>Closed>Process>Generic>Uniform>IG-Model; v-10.ca08

#

Real and ideal gases and gas mixtures

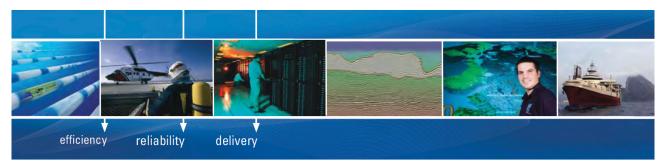
#-----Start of TEST-code-----

States {

State-1: Air; Given: { p1= 800.0 kPa; T1= 100.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 1.0 kg; }

State-2: Air; Given: { p2= 180.0 kPa; v2= "(p1*v1^1.2/p2)^(1/1.2)" m^3/kg; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; }

}


Analysis {

Process-A: b-State = State-1; f-State = State-2;

```
Given: { W_O= 0.0 kJ; T_B= 298.15 K; }
```

}

#-----End of TEST-code-----

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

Download free eBooks at bookboon.com

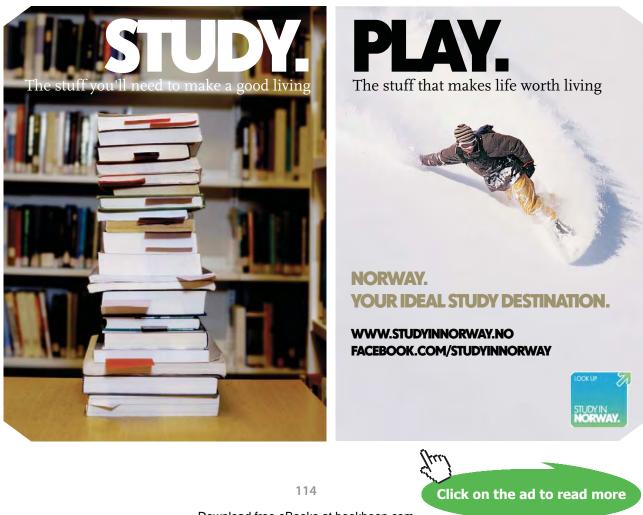
#

#*****DETAILED OUTPUT:

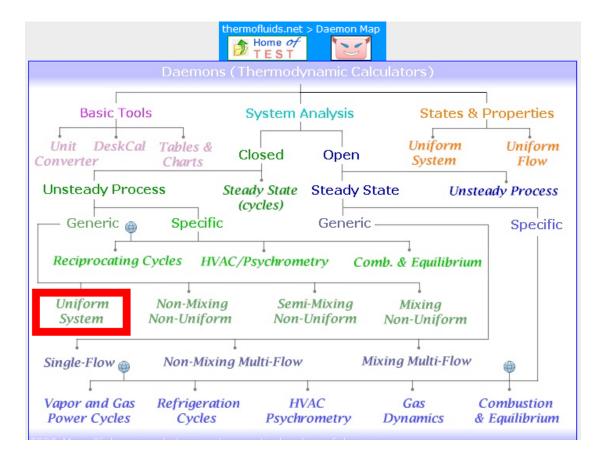
Evaluated States:

#							
#	State-1	: Air > IG-Mode	el;				
#		Given: p1= 80	0.0 kPa; '	T1= 100.0 deg-	C; Vel1= 0.0 m	/s;	
#		z1= 0.	0 m; m1	= 1.0 kg;			
#	Calcul	ated: rho1= 7.47	'04 kg/m	^3; v1= 0.1339	m^3/kg; u1=	31.3787 kJ/kg;	
#		h1= 75	5.7103 kJ	/kg; s1= 6.5163	6 kJ/kg.K; e1= -	31.3787 kJ/kg;	
#		j1= 75	.7103 kJ/	/kg; Vol1= 0.13	39 m^3; MM1=	= 28.97 kg/kmol;	
#		R1 = 0.	.287 kJ/k	g.K; c_p1= 1.0	152 kJ/kg.K;		
#							
#	State-2	: Air > IG-Mod	el;				
#		Given: p2= 18	0.0 kPa;	v2= "(p1*v1^1.	2/p2)^(1/1.2)"	m^3/kg; Vel2= 0).0 m/s;
#		z2= 0.	0 m; m2	= "m1" kg;			
#	Calcul	ated: T2= 17.864	4 deg-C;	rho2= 2.1552 k	g/m^3; u2= -90	0.6619 kJ/kg;	
#		h2= -7	7.1448 kJ	/kg; s2= 6.6937	kJ/kg.K; e2 = -9	90.6619 kJ/kg;	
#		j2= -7.	.1448 kJ/	kg; Vol2= 0.46	4 m^3; MM2=	28.97 kg/kmol;	
#		R2=0	.287 kJ/k	g.K; c_p2= 1.00)35 kJ/kg.K;		
#							
#	Proper	rty spreadsheet s	starts: #				
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	800.0	373.2	0.1339	-31.38	75.71	6.516
#	2	180.0	291.0	0.464	-90.66	-7.14	6.694
#							
	D	. 11 .	1				
#	Prope	rty spreadsheet e	ends				

#



Mass, Energy, and Entropy Analysis Results:


#	
#	Process-A: b-State = State-1; f-State = State-2;
#	Given: W_O= 0.0 kJ; T_B= 298.15 K;
#	Calculated: Q= 58.57645 kJ; W_B= 117.85965 kJ; S_gen= -0.019103007 kJ/K; n= 1.2 UnitLess;
#	Delta_E= -59.2832 kJ; Delta_S= 0.17736337 kJ/K;
#	

Prob.9.29. 0.5 kg of air is compressed reversibly and adiabatically from 80 kPa, 60 C to 0.4 MPa and is then expanded at const. pressure to the original volume. Sketch these processes on the p-v and T-s planes. Compute the heat transfer and work transfer for the whole path. [VTU – BTD – June–July 08:]

TEST Solution:

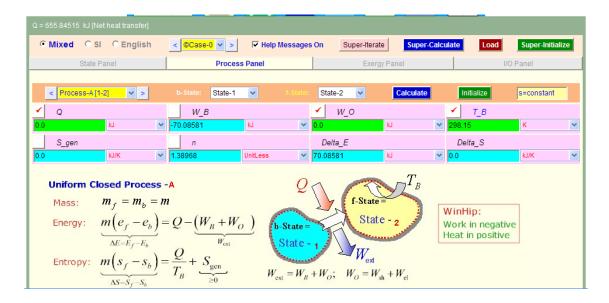
1. From the Daemon tree, select System Analysis - Closed - Uniform System:

2. For the Material model, choose IG model:

- 2 = CI SL Model	solid/liquid (SL) model assigning custom mat Working substances s maintain their conden with the SL model. Examples: A block of c	Equil: Constant density and constant speak meass (cp - cy - cy characterize the line). Beside a wide selection to choose from, a new solid or liquid can be created by erial properties. Such as steel, iron, copper, aluminum, wood, water, oil, etc., which can be assumed to sed (solid or liquid) phase when a system undergoes other changes, can be analyzed Scopper is heated from a <i>beginning-state</i> to a <i>final-state</i> . To find the heat transfer cess. For specific examples, click on the help icon at the bottom margin of the daemon.
RIA: SL Process Simulator	process where a syst temperature remains background and can b Examples: Watch the	y RIAs: These rich internet applications (RIAs) can be used to interactively explore a em goes from a beginning state to a final state under some given constrain (say, the constant) Unlike the daemons, the RIAs do not require a thorough thermodynamic be used to to gain practical insight alongside learning the underlying theory. temperature rise as a block of copper is heated from a <i>beginning-state</i> to a <i>final-state</i> . click on the help icon at the bottom margin of the daemon.
pv = RT IG Model	Py = zRT RG Model	Pure Gas: A pure gas has a fixed chemical composition across space and time. Oxygen, nitrogen, and air are examples of a pure gas. The PG (perfect gas) model is the simplest gas model which obeyes the ideal gas equation ($pv = RT$) and assumes specific heats to be constant. In the IG (ideal gas) model, specific heats are assumed to be function of temperature only. The RG (real gas) model uses generalized compressibility charts and is useful for gases near the critical or super-critical conditions for which PC-model data are not avaiable. Examples: Air is compressed in a piston-cylinder device from a <i>beginning-state</i> to a <i>final-state</i> with no possibility of a phase change. For specific examples, click on the help icon at the bottom margin of the daemon.

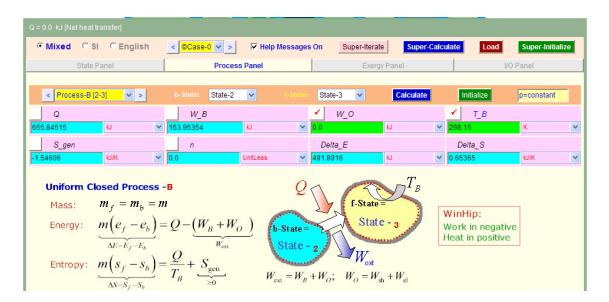
3. Select Air as the working substance, and for State 1, enter values of p1, T1 and m1, and hit Enter. We get:

	Generic, Uniform-	System, Closed Prod	cess Daemon: IG Mode	el
the	rmofluids.net > Daemons >	> Systems > Closed > Pro	ocess > Generic > Uniform :	
	TEST		.)dt	pv = RT
Move mouse over a variable to displ	ay its value with more precision.			
Mixed C SI C Englis	sh < ©Case-0 💙 >	Help Messages On	Super-Iterate Super-Calco	ulate Load Super-Initialize
State Panel	Process	Panel	Exergy Panel	I/O Panel
< <mark>©State-1 v ></mark>	Calculate No-Plots	• Initialize	Formation Enthalpy: 🔘 No 💿	Yes Air 🗸
🖌 p1	✓ T1	rho1	v1	u1
80.0 kPa 👻	60.0 deg-C	✓ 0.83674 kg/m ³	✓ 1.19512 m [^] 3/kg	; ❤ <mark>-60.37878 kJ/kg ❤</mark>
h1	s1	✓ Vel1	🖌 z1	e1
35.23078 kJ/kg 💙	7.0624 kJ/kg.K	✓ 0.0 m/s	✓ 0.0 m	✓ -60.37878 kJ/kg ✓
j1	phi1	psi1	🖌 m1	Vol1
35.23078 kJ/kg 💌	kJ/kg	✓ kJ/kg	✓ 0.5 kg	✓ 0.59756 m ⁴ 3 ✓
MM1	R1	p1		
28.97 kg/kmol 👻	0.28699 kJ/kg.K	✓ 1.00882 kJ/kg.K	~	


4. For State 2: enter p2, m2 = m1, and s2 = s1 (since isentropic), hit Enter. We get:

Mixed O SI O E	nglish <	©Case-0 💙 >	Help Messages	On Super-	-Iterate	Super-Calculate	Load	Super-Initialize
State Panel		Process	Panel		Exergy Panel		I/O Pa	nel
< <mark>©State-2</mark> >	Calculate	No-Plots	✓ Initialize	Format	ion Enthalpy:	⊙No ⊙Yes	Air	*
✓ p2	T2		rho2		v2		u2	
400.0 kPa	✓ 250.01303	deg-C	✓ 2.66417	kg/m^3 🛛 💙	0.37535	m^3/kg 🗸 🗸	79.79284	kJ/kg 💉
h2	✓ s2		✓ Vel2		🖌 z2		e2	
229.93358 kJ/kg	✓ =s1	kJ/kg.K	✓ 0.0	m/s 💙	0.0	m 🗸	79.79284	kJ/kg 💉
j2	phi2		psi2		✓ m2		Vol2	
229.93358 kJ/kg	▼	kJ/kg	✓	kJ/kg 💙	=m1	kg 🗸 🗸	0.18768	m^3
MM2	R2		c_p2					
28.97 kg/kmol	✓ 0.28699	kJ/kg.K	✓ 1.04149	kJ/kg.K 🗸 🗸				

5. For State 3: enter p3 = p2, m3 = m2 and Vol3 = Vol1. Hit Enter. We get:


Move mouse over a variable	to disp	lay its value with n	nore precision.						
• Mixed O SI O	Engli	ish <mark><</mark> ©Ca	<mark>ise-0</mark> ❤ >	🔽 Help Messages	On Super-	Iterate	per-Calculate	Load	uper-Initialize
State Panel			Process Pa	anel	I	Exergy Panel		I/O Par	iel
< ©State-3 V >		Calculate	No-Plots 🗸	Initialize	Formati	on Enthalpy:	⊙No ⊙Yes	Air	~
✓ p3		T3		rho3		v3		u3	
=p2 kPa	~	1392.6	deg-C 🛛 🗸	0.83674	kg/m^3 🛛 👻	1.19512	m^3/kg 💙	1063.576	kJ/kg 💉
h3		s3		✓ Vel3		🖌 z3		e3	
1541.6239 kJ/kg	~	8.3697	kJ/kg.K 🛛 💙	0.0	m/s 🗸	0.0	m 🗸	1063.576	kJ/kg 💉
j3		phi3		psi3		🖌 m3		🖌 Vol3	
1541.6239 kJ/kg	~		kJ/kg 💙		kJ/kg 💙	=m2	kg 🗸 🗸	=Vol1	m^3 🗸
ММЗ		R3		cp3					
28.97 kg/kmol	*	0.28699	kJ/kg.K 🛛 🗸	1.22968	kJ/kg.K 🛛 💌				

6. Now, go to Process Panel. For Process A: enter State 1 and State 2 for b-State and f-State, W_O = 0 (i.e. Work other than Boundary work), and hit Enter. We get:

We see that: Work done in Process $1-2 = W_B = -70.09 \text{ kJ} \dots$ (-ve sign means work is done on the gas)... Ans.

7. For Process B: enter State 2 and State 3 for b-State and f-State, W_O = 0 (i.e. Work other than Boundary work), and hit Enter. We get:

We see that: Work done in Process $2-3 = W_B = 163.95 \text{ kJ} \dots (+\text{ve sign means work is done by the gas}) \dots$ Ans.

Heat transfer, Q = 655.85 kJ ... Ans.

Therefore, for the whole cycle:

W_net = -70.08 + 163.95 = 93.86 kJ .. Ans.

Q_net = 0 + 655.85 = 655.85 kJ ... Ans.

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

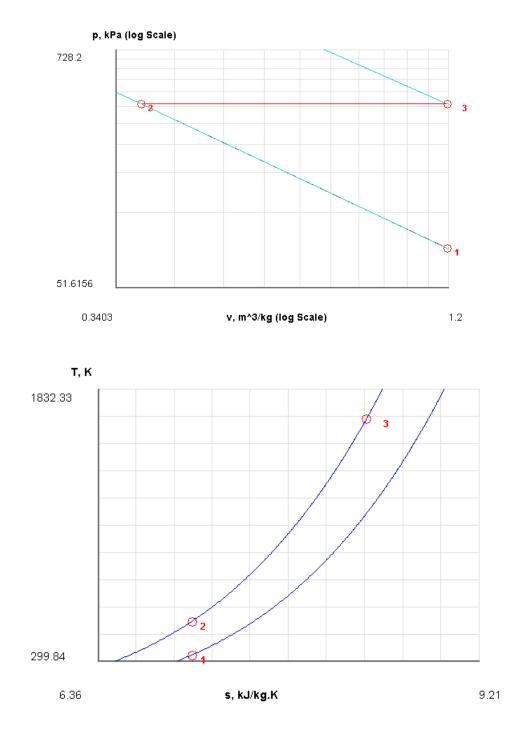
For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/ OIL & GAS ENGINEERING

ELECTRONICS

AUTOMATION & PROCESS CONTROL

MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS


ELECTRICAL POWER

IDC

Click on the ad to read more

Phone: +61 8 9321 1702 Email: training@idc-online.com Website: www.idc-online.com

Download free eBooks at bookboon.com

8. Draw the p-v and T-s diagrams from the Plots widget:

9. Click on SuperCalculate and get the TEST code etc from the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE (

#

#Daemon Path: Systems>Closed>Process>Generic>Uniform>IG-Model; v-10.ca08

#

#-----Start of TEST-code-----

States {

```
State-1: Air;
Given: { p1= 80.0 kPa; T1= 60.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 0.5 kg; }
State-2: Air;
Given: { p2= 400.0 kPa; s2= "s1" kJ/kg.K; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; }
State-3: Air;
Given: { p3= "P2" kPa; Vel3= 0.0 m/s; z3= 0.0 m; m3= "m2" kg; Vol3= "Vol1" m^3; }
```

```
}
```

Analysis {

```
Process-A: b-State = State-1; f-State = State-2;
Given: { Q= 0.0 kJ; W_O= 0.0 kJ; T_B= 298.15 K; }
Process-B: b-State = State-2; f-State = State-3;
Given: { W_O= 0.0 kJ; T_B= 298.15 K; }
}
```

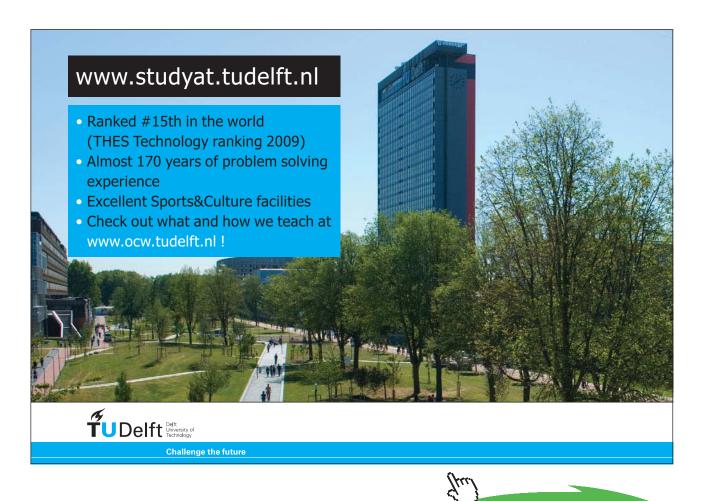
#-----End of TEST-code-----

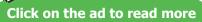
#-----Property spreadsheet starts:

#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
#	1	80.0	333.2	1.1951	-60.38	35.23	7.062
#	2	400.0	523.2	0.3754	79.79	229.93	7.062
#	3	400.0	1665.8	1.1951	1063.58	1541.62	8.37
#							
#	Proper	ty spreadsheet e	nds				

#

Mass, Energy, and Entropy Analysis Results:

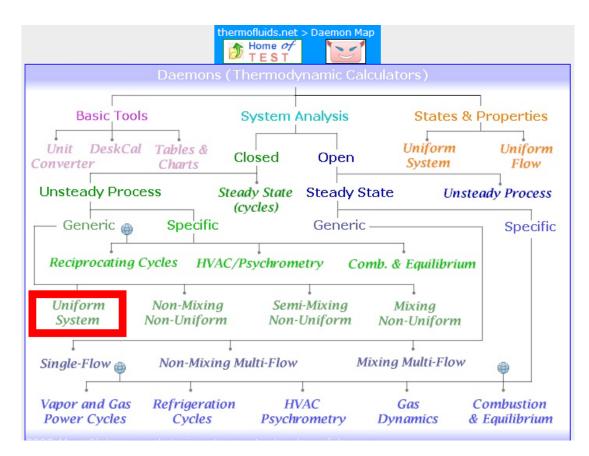

#


Process-A: b-State = State-1; f-State = State-2;

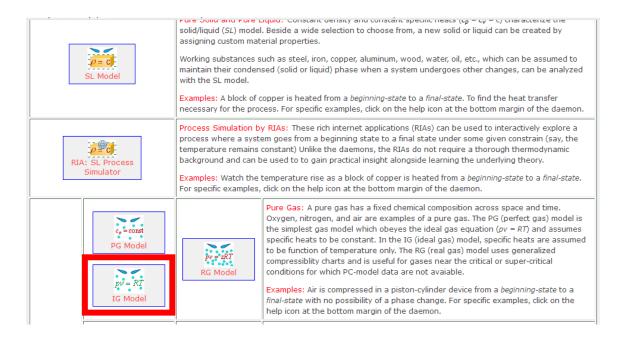
Given: Q= 0.0 kJ; W_O= 0.0 kJ; T_B= 298.15 K;

Calculated: W_B= -70.08581 kJ; S_gen= -0.0 kJ/K; n= 1.3896776 UnitLess; Delta_E= 70.08581 kJ; Delta_S= -0.0 kJ/K;

#


#	Process-B: b-State = State-2; f-State = State-3;
#	Given: W_O= 0.0 kJ; T_B= 298.15 K;
#	Calculated: Q= 655.84515 kJ; W_B= 163.95354 kJ; S_gen= -1.5460639 kJ/K; n= 0.0
UnitLes	38;
#	Delta_E= 491.8916 kJ; Delta_S= 0.6536515 kJ/K;

Prob.9.30. A quantity of air at a pressure of 100 kPa, 27 C, occupying a volume of 0.5 m³ is compressed to a pressure of 500 kPa and volume of 0.12 m³ according to the law $p.v^n = const$. Find: (i) value of index n (ii) mass of air (iii) work transfer (iv) heat transferred during the process, and (iv) change in entropy. [VTU – BTD – July 2007.]


TEST Solution:

Following are the steps:

1. Select the System Analysis-Closed-Uniform System daemon:

2. For Material model, choose IG model:

3. Select Air as working substance, and for State 1, enter values of p1, T1 and Vol1. Hit Enter. Immediately, other properties are calculated:

	Generic	, Uniform-S	ystem, Close	ed Process I	Daemon: IG	Model		
the	ermofluids.net >	Daemons > 9	Systems > Close	-1	> Generic > Unif			
k	TEST		e r er	$\int_{\delta}^{\delta} () dt$		pv = R	2	
Move mouse over a variable to disp	lay its value with n	nore precision.						
Mixed O SI O Engli	ish <mark><</mark> ©Ca	ise-0 💙 >	Help Messages	on Super-	-Iterate Supe	r-Calculate	Load	uper-Initialize
State Panel		Process Pa	anel		Exergy Panel		I/O Pan	el
< <mark>©State-1 ∨</mark> >	Calculate	No-Plots 💌	Initialize	Formati	ion Enthalpy: 🛛 🔘	No 💿 Yes	Air	~
🖌 p1	🖌 T1		rho1		v1		u1	
100.0 kPa 💌	27.0	deg-C 🛛 💙	1.16091	kg/m^3 🛛 💙	0.86139	m^3/kg 💉	-84.11575	kJ/kg 🛛 🗸
h1	s1		🖌 Vel1		🖌 z1		e1	
2.02326 kJ/kg 🗸	6.8934	kJ/kg.K 🛛 💙	0.0	m/s 🗸	0.0	m 💌	-84.11575	kJ/kg 🛛 🗸
j1	phi1		psi1		m1		🖌 Vol1	
2.02326 kJ/kg 🗸		kJ/kg 💙		kJ/kg 💙	0.58046	kg 💙	0.5	m^3 🗸
MM1	R1		c_p1					
28.97 kg/kmol 🗸	0.28699	kJ/kg.K 🛛 💙	1.00379	kJ/kg.K 🛛 💙				

Conoria Uniform System Closed Process Doomon: IC Madel

Observe that: mass of air m1 = 0.58046 kg ... Ans.

4. For State 2: enter p2, m2 = m1, and Vol2. Hit Enter. We get:

			Generi	c, Unifori	n-Sy	stem, Close	ed Pro	cess [Daemon:	IG Model				
		the	ermofluids.net ↑ Home ↑ T E S T	> Daemons	> Sy	vstems > Close	ed > Pro ∫ _ð (ocess :) <i>dt</i>	> Generic >		G-Mo v = R			
• Mixed	O SI I O I	Engl	ish <mark><</mark> ©0	ase-0 🗸 >		Z Help Messages	On	Super-	Iterate	Super-Calculat	te	Load	Super-Initia	lize
5	State Panel			Proce	ess Par	nel		[Exergy Panel			I/O P	anel	
< ©State	-2 * >		Calculate	No-Plo	ts 🛩	Initialize		Formati	on Enthalpy:	⊙No ⊙Ye	s	Air		*
🖌 p2			T2			rho2			v2			u2		
500.0	kPa	~	87.03	deg-C	~	4.83714	kg/m^3	*	0.20673	m^3/kg	*	-40.81003	kJ/kg	~
h2			s2			✓ Ve/2			✓ z2			e2		
62.55678	kJ/kg	*	6.61534	kJ/kg.K	~	0.0	m/s	*	0.0	m	~	-40.81003	kJ/kg	~
j2			phi2			psi2			✓ m2			✓ Vol2		
62.55678	kJ/kg	~		kJ/kg	~		kJ/kg	~	=m1	kg	~	0.12	m^3	~
MM2			R2			c_p2								
28.97	kg/kmol	~	0.28699	kJ/kg.K	~	1.0131	kJ/kg.K	*						

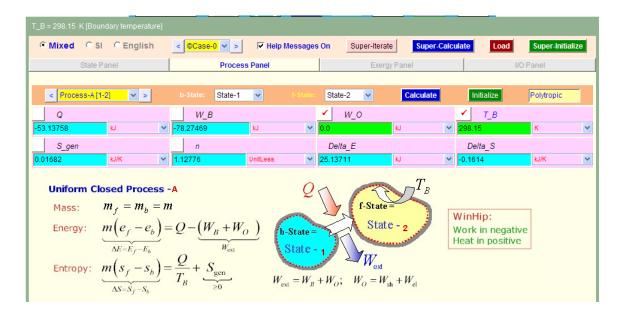
 "I studied

 English for 16

 years but...

 ...I finally

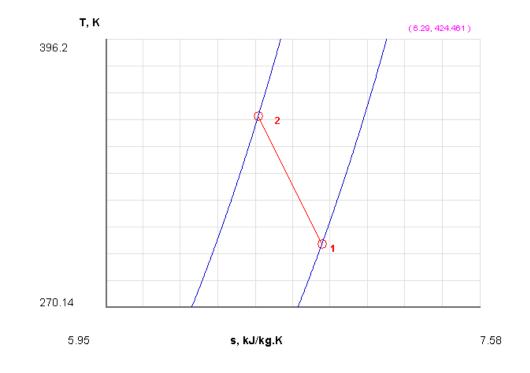
 learned to


 speak it in just

 Jane, Chinese architect

Click to hear me talking
Sefore and after my
Suigue course download

5. Now, go to Process Panel: For Process A, enter State 1 and State 2 for b-State and f-State. Also, W_O = 0. Hit Enter. We get:


Thus:

n = 1.12776, Mass of air = 0.58046 kg Ans.

Q = -53.14 kJ...heat rejected by the system... Ans.

 $W = -78.27 \text{ kJ} \dots \text{work}$ done on the system $\dots \text{Ans.}$

Change in entropy of gas = Delta_S = -0.1614 kJ/K ...Ans.

6. Get the T-s diagram from the Plots widget:

7. Click on SuperCalculate. Get the TEST code etc from the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE

#

#Daemon Path: Systems>Closed>Process>Generic>Uniform>IG-Model; v-10.ca08

#

#-----Start of TEST-code-----

States {

```
State-1: Air;
Given: { p1= 100.0 kPa; T1= 27.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; Vol1= 0.5 m^3; }
State-2: Air;
Given: { p2= 500.0 kPa; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; Vol2= 0.12 m^3; }
}
```

Real and ideal gases and gas mixtures

Analysis {

	Process-A: b-State = State-1; f-State = State-2;										
	Given: { W_O= 0.0 kJ; T_B= 298.15 K; }										
	}										
#		End of TE	ST-code								
#											
#	Proper	rty spreadsheet s	tarts: #								
#	State	p(kPa)	T(K)	v(m^3/kg)	u(kJ/kg)	h(kJ/k	g)	s(kJ/kg)			
#	1	100.0	300.2	0.8614	-84.12	2.02		6.893			
#	2	500.0	360.2	0.2067	-40.81	62.56	6.615				
#											
#	Proper	rty spreadsheet e	nds								
#											

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

127

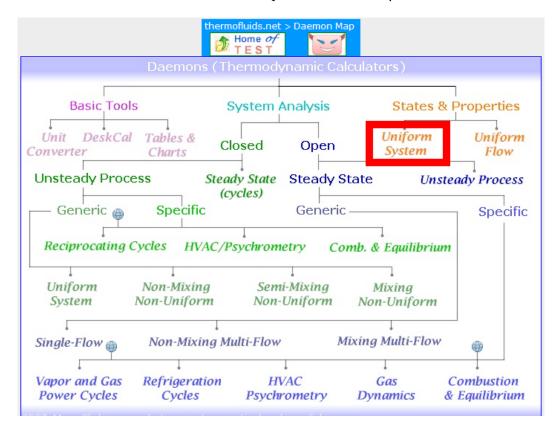
Download free eBooks at bookboon.com

Mass, Energy, and Entropy Analysis Results:

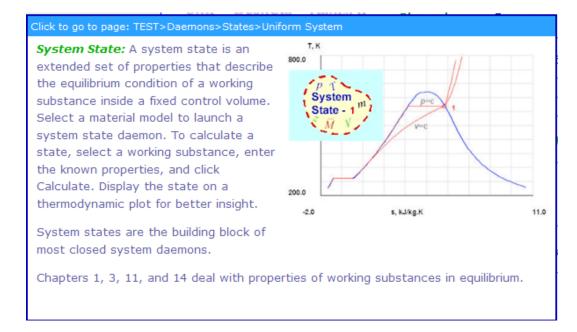
```
#
Process-A: b-State = State-1; f-State = State-2;
# Given: W_O= 0.0 kJ; T_B= 298.15 K;
# Calculated: Q= -53.13758 kJ; W_B= -78.27469 kJ; S_gen= 0.01682128 kJ/K;
# n= 1.1277552 UnitLess;
# Delta_E= 25.137112 kJ; Delta_S= -0.16140303 kJ/K;
```

Prob.9.31. Pressure and temperature of a mixture of 1 kg of O2 and 2 kg of N2 are 150 kPa and 20 C respectively. If the mixture is heated at constant pressure to a temp. of 100 C, determine the following: (i) change in enthalpy (ii) change in entropy (iii) change in int. energy.

Given: Cv of N2 = 0.743 kJ/kg.K and Cv of O2 = 0.65 kJ/kg.K. [VTU – BTD-Jan. 2005]


Note: This prob. Is the same as Prob.9.9 solved with Mathcad.

However, now we shall solve it with TEST. *Appreciate how easy it is to solve ideal gas mixture problems in TEST.*


TEST Solution:

Following are the steps:

1. Go to Daemons tree, select States & Properties - Uniform System:

Hovering the mouse pointer on 'Uniform System' brings the following explanatory pop-up:

RE

Model

Gase

pv = RT

IG Mod

Image: Provided p

bottom margin of the daemon.

2. For Material model, select Binary mixtures – IG + IG model as shown below:

	c _g ≡ const. n-PG Model	pv = RT n-IG Model	Examples: Evaluate mixture and partial properties (including chemical potential) of a mixture of several gases For specific examples, click on the help icon at the bottom margin of the daemon.	
3.	Select O2 for	Gas-A and N2	for Gas-B. For State1, enter p1, T1, m1 (=3 kg for mixture), and	
		с <i>и</i> со		

be specified through mass, volume, mass fraction, or mole fraction.

Examples: Evaluate properties of a flow of a mixture of two gases, O2 and CO2, given the

General Mixture: Mixture can contain an unlimited number, n. of species. Composition can

mass or mole fraction of O2 (gas-A). For specific examples, click on the help icon at the

3. Select O2 for Gas-A and N2 for Gas-B. For State1, enter p1, T1, m1 (=3 kg for mixture), and x_A1 = mass fraction of Gas-A = 1/3 = 0.333. Remember that we have to enter either mass fraction x_A1 or mole fraction y_A1 for Gas-A only. Hit Enter. Immediately, all mixture properties are calculated.

		thermofluids.			System > IG/IG pv = RT			
	nglish <mark>< Ca</mark>	se-0 💙 >	🔽 Help Message	s On Su	per-Iterate Su	per-Calculate	Load	Super-Initialize
	State Panel					I/O Panel		
< <mark>©State-1 ∨</mark> >	Calculate	No-Plots 🐱	Initialize	Gas-A:	02	♥ Gas	-В: <mark>N2</mark>	~
🖌 p1	🖌 T1		v1		u1		h1	
150.0 kPa	20.0	deg-C	₩ 0.55614	m^3/kg	✓ -88.81897	kJ/kg 🗸 🗸	-5.39759	kJ/kg 🗸 🗸
s1	🖌 Vel1		🖌 z1		e1		j1	
6.7431 kJ/kg.K	≥ 0.0	m/s	✓ 0.0	m	✓ -88.81897	kJ/kg 🗸 🗸	-5.39759	kJ/kg 🗸 🗸
phi1	psi1		🖌 m1		Vol1		MM1	
kJ/kg	v	kJ/kg	✓ 3.0	kg	✓ 1.66843	m^3 🗸	29.21612	kg/kmol 🗸
R1	c_p1		✓ x_A1		y_A1			
0.28457 kJ/kg.K	✓ 0.98949	kJ/kg.K	✓ 0.333	fraction	✓ 0.30403	fraction 🗸		

System State Daemon: Binary Mixture of Ideal Gases - IG/IG Model

Note from the above screen shot that mixture properties such as Mean Mol. wt. MM1, sp. heat of mixture, c_p1, Total volume of mixture, Vol1, entropy of mixture, s1 etc are immediately presented.

4. Now, go to State 2. Enter p2 = p1, T2, m2 = m1, x_A2 = x_A1, and hit Enter. We get for State 2 of the mixture:

• Mixed • C SI	C Englis	sh <mark>< Case</mark>	-0 💙 >	⊮ He	lp Messages (On Super	-Iterat	e Supe	r-Calculate	Load	Super-Initial	ize
		State Panel							I/O Panel			
< ©State-2 🗸	>	Calculate	No-Plots 🔽	I	nitialize	Gas-A: <mark>02</mark>			V Gas	s-B: N2		~
✓ p2		✓ T2			v2			u2		h2		
=p1 kPa	· •	100.0	deg-C 🔹	/ 0.7	70791	m^3/kg 🛛 💙	-31.	64933	kJ/kg 💊	74.53756	kJ/kg	•
s2		✓ Vel2		1	z2			e2		j2		
5.98429 kJ/kg.	< v	0.0	m/s 💉	0.0)	m 🗸	-31.	64933	kJ/kg 🔷 🗸	74.53756	kJ/kg	1
phi2		psi2		1	m2			Vol2		MM2		
kJ/k			kJ/kg	/ <mark>=</mark> m	11	kg 🗸 🗸	2.12	2374	m^3 🔻	29.21612	kg/kmol	1

System State Daemon: Binary Mixture of Ideal Gases - IG/IG Model

thermofluids.net > Daemons >

MoM

Increase your impact with MSM Executive Education

For almost 60 years Maastricht School of Management has been enhancing the management capacity of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open Enrollment Executive Programs offers you a unique interactive, stimulating and multicultural learning experience.

Be prepared for tomorrow's management challenges and apply today.

For more information, visit www.msm.nl or contact us at +31 43 38 70 808 or via admissions@msm.nl

the globally networked management school

Download free eBooks at bookboon.com

5. Click on **SuperCalculate** and get the TEST code etc from the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE

Daemon Path: States>System>IG-BinMixModel; v-10.ca08 # #------Start of TEST-code------

States {

State-1: O2, N2;

Given: { p1= 150.0 kPa; T1= 20.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 3.0 kg; x_A1= 0.333 fraction; }

State-2: O2, N2;

```
Given: { p2= "P1" kPa; T2= 100.0 deg-C; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; x_A2= "x_A1" fraction; }
```

}

#-----End of TEST-code-----

#

#*****DETAILED OUTPUT:

#

Evaluated States:

```
#
# State-1: O2, N2 > IG-BinMixModel;
# Given: p1= 150.0 kPa; T1= 20.0 deg-C; Vel1= 0.0 m/s;
# z1= 0.0 m; m1= 3.0 kg; x_A1= 0.333 fraction;
#
```

#	Calculated: v1= 0.5561 m^3/kg; u1= -88.819 kJ/kg; h1= -5.3976 kJ/kg;										
#		s1= 6.7	431 kJ/k	kg.K; e1=	-88.819	kJ/kg; j1= -5.3	976 kJ/kg;				
#	Vol1= 1.6684 m^3; MM1= 29.2161 kg/kmol; R1= 0.2846 kJ/kg.K;										
#		c_p1=	0.9895 k	J/kg.K;	y_A1= 0	.304 fraction;					
#											
# Sta	e-2: O2, N2	2 > IG-Bi	inMixM	odel;							
#	# Given: p2= "P1" kPa; T2= 100.0 deg-C; Vel2= 0.0 m/s;										
#		z2= 0.0	m; m2=	= "m1" k	xg; x_A2	= "x_A1" fracti	on;				
#											
#	Calculated: v2= 0.7079 m^3/kg; u2= -31.6493 kJ/kg; h2= 74.5376 kJ/kg;										
#		s2= 6.9	843 kJ/k	kg.K; e2=	- 31.649	93 kJ/kg; j2= 74	.5376 kJ/kg;				
#		Vol2=2	2.1237 n	n^3; MN	12= 29.2	161 kg/kmol; R	2= 0.2846 kJ/kg.l	К;			
#		c_p2=	1.0102 k	J/kg.K;	$y_A2=0$.304 fraction;					
#											
#Pro	perty sprea	dsheet st	arts: #								
# State x_A	y_A	p(kPa)	T(K)	v(m3/k	(g)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)			
#1 0.3	0.3	150.0	293.1	0.5561		-88.82	-5.4	6.743			
# 2 0.3	5	0.3	150.0	373.1	0.7079	-31.65	74.54	6.984			

#

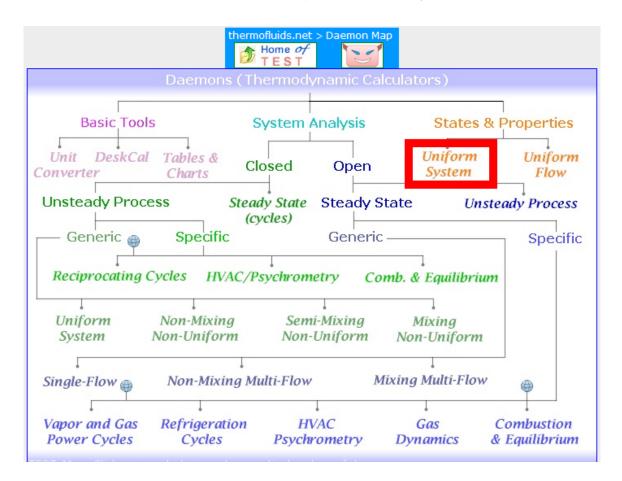
#*****CALCULATE VARIABLES: Type in an expression starting with an '=' sign ('= mdot1*(h2-h1)', '= sqrt(4*A1/PI)', etc.) and press the Enter key)********

#

Calculate change in enthalpy etc. in the I/O panel, using it as a calculator:

Change in enthalpy = m1*(h2-h1) = 239.80544471740723 = 239.81 kJ ... Ans.

Change in entropy = m1*(s2-s1) = 0.7235612869262695 = 0.724 kJ/K ... Ans.


Change in int. energy = m1*(u2-u1) = 171.50891876220703 = 171.51 kJ ... Ans.

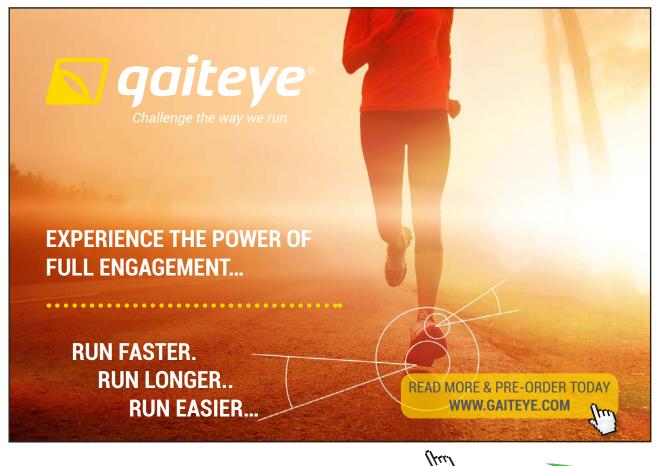
Prob.9.32. A gas mixture consists of 6 kmol of H2 and 4 kmol of N2. Determine the mass of each gas and the Gas const. of the mixture. [VTU – BTD – Jan. 2004]

TEST Solution:

Following are the steps:

1. Go to Daemons tree, select States & Properties - Uniform System:

2. For Material model, select Binary mixtures – IG + IG model as shown below:


Select H2 for Gas-A and N2 for Gas-B. For State1, enter y_A1 = 0.6 (i.e. mole fraction for Gas-A), and hit Enter. Immediately, Gas const. for mixture (i.e. R1) and Mol. wt. for the mixture, MM1 are calculated.

Syst	TEST	t > Daemons > St	tates > System > I	-	
Mixed O SI O English		Help Messages On	Super-Iterate	Super-Calculate	Load Super-Initialize
Sta	te Panel			I/O Panel	
< <mark>©State-1 ▼ > Calcul</mark>	ate No-Plots 🗸	Initialize Ga	as-A: <mark>H2</mark>	v Gas-l	B: N2 🗸
p1 kPa 🗸	Т1 К 💙	v1	^3/kg 💙	1 kJ/kg 💙	h1 kJ/kg 🗸
s1	Vel1 w/s 🗸	✓ z1	m v	1 kJ/kg 💙	j1 kJ/kg 🗸
phi1 phi	si1	m1	,	ol1	MM1
kJ/kg ♥	kJ/kg ❤ cp1	x A1	· · · · · · · · · · · · · · · · · · ·		12.40948 kg/kmol 🗸
0.66997 kJ/kg.K 🖌	kJ/kg.K		action V	fraction 💌	

Note from the above screen shot that for the mixture:

Mean Mol. wt. MM1 = 12.409 kg/mol ... Ans.

Gas const. for mixture, R1 = 0.66997 kJ/kg.K.... Ans.

Click on the ad to read more

Real and ideal gases and gas mixtures

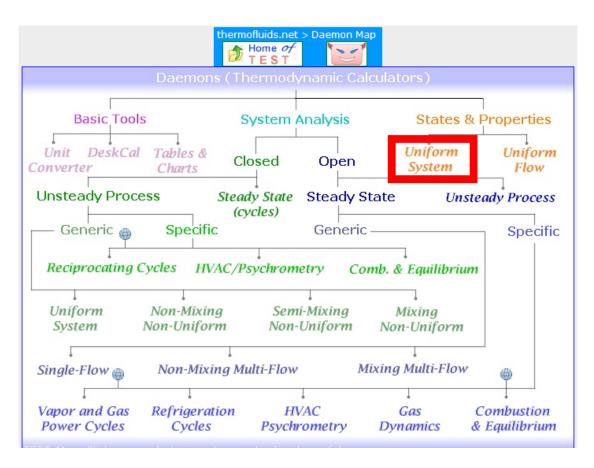
Mass of H2 and N2:

We see that mass fraction, x_A1 for H2 is 0.09746.

i.e. If the mixture mass is 1 kg,

Mass of H2 in the mixture = 0.09746 kg ... Ans.

Mass of N2 in the mixture = 1 – 0.09746 = 0.9025 kg Ans.



Prob.9.33. The gravimetric analysis of dry air is: O2 = 23%, and N2 = 77%. Calculate for air at 100 kPa and 15 C: (i) Mole fractions of components, (ii) The Gas const. (iii) Mol. wt. (iv) The respective partial pressures. [VTU – BTD – July 2003]

TEST Solution:

Following are the steps:

1. Go to Daemons tree, select States & Properties - Uniform System:

2. For Material model, select Binary mixtures - IG + IG model as shown below:

	ρν= zRT RG Model	Examples: Evaluate th	ir liquid, vapor or gaseous states. But generality comes at the expense of accuracy. he change in entropy of a fixed mass of propane, compressed from a given initial pressure given final pressure at the super critical region. For specific examples, click on the help icon at the daemon.
	c _p = const. PG+PG Model	pv = 2RT RG+RG Model	Binary Mixture: The mixture of two gases, A and B, is expressed in terms of the mass or mole fraction of gas-A. Select one of the mixture models. Moist air is a special case of a binary mixture (PG+PG) of dry gas and water vapor.
Gases:	pν = RT IG+IG Model	MA (Moist Air) Model	Examples: Evaluate properties of a flow of a mixture of two gases, O_2 and CO_2 , given the mass or mole fraction of O_2 (gas-A). For specific examples, click on the help icon at the bottom margin of the daemon.
	c, ≜ const. n-PG Model	<i>µv</i> = <i>RT</i> n-IG Model	General Mixture: Mixture can contain an unlimited number, <i>n</i> , of species. Composition can be specified through mass, volume, mass fraction, or mole fraction. Examples: Evaluate mixture and partial properties (including chemical potential) of a mixture of several gases For specific examples, click on the help icon at the bottom margin of the daemon.

MAN OLIVER WYMAN

Oliver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk usep industry knows by events and the preclarace explorates in a data by persons, take management, organizational transformation, and leadership development. With offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. elopment With OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

137 Download free eBooks at bookboon.com Select O2 for Gas-A and N2 for Gas-B. For State1, enter values of p1, T1, and mass fraction of O2 = x_A1 = 0.23 and hit Enter. Immediately, mole fraction y_A1 for O2, Gas const. for mixture (i.e. R1) and Mol. wt. for the mixture, MM1 are calculated.

	thermofluids		States > System M R & S V W	$\frac{\text{tem} > \text{IG/IG}}{pv = RT}$	
Mixed C SI C Englis	sh <mark>< Case-0 ♥</mark> >	🔽 Help Messages	On Super-It	erate Super-Calculate	Load Super-Initialize
	State Panel			I/O Panel	
< <mark>©State-1 ></mark>	Calculate No-Plots 🗸	Initialize	Gas-A: <mark>02</mark>	🗸 Gas	-B: N2 💌
🖌 p1	🖌 T1	v1		u1	h1
100.0 kPa 🗸	15.0 deg-C	✓ 0.831	m^3/kg 🛛 👻	-93.5517 kJ/kg 🗸	-10.45158 kJ/kg 💙
s1	✓ Vel1	🖌 z1		e1	_j1
6.85826 kJ/kg.K ♥	0.0 m/s	✓ 0.0	m 🗸	-93.5517 kJ/kg 🗸	-10.45158 kJ/kg 💙
phi1	psi1	m1		Vol1	MM1
kJ/kg 💙	kJ/kg	×	kg 💌	m^3 💙	28.82883 kg/kmol 💙
R1	c_p1	🖌 x_A1		<u>y_</u> A1	
0.28839 kJ/kg.K 🛩	1.00202 kJ/kg.K	✓ 0.23	fraction 💌	0.20721 fraction V	

System State Daemon: Binary Mixture of Ideal Gases - IG/IG Model

We see from the above screen shot that:

Mole fraction of O2 = y_A1 = 0.20721 = 20.72% ... Ans.

Therefore, mole fraction of N2 = 1 - 0.20721 = 0.79279 = 79.28%

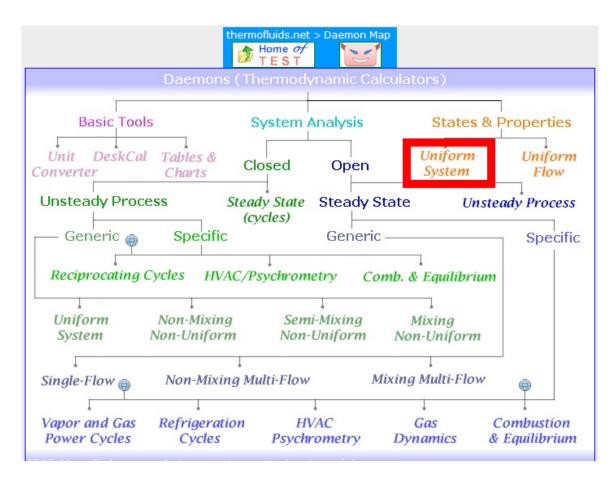
Gas const. for the mixture = R1 = 0.28839 kJ/kg.K ... Ans.

Partial pressures:

For O2: p_O2 = 0.20721 * 100 = 20.721 kPa ... Ans.

For N2: p_N2 = 0.79279 * 100 = 79.279 kPa ... Ans.

	4. Click on SuperCalculate to get the TEST code etc:
#~~~	~~~~~~~~~~OUTPUT OF SUPER-CALCULATE
#	
#	Daemon Path: States>System>IG-BinMixModel; v-10.ca08
#	
#	Start of TEST-code
States	{
	State-1: O2, N2;
	Given: { p1= 100.0 kPa; T1= 15.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; x_A1= 0.23 fraction; }
	}
#	End of TEST-code
#****	*DETAILED OUTPUT:
#	
# Eval	luated States:
#	
#	State-1: O2, N2 > IG-BinMixModel;
#	Given: p1= 100.0 kPa; T1= 15.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; x_A1= 0.23 fraction;
#	Calculated: v1= 0.831 m^3/kg; u1= -93.5517 kJ/kg; h1= -10.4516 kJ/kg;
#	s1= 6.8583 kJ/kg.K; e1= -93.5517 kJ/kg; j1= -10.4516 kJ/kg;
#	MM1= 28.8288 kg/kmol; R1= 0.2884 kJ/kg.K; c_p1= 1.002 kJ/kg.K;
#	y_A1= 0.2072 fraction;
#	


Prob.9.34. Determine the sp.vol.of H2 gas when its pressure is 60 bar and temp is 100 K, by using the compressibility chart. [VTU – BTD – Jan. 2003]

TEST Solution:

Result of using the compressibility chart is obtained very easily with TEST:

Following are the steps:

1. Go to Daemons tree, select States & Properties – Uniform System:

2. For Material model, select Gases – RG (Real Gas) model as shown below. *Observe that it is based on generalized compressibility chart.*

	PG Model		e change in entropy of a fixed volume of argon, heated from a given initial pressure and n final state. For specific examples, click on the help icon at the bottom margin of the							
	Pure Ideal Gas: An ideal gas (IG) is a gas that obeys the ideal gas equation of state ($pv=RT$). Specific heats temperature dependent. As a result the IG model is more accurate than the PG model when variation in temperature is significant. Choose from an wide selection of gases.IG ModelExamples: Evaluate the change in internal energy of a fixed volume of carbon dioxide, heated from a given final state. For specific examples, click on the help icon at the bottom m of the daemon.									
	pv≓ zRT RG Model	number of fluids in the Examples: Evaluate th and temperature to a	ure Real Gas: Based on the generalized compressibility chart (pv=ZRT), the real gas (RG) model can handle a large umber of fluids in their liquid, vapor or gaseous states. But generality comes at the expense of accuracy. camples: Evaluate the change in entropy of a fixed mass of propane, compressed from a given initial pressure and temperature to a given final pressure at the super critical region. For specific examples, click on the help icon at bottom margin of the daemon.							
	c _p = const. PG+PG Model	pv = zRT RG+RG Model	Binary Mixture: The mixture of two gases, A and B, is expressed in terms of the mass or mole fraction of gas-A. Select one of the mixture models. Moist air is a special case of a binary mixture (PG+PG) of dry gas and water vapor.							
Gases:	ρν = RT IG+IG Model	MA (Moist Air) Model	Examples: Evaluate properties of a flow of a mixture of two gases, O ₂ and CO ₂ , given the mass or mole fraction of O ₂ (gas-A). For specific examples, click on the help icon at the bottom margin of the daemon.							

Day one and you're ready

Day one. It's the moment you've been waiting for. When you prove your worth, meet new challenges, and go looking for the next one. It's when your dreams take shape. And your expectations can be exceeded. From the day you join us, we're committed to helping you achieve your potential. So, whether your career lies in assurance, tax, transaction, advisory or core business services, shouldn't your day one be at Ernst & Young?

What's next for your future? ey.com/careers

JERNST & YOUNG Quality In Everything We Do

© 2010 EYGM Lin

d. All F

3. Select H2 for the substance. For State1, enter values of p1, T1 hit Enter. Immediately, many properties of H2 are calculated:

vlove mouse over	a variable to	o displ		hermofluid Hom TE	ls.net e <i>of</i> S T	te Daemon > Daemons >	States		em > RG-Mod	el				
• Mixed	O SI O I	Engli	sh <mark>< ©C</mark> a	ase-0 🗸 >	• I	Help Message	s On	Super	-Iterate Su	per-Calcula	ate	Load	Super-Initia	alize
			State Panel							I/O Pa	nel			
< 05	tate-1 🗸	>	Ca	lculate		No-Plots	~		Initialize	CI	hoose	Fluid: H2		~
Select RG	Sub-Mode	el:	• Lee-Kesi	er o	Nelso	on-Obert	Phase:	S	uperheated Vap	or				
🖌 p1			p_r1			🖌 T1			T_r1			Z1		
60.0	bar	*	4.61538	UnitLess	~	100.0	К	*	3.01205	UnitLess	*	1.05699	UnitLess	*
Z_h1			Z_s1			x1			y1			v1		
0.38662	UnitLess	*	0.17058	UnitLess	~		fraction	~		fraction	*	0.07265	m^3/kg	*
u1			h1			s1			✓ Vel1			🖌 z1		
-3304.394	kJ/kg	~	-2868.4888	kJ/kg	~	31.76466	kJ/kg.K	*	0.0	m/s	~	0.0	m	*
e1			j1			phi1			psi1			m1		
-3304.394	kJ/kg	~	-2868.4888	kJ/kg	~		kJ/kg	~		kJ/kg	~		kg	~
Vol1														
J	m^3	~												

Observe that sp. volume = $v1 = 0.07265 \text{ m}^3/\text{kg}$... Ans.

4. Click on **SuperCalculate**, and get the TEST code etc from the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE

Daemon Path: States>System>RG-Model; v-10.ca08

#

#-----Start of TEST-code-----

States {

State-1: H2;

Given: { p1= 60.0 bar; T1= 100.0 K; Vel1= 0.0 m/s; z1= 0.0 m; }

}

#-----End of TEST-code-----

#

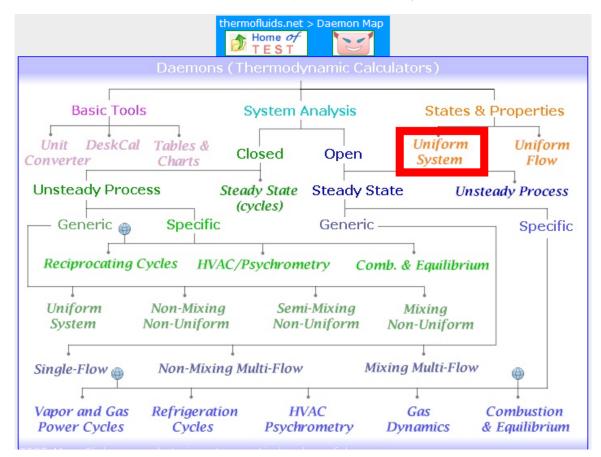
#*****DETAILED OUTPUT:

#

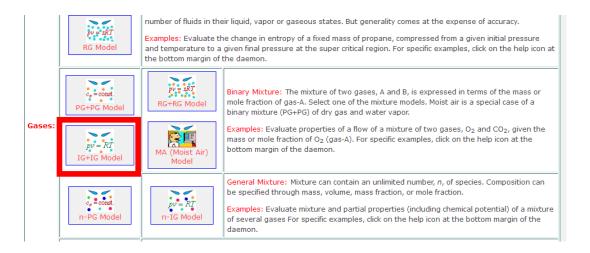
Evaluated States:

#	
#	State-1: H2 > Superheated Vapor;
#	Given: p1= 60.0 bar; T1= 100.0 K; Vel1= 0.0 m/s;
#	z1= 0.0 m;
#	Calculated: p_r1= 4.6154 UnitLess; T_r1= 3.012 UnitLess; Z1= 1.057 UnitLess;
#	Z_h1= 0.3866 UnitLess; Z_s1= 0.1706 UnitLess; v1= 0.0727 m^3/kg;
#	u1= -3304.394 kJ/kg; h1= -2868.4888 kJ/kg; s1= 31.7647 kJ/kg.K;
#	e1= -3304.394 kJ/kg; j1= -2868.4888 kJ/kg;
#	

In the past four years we have drilled <u>81,000 km</u> That's more than twice around the world. Who are we? We are the world's leading oilfield services company. Working globally—often in remote and challenging locations—we invent, design, engineer, manufacture, apply, and maintain technology to help customers find and produce oil and gas safely. Who are we looking for? We offer countless opportunities in the following domains: Geoscience and Petrotechnical Commercial and Business If you are a self-motivated graduate looking for a dynamic career, What will you be? apply to join our team. Schlumberger careers.slb.com


Click on the ad to read more

Prob.9.35. A mixture of H2 and O2 is in the ratio 2 to 1 by volume. Find the mass of H2 required and the volume of container per kg of O2 if the temp and pressure of the mixture are to be 300 K and 100 kPa respectively. [VTU – BTD – July 2002]


TEST Solution:

Following are the steps:

1. Go to Daemons tree, select States & Properties - Uniform System:

2. For Material model, select Binary mixtures – IG + IG model as shown below:

3. Select H2 for Gas-A and O2 for Gas-B. For State1, enter values of p1, T1, and mole fraction of H2 = $y_A1 = 2/3 = 0.6667$ and hit Enter. Immediately, mass fraction x_A1 for H2, Gas const. for mixture (i.e. R1) and Mol. wt. for the mixture, MM1 are calculated.

• Mixed	O SI O E	nglis	h <mark>< Ca</mark>	se-0 💙 >	V	Help Messages	On	uper-	Iterate Sup	er-Calcula	te	Load	Super-Initiali	ize
			State Panel							I/O Par	el			
< ©State-1	¥ >	С	alculate	No-Plots 🗸		Initialize	Gas-A:	H2		~	Gas-	B: <mark>02</mark>	ł	~
✓ p1			 ✓ T1 			v1			u1			h1		
100.0	kPa	*	300.0	К	*	2.07685	m^3/kg	~	-203.75261	kJ/kg	~	3.93237	kJ/kg	•
s1			✓ Vel1			🖌 z1			e1			j1		
13.40953	kJ/kg.K	~	0.0	m/s	*	0.0	m	~	-203.75262	kJ/kg	*	3.93237	kJ/kg	1
phi1			psi1			m1			Vol1			MM1		
	kJ/kg	~		kJ/kg	~		kg	~		m^3	*	12.00953	kg/kmol	1
R1			c_p1			x_A1			✓ y_A1					
0.69228	kJ/kg.K	*	2.40818	kJ/kg.K	*	0.11191	fraction	~	0.6667	fraction	~			

We observe that:

Mass fraction of H2 = x_A1 = 0.11191

Then, mass fraction of O2 = 1 – 0.11191 = 0.88809

Therefore, for 1 kg of O2:

Mass of mixture = 1/0.88809 = 1.126 kg.

And, Mass of H2 = 1.126 – 1 = 0.126 kg Ans.

Now, go to the above State panel, and enter mass of mixture, m1 = 1.126 kg, and hit Enter.

We get:

Mixed O SI	Englig	h <mark>ko</mark> r	ase-0 🗙 >		Help Messages	0.0	inor	Iterate Supe	er-Calcula	10	Load	Super-Initial	izo
s wixed so at s	Englis			I.	neip messages		ipei-	Supe	I-Calcula	le	Loau	Super-Initial	IZe
		State Panel							I/O Par	nel			
< ©State-1 🗸 >		Calculate	No-Plots 🔽		Initialize	Gas-A:	H2		*	Gas-E	B: <mark>02</mark>		~
🖌 p1		🖌 T1			v1			u1			h1		
100.0 kPa	*	300.0	К	~	2.07685	m^3/kg	~	-203.75261	kJ/kg	~	3.93237	kJ/kg	~
s1		✓ Vel1			🖌 z1			e1			j1		
13.40953 kJ/kg.K	*	0.0	m/s	*	0.0	m	~	-203.75262	kJ/kg	~	3.93237	kJ/kg	1
phi1		psi1			✓ m1			Vol1			MM1		
kJ/kg	~		kJ/kg	*	1.126	kg	~	2.33853	m^3	~	12.00953	kg/kmol	~
R1		c_p1			x_A1			✓ y_A1					
0.69228 kJ/kg.K	~		kJ/kg.K	~	0.11191	fraction	v	0.6667	fraction	~			

Thus:

Volume of mixture (i.e. volume of container required) = $Vol1 = 2.33853 \text{ m}^3 \dots \text{Ans.}$

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Dove

=============

Prob.9.36. A mixture of 0.5 kg of CO2 and 0.3 kg of N2 is compressed from P1 = 1 bar, T1 = 20 C to P2 = 5 bar in a polytropic process for which n = 1.3. Find (i) the final temp (ii) work (iii) heat transfer (iv) change in entropy of the mixture. [VTU – BTD – Dec. 2012]

TEST Solution:

Following are the steps:

1. Go to Daemons tree, select States & Properties - Uniform System:

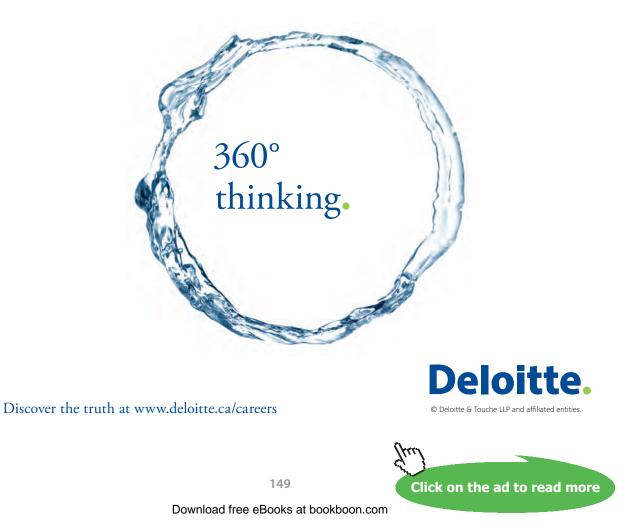
number of fluids in their liquid, vapor or gaseous states. But generality comes at the expense of accuracy. pν = zRT Examples: Evaluate the change in entropy of a fixed mass of propane, compressed from a given initial pressure RG Mode and temperature to a given final pressure at the super critical region. For specific examples, click on the help icon at the bottom margin of the daemon. pv = zRT00 $c_p = \text{const.}$ Binary Mixture: The mixture of two gases, A and B, is expressed in terms of the mass or RG+RG Model mole fraction of gas-A. Select one of the mixture models. Moist air is a special case of a PG+PG Model binary mixture (PG+PG) of dry gas and water vapor. Gases Examples: Evaluate properties of a flow of a mixture of two gases, O₂ and CO₂, given the mass or mole fraction of O2 (gas-A). For specific examples, click on the help icon at the pv = RT bottom margin of the daemon. IG+IG Mode Model General Mixture: Mixture can contain an unlimited number, n, of species, Composition can be specified through mass, volume, mass fraction, or mole fraction. $c_p = \text{const.}$ pv = RT n-IG Model Examples: Evaluate mixture and partial properties (including chemical potential) of a mixture n-PG Model of several gases For specific examples, click on the help icon at the bottom margin of the daemon.

2. For Material model, select Binary mixtures – IG + IG model as shown below:

3. Select CO2 for Gas-A and N2 for Gas-B. For State1, enter values of p1, T1, and mass fraction of CO2 = x_A1 = 5/8, and mass of mixture, m1 = 0.8 kg, and hit Enter. Immediately, mole fraction y_A1 for CO2, Gas const. for mixture (i.e. R1) and Mol. wt. for the mixture, MM1, mixture volume, Vol1 are calculated:

	glish < Case-0 💙 >	Help Messages C	Super-Iter	rate Super-Calculate	Load Super-Initialize
	State Panel			I/O Panel	
< <mark>©State-1</mark> 🗸 >	Calculate No-Plots 🗸	Initialize	Gas-A: <mark>CO2</mark>	<mark>.</mark> ✓ Gas-	B: N2 🗸
✔ p1	✓ T1	v1		u1	h1
kPa	✓ 20.0 deg-C	✓ 0.67254	m^3/kg 🛛 🖌 📑	5660.5386 kJ/kg 😪	-5593.285 kJ/kg 🔹
s1	✓ Vel1	✓ z1		e1	j1
5.74758 kJ/kg.K	✓ 0.0 m/s	▶ 0.0	m 🔺 -5	5660.5386 kJ/kg 😪	-5593.285 kJ/kg *
phi1	psi1	✓ m1		Vol1	MM1
kJ/kg	✓ kJ/kg	✓ 0.8	kg 💌 <mark>0</mark> .	.53803 m^3 ❤	36.23953 kg/kmol N

System State Daemon: Binary Mixture of Ideal Gases - IG/IG Model thermofluids.net > Daemons > States > System > IG/IG Home of Ideal Gases - IG/IG


4. For State 2, enter values of p2, v2 = [(p1/p2) * v1^1.3]^(1/1.3), m2 = m1, x_A2 = x_A1, and hit Enter. We get:

• Mixed	OSI OE	inglis	h <mark><</mark> Ca	se-0 💙 >	V	Help Messages	On	Super-	Iterate	uper-Calcu	late	Load	Super-Initia	lize
			State Panel							I/O P	anel			
< ©State-2	v >	С	alculate	No-Plots 💌		Initialize	Gas-A:	CO	2	*	Gas-l	B: N2		*
✓ p2			T2			✓ v2			u2			h2		
500.0	kPa	*	151.85194	deg-C	*	=((p1/p2)*v1^1.3	m^3/kg	~	-5564.966	kJ/kg	*	-5467.4624	kJ/kg	~
s2			✓ Vel2			✓ z2			e2			j2		
5.73232	kJ/kg.K	*	0.0	m/s	*	0.0	m	*	-5564.966	kJ/kg	*	-5467.4624	kJ/kg	~
phi2			psi2			✓ m2			Vol2			MM2		
	kJ/kg	~		kJ/kg	~	=m1	kg	*	0.156	m^3	*	36.23953	kg/kmol	~
R2			c_p2			✓ x_A2			y_A2					
0.22942	kJ/kg.K	*	0.99449	kJ/kg.K	~	=x_A1	fraction	~	0.51465	fraction	~			

Thus:

Final temp = T2 = 151.85 C Ans.

Work done = (p1*Vol1 - p2*Vol2) / (1.3 - 1) = -80.664 kJ ...work done on the system, since -ve... Ans.

Real and ideal gases and gas mixtures

Heat transfer:

```
By I Law: Q = dU + W
```

Now, $dU = m1^*(u2 - u1) = 76.458 \text{ kJ}$

Therefore, Q = 76.458+(-80. 664) = -4.206 kJ....heat rejected.... Ans.

Change in entropy: $dS = m1 * (s2 - s1) = 0.0128 \text{ kJ/K} \dots \text{ Ans.}$

5. Click on **SuperCalculate** and get the TEST code etc from the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE

#

Daemon Path: States>System>IG-BinMixModel; v-10.ca08

#

#-----Start of TEST-code-----

States {

State-1: CO2, N2;

Given: { p1= 100.0 kPa; T1= 20.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 0.8 kg; x_A1= "5/8" fraction; }

State-2: CO2, N2;

Given: { p2= 500.0 kPa; v2= "((p1/p2)*v1^1.3)^(1/1.3)" m^3/kg; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; x_A2= "x_A1" fraction; }

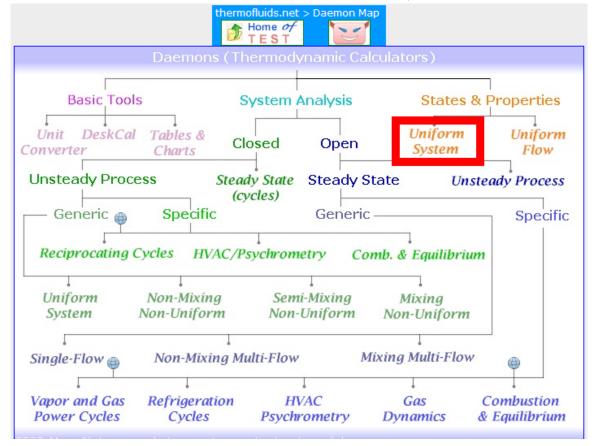
} #-----End of TEST-code-----

#

#*****DETAILED OUTPUT:

#

Evaluated States:


#								
#	State-1	: CO2, N	J2 > IG-	BinMixl	Model;			
#		Given:	p1= 100	.0 kPa; '	Γ1= 20.0 deg-C;	Vel1= 0.0 m/s		
#			z1= 0.0	m; m1:	= 0.8 kg; x_A1=	"5/8" fraction	•	
#								
#	Calcul	ated: v1=	= 0.6725	m^3/kg	; u1= -5660.538	6 kJ/kg ; h1= -	5593.285 kJ/kg;	
#			s1= 5.7	476 kJ/k	kg.K; e1 = -5660.3	5386 kJ/kg; j1=	-5593.285 kJ/kg	;
#			Vol1=	0.538 m	^3; MM1= 36.23	395 kg/kmol; R	a1= 0.2294 kJ/kg.	K;
#			c_p1=	0.9159 k	$J/kg.K; y_A1=0$).5147 fraction;	;	
#								
#	State-2	: CO2, N	V2 > IG-	BinMixl	Model;			
#	Given:	p2= 500).0 kPa; v	v2= "((p	1/p2)*v1^1.3)^	(1/1.3)" m^3/k	kg; Vel2= 0.0 m/s	;
#			z2= 0.0	m; m2=	= "m1" kg; x_A2	e= "x_A1" fract	tion;	
#								
#	Calcula	ated: T2	= 151.85	19 deg-	C; u2= -5564.96	66 kJ/kg; h2= -	5467.4624 kJ/kg;	
#			s2= 5.7	323 kJ/k	kg.K; e2= -5564.9	966 kJ/kg; j2=	-5467.4624 kJ/kg	;
#			Vol2=	0.156 m	^3; MM2= 36.23	395 kg/kmol; R	2= 0.2294 kJ/kg.	К;
#			c_p2=	0.9945 k	$J/kg.K; y_A2=0$	0.5147 fraction	;	
#								
#	Proper	ty sprea	dsheet st	arts:				
# State	x_A	y_A	p(kPa)	T(K)	v(m3/kg)	u(kJ/kg)h(kJ/	/kg)s(kJ/kg)	
# 1	0.62	0.51	100.0	293.1	0.6725	-5660.54	-5593.29	5.748
# 2	0.62	0.51	500.0	425.0	0.195	-5564.97	-5467.46	5.732

Prob.9.37. A mixture of ideal gases consists of 3 kg of N2 and 5 kg of CO2 at a pressure of 300 kPa and temp of 20 C. Find: (i) mole fraction of each component (ii) equivalent mol. wt. of the mixture (iii) equivalent gas constant of the mixture, and (iv) the partial pressure and partial volume. [VTU – BTD – June–July 2008]

TEST Solution:

Following are the steps:

1. Go to Daemons tree, select States & Properties - Uniform System:

2. For Material model, select Binary mixtures – IG + IG model as shown below:

3. Select N2 for Gas-A and CO2 for Gas-B. For State1, enter values of p1, T1, and mass fraction of N2 = x_A1 = 3/8, and mass of mixture, m1 = 8 kg, and hit Enter. Immediately, mole fraction y_A1 for N2, Gas const. for mixture (i.e. R1) and Mol. wt. for the mixture, MM1, mixture volume, Vol1 are calculated:

• Mixed C S	I C Eng	lish < 🔍	ase-0 💙 >	☑	Help Messages	On	Super-	Iterate Su	per-Calcul	ate	Load	Super-Initia	lize
		State Panel							I/O Pa	nel			
< <mark>©State-1</mark> v	>	Calculate	No-Plots 🗸		Initialize	Gas-A:	N2		~	Gas-l	B: CO2		~
🖌 p1		🖌 T1			v1			u1			h1		
300.0	kPa 🔹	19.999567	deg-C	*	0.22418	m^3/kg	*	-5660.5386	kJ/kg	*	-5593.285	kJ/kg	1
s1		✓ Vei1			✓ z1			e1			j1		
5.49554 kJi	/kg.K	✓ 0.0	m/s	*	0.0	m	*	-5660.5386	kJ/kg	*	-5593.285	kJ/kg	•
phi1		psi1			✓ m1			Vol1			MM1		
k.	J/kg	~	kJ/kg	*	8.0	kg	*	1.79344	m^3	*	36.23953	kg/kmol	1
R1		c_p1			✓ x_A1			y_A1					
0.22942 kJ	/kg.K	 0.9159 	kJ/kg.K	~	=3/8	fraction	~	0.48535	fraction	~			

Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

Thus:

```
Mole fraction of N2 = y_A1 = 0.48535 C .... Ans.
```

```
Therefore, Mole fraction of CO2 = 1 - 0.4853 = 0.5147... Ans.
```

Equiv. mol. wt. of mixture = MM1 = 36.2395 kg/kmol... Ans.

Equiv. Gas const. of mixture = R1 = 0.22942 kJ/kg.K ... Ans.

Partial pressure of N2 = y_A1 * p1 = 145.6 kPa Ans.

Partial pressure of CO2 = 300 - 145.6 = 154.4 kPa Ans.

Partial volume of N2 = $y_A1 \times Vol1 = 0.87 \text{ m}^3 \dots \text{ Ans.}$

Partial volume of CO2 = Vol1 – 0.87 = 0.923 m³... Ans.

4. Click on **SuperCalculate** and get the TEST code etc from the I/O panel:

#~~~~OUTPUT OF SUPER-CALCULATE

#

Daemon Path: States>System>IG-BinMixModel; v-10.ca08

#

#-----Start of TEST-code-----

States {

State-1: N2, CO2;

Given: { p1= 300.0 kPa; T1= 20.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 8.0 kg; x_A1= "3/8" fraction; }

}

#-----End of TEST-code-----

#

#*****DETAILED OUTPUT:

#

Evaluated States:

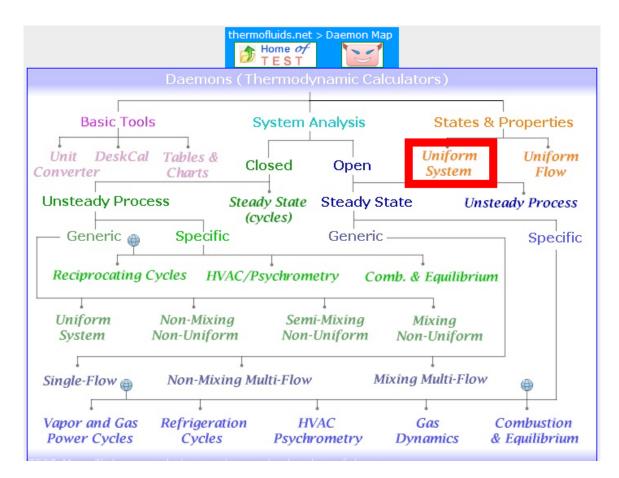
#	
#	State-1: N2, CO2 > IG-BinMixModel;
#	Given: p1= 300.0 kPa; T1= 20.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; m1= 8.0 kg; x_A1= "3/8" fraction;
#	
#	Calculated: v1= 0.2242 m^3/kg; u1= -5660.5386 kJ/kg; h1= -5593.285 kJ/kg;
#	s1= 5.4955 kJ/kg.K; e1= -5660.5386 kJ/kg; j1= -5593.285 kJ/kg;
#	Vol1= 1.7934 m^3; MM1= 36.2395 kg/kmol; R1= 0.2294 kJ/kg.K;
#	c_p1= 0.9159 kJ/kg.K; y_A1= 0.4854 fraction;
#	

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

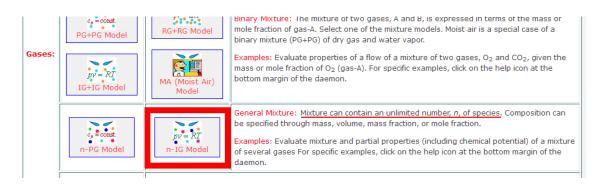
The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**

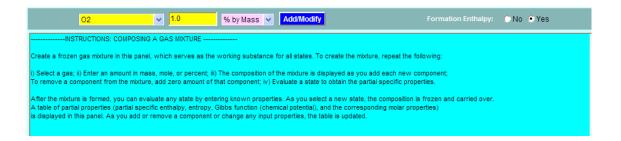
155


#	Proper	ty sprea	dsheet st	arts:			
#							
# State	x_A	y_A	p(kPa)	T(K)	v(m3/kg)	u(kJ/kg)h(kJ/kg)s(kJ/kg	g)
# 1	0.38	0.49	300.0	293.1	0.2242	-5660.54 -5593.29	5.496

Prob.9.38. A mixture of gases has the following volumetric composition: CO2 = 12%, O2 = 4%, N2 = 82% and CO = 2%. Calculate: (i) the gravimetric composition (ii) Mol. wt. of mixture (iii) Gas const. R for the mixture [VTU – BTD – March, 2001]


TEST Solution:

Following are the steps:


1. Go to Daemons tree, select States & Properties - Uniform System:

2. For Material model, select General mixture – n- IG model as shown below. It can contain an unlimited number, n, of species.

3. Now, form the mixture: To do this, Instructions are given in the blue window:

4. i.e. To form the mixture, go to the lower blue portion of the window, and select the gas from the widget, enter its % by volume or mass etc. as shown and click on Add/Modify. Then that gas gets entered in the blue window below. Do this for each component, and click on Calculate. We get:

Mixe	a Osi	C Engl	lish	🔽 He	elp Messag	es On	Su	uper-Iterate		Super-Ca	lculate	L	oad	SL	uper-Initializ	e
			State P	anel							1/0) Panel				
	< ©State	-1 × >			I	Calcula	te			No-Plots	v			Initial	ize	
p1			-	1	_		v1			u1				h1	_	
1 6.	kPa	~			к	┙┌╴		m^3/kg	►		kJ/kg	*			kJ/kg	
s1			, g	1		1	Vel1			< z1				e1		
]	kJ/kg.K	· ·			kJ/kg	√ 0.0		m/s	~ 0).0	m	*			kJ/kg	
i1			, 	1			Vol1			MM1			,	c_p1		
1 1	kJ/kg	~			kg	┙┍┙	1011	m^3	~	0.0814	kg/kmo	· ·		0_01	kJ/kg.K	
			,		-								,			
	C02		✓ 12	2.0	% by V	ol 🗸	Add/Mo	dify					lpy: 💽	No OY	'es	
mposition ar	d Partial Prop	erties (part	tial properti	ies calculat	ed only after	mixture ;	pressure and	i temperature a	re enter	ed or calcuat	ted.):					
k(kg/kmol)	m_k(kg) n_	k(kmol) x	k(m_k/m)	v k(n k/n)) h_k(kJ/kg)) hbar	k(kJ/kmol)	p_k(kPa)	s0 k(k	J/kg.K) s0b	ar_k(kJ/kmol	.K)sk(kJ	/kg.K)	sbar k(kj	/kmol.K) g_k((kJ
2.00		04.000	0.0426	0.0400	0000000.0		0.000000	0000.000	-00	_00					02	
28.00	2296.000	82.000	0.7633	0.8200	0000000	.0 0.	0.0000000	0000.000							N2	
4.01 8.01		12.000)2.000 (0.1756	0.1200 0.0200	0000000.0		000000.0	0000.000	_00 _00	-00		-	_		CO2 CO	

Download free eBooks at bookboon.com

Thus:

Gravimetric composition, i.e. x_A1 etc. See the x_k column in the blue window above:

We get: O2: 0.0426, N2: 0.7633, CO2:0.1756, and CO:0.0186 Ans.

Mol. wt. of mixture = MM1 = 30.0814 kg/kmol... Ans.

Gas const. for mixture = R1 = R_u /MM1 = 8.314 / 30.0814 = 0.27638 kJ/kg.K ... Ans.

5. Click on **SuperCalculate** and get the TEST code etc from the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE

#

Daemon Path: States>System>IG-GenMixModel; v-10.ca08

#

XX RBS Group

CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

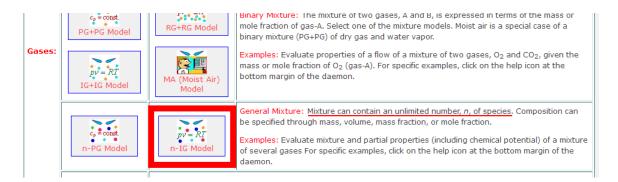
And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

#-----Start of TEST-code------States { State-1: mixture, ; Given: { Vel1= 0.0 m/s; z1= 0.0 m; } } #-----End of TEST-code-----# #*****DETAILED OUTPUT: # **#** Mixture composition: # # k $MM_k(kg/kmol)$ m_k(kg) n_k(kmol) $x_k(m_k/m)$ $y_k(n_k/n)$ # # O2 32.0 128.0 4.0 0.04255 0.04 # N2 28.0 2296.0 0.82 82.0 0.76326 # CO2 44.01 528.12 12.0 0.17556 0.12 # CO 28.01 56.02 2.0 0.01862 0.02 # Total 30.08 3008.14 100.0 # **# Evaluated States:** # # State-1: mixture, > ; Given: Vel1= 0.0 m/s; z1= 0.0 m; # Calculated: MM1= 30.0814 kg/kmol; # #

Prob.9.39.A 2 kg mixture of 25% N2, 50% O2 and 25% CO2 by mass is at 150 kPa and 300 K. Find the mixture gas const. and the total volume. [Ref: 2]


TEST Solution:

Following are the steps:

	Daemons	(Thermodynamic	Calculators)	
Basic Too	ls	System Analysi	s State	s & Properties
Unit DeskCa onverter	l Tables & Charts	Closed Ope	en Uniform System	
Unsteady Proc	ess S	Steady State Stead	dy State U	nsteady Process
— Generic 👜	Specific		eric	Specifie
, *			1	
Reciprocating	Cycles HVA	Gen C/Psychrometry	Comb. & Equilibr	ium
Reciprocating Uniform	Cycles HVA I Non-Mixing Non-Uniforn	Gen C/Psychrometry Semi-Mixin	Comb. & Equilibr	ium n

1. Go to Daemons tree, select States & Properties - Uniform System:

2. For Material model, select General mixture – n- IG model as shown below. It can contain an unlimited number, n, of species.

3. Now, form the mixture: To do this, Instructions are given in the blue window:

O2 1.0 % by Mass 🗸 Add/Modify	Formation Enthalpy:	⊙No ⊙Yes
INSTRUCTIONS: COMPOSING A GAS MIXTURE		
Create a frozen gas mixture in this panel, which serves as the working substance for all states. To create the mixture, repeat the fo	ollowing:	
i) Select a gas; ii) Enter an amount in mass, mole, or percent; iii) The composition of the mixture is displayed as you add each new c To remove a component from the mixture, add zero amount of that component; iv) Evaluate a state to obtain the partial specific prop-		
After the mixture is formed, you can evaluate any state by entering known properties. As you select a new state, the composition is A table of partial properties (partial specific enthalpy, entropy, Gibbs function (chemical potential), and the corresponding molar prop is displayed in this panel. As you add or remove a component or change any input properties, the table is updated.		

ORACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

161

4. i.e. to form the mixture, go down to the lower blue window, and select the gas from the widget, enter its % by mass or volume etc. as shown and click on Add/Modify. Then that gas gets entered in the blue window below. Do this for each component, and also enter for State 1 (in the State panel) values for p1, T1 and m1. Then, click on Calculate. Many properties of the mixture are calculated immediately:

State Panel I/O Panel	
State-1 V > Calculate No-Plots V Initialize	
✓ T1 v1 u1 h1	
kPa ♥ 300.0 K ♥ 0.50273 m*3/kg ♥ -2309.525 kJ/kg ♥ -2234.115 kJ	l/kg
g1	
kj/kg.K 🖤 -4121.404 kj/kg 🌱 0.0 m/s 👻 0.0 m 🖤 -2309.525 kj	l/kg
✓ m1Vol1MM1c_p1	
kJ/kg 🖤 <mark>2.0 kg 🌱 1.00547 m²3 🖤 33.07524 kg/kmol 👻 0.92373 kJ/</mark>	kg.K
CO2 V 25.0 % by Mass V Add/Modify Formation Enthalpy: © No © Yes	

Thus:

Mixture Mol. wt. = MM1 = 33.07524 kg/kmol Ans.

Mixture Gas Const. = R_u / MM1 = 0.2514 kJ/kg.K ... Ans.

Mixture volume = Vol1 = $1.00547 \text{ m}^3 \dots \text{Ans.}$

5. Click on **SuperCalculate** and get the TEST code etc from the I/O panel:

#~~~~OUTPUT OF SUPER-CALCULATE:

#

Daemon Path: States>System>IG-GenMixModel; v-10.ca08

#

#-----Start of TEST-code-----

States {

State-1: mixture, ; Given: { p1= 150.0 kPa; T1= 300.0 K; Vel1= 0.0 m/s; z1= 0.0 m; m1= 2.0 kg; }

}

#-----End of TEST-code-----

#*****DETAILED OUTPUT:

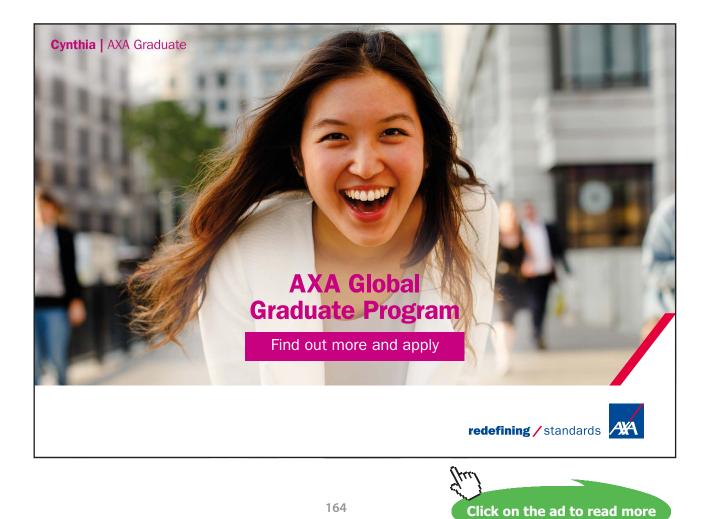
#

Mixture composition:

#

# k MM_k(kg/	kmol)	m_k(kg)	n_k(kmol)	x_k(m_k/m)	$y_k(n_k/n)$
#					
# O2 32.0	1.0	0.03125	0.5	0.5168	
# N2 28.0	0.5	0.01786	0.25	0.29531	
# CO2 44.01	0.5	0.01136	0.25	0.18788	
# Total 33.08	2.0	0.06047			

#

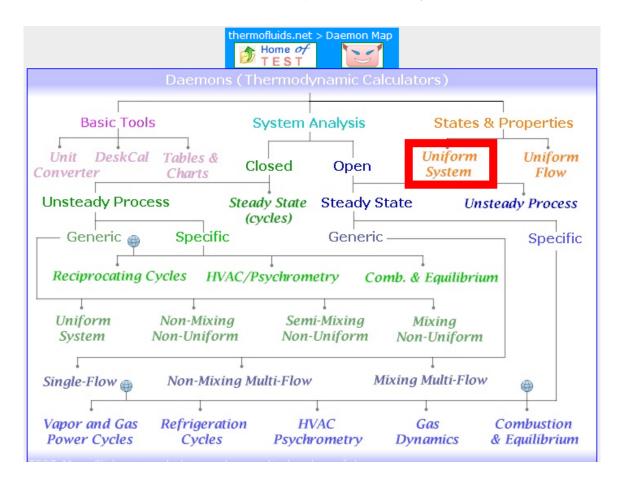

Evaluated States:

State-1: mixture, > ; Given: p1= 150.0 kPa; T1= 300.0 K; Vel1= 0.0 m/s; # z1= 0.0 m; m1= 2.0 kg; # Calculated: v1= 0.5027 m^3/kg; u1= -2309.525 kJ/kg; h1= -2234.115 kJ/kg; # s1= 6.291 kJ/kg.K; g1= -4121.404 kJ/kg; e1= -2309.525 kJ/kg; # j1= -2234.115 kJ/kg; Vol1= 1.0055 m^3; MM1= 33.0752 kg/kmol; # c_p1= 0.9237 kJ/kg.K; #

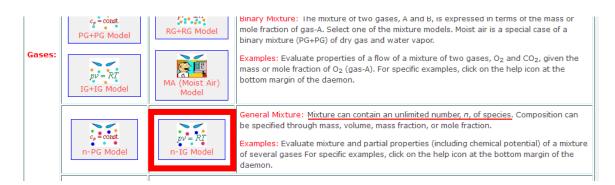
Real and ideal gases and gas mixtures

#	Proper	ty sprea	dsheet starts:			
#						
# State	p(kPa)	(K)	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 1	150.0	300.0	0.5027	-2309.52	-2234.11	6.291
=====						

Prob.9.40. A mixture of ideal gases has the following composition by mass: N2 = 75%, O2 = 13%, CO2 = 12%. 2 kg of the mixture, initially at 3 bar and 127 C is compressed polytropically to 10 bar. The index of compression is 1.3. Calculate: (i) work done (ii) change in enthalpy, and (iii) change in internal energy. [M.U. – April 1996]



Download free eBooks at bookboon.com


TEST Solution:

Following are the steps:

1. Go to Daemons tree, select States & Properties - Uniform System:

2. For Material model, select General mixture – n- IG model as shown below. It can contain an unlimited number, n, of species.

3. Now, form the mixture: To do this, follow Instructions given in the blue window:

i.e. to form the mixture, go down to the lower blue window, and select the gas from the widget, enter its % by mass or volume etc. as shown and click on Add/Modify. Then that gas gets entered in the blue window below. Do this for each component, and also enter **for State 1** (in the State panel) values for p1, T1 and m1. Then, click on Calculate. Many properties of the mixture are calculated immediately:

Note from the above that Mixture vol. = 0.74466 m³, Mixture Mol. wt. = 29.78418 kg/kmol, Mixture cp = 1.02308 kJ/kg.K.

4. Enter p2, m2 = m1 and v2 = $[(p1 * v1^{1.3}) / p2]^{(1/1.3)}$ for State 2, and hit Enter:

~ WINE	al Osi (English		Help Message	es On	Super-Iterate		Super-Calc	ulate	Loa	d	Super-Initializ	ze
		Sta	te Panel						1/0 P	anel			
	< ©State-2				Calculate			la Dista	1		Init	ialize	
		✓ >						No-Plots 💌				lalize	
p2			T2	_	🖌 v2			u2			h2		
0.0	bar	✓ 255.	15787	deg-C	=((p1*v1^1	.3)/p2 m^3/kg	✓ -98	34.6251	kJ/kg	~	837.1525	kJ/kg	
s2			g2		🖌 Ve	2	1	z2			e2		
67178	kJ/kg.K	✓ -436	1.908	kJ/kg	/ 0.0	m/s	✓ 0.0)	m	~	984.6252	kJ/kg	
j2		✓	<i>m</i> 2		Vol	2		MM2			c p2		
37.1525	kJ/kg	✓ =m1		kg 🔹	0.29495	m^3	× 29	.78418	kg/kmol	~	1.05837	kJ/kg.K	
			10								~		
	02	~	1.0	% by Ma	ISS 🗠 🗛	/Modify			Formation	Enthalp	/: ○No @	Yes	
	id Partial Proper	ties (partial pro	perties calcu	ated only after i	nixture pressure	and temperature	are entered	or calcuated	1.):				

We see from the above that properties in State 2 are calculated.

5. Now, click on **SuperCalculate** and go to I/O panel. TEST code etc are available there. Also, we can use the I/O panel as a calculator to calculate the required quantities. Here, the advantage of using I/O panel is that you can transfer the quantities from the States panel just by entering the names of variables:

i.e. We get:

Work done: W = m1 * (p1 * v1 - p2 * v2)/(1.3 - 1) = -238.495 kJ ...work

done on the gas, so -ve.... Ans.

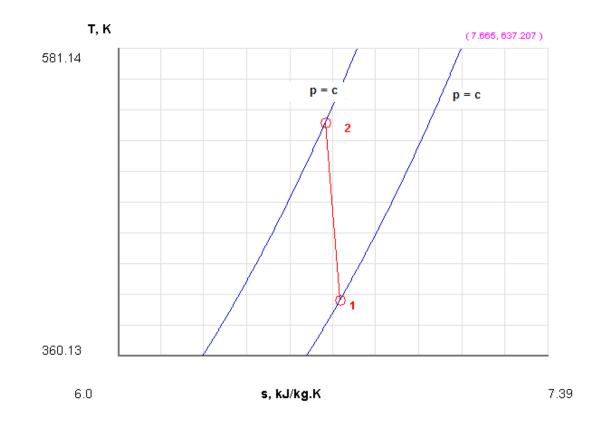
#Change in Enthalpy: dH = m1 * (h2 - h1) = 266.831 kJ...Ans.

#Change in Internal energy: dU = m1 * (u2 – u1) = 195.283 kJ Ans.

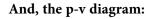
Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.



As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.


For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on **+44 (0)20 7000 7573**.

* Figures taken from London Business School's Masters in Management 2010 employment report

6. From the Plots widget, get **T-s diagram**, shown below:

7. Also, get the TEST code etc from the I/O panel: #~~~~OUTPUT OF SUPER-CALCULATE # Daemon Path: States>System>IG-GenMixModel; v-10.ca08 # # #-----Start of TEST-code------States { State-1: mixture, ; Given: { p1= 3.0 bar; T1= 127.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 2.0 kg; } State-2: mixture, ; Given: { p2=10.0 bar; $v2= ((p1*v1^{1.3})/p2)^{(1/1.3)} \text{ m^3/kg}$; Vel2=0.0 m/s; z2=0.0 m; m2="m1" kg; } } #-----End of TEST-code-----#*****DETAILED OUTPUT: # # **#** Mixture composition: # $MM_k(kg/kmol) m_k(kg) \qquad n_k(kmol) x_k(m_k/m) y_k(n_k/n)$ # k # # O2 32.0 0.26 0.00812 0.13 0.12 # N2 0.75 0.79779 28.0 1.5 0.05357 # CO2 44.01 0.24 0.00545 0.12 0.08121 29.78 2.0 # Total 0.06715

Evaluated States:

#	
#	State-1: mixture, > ;
#	Given: p1= 3.0 bar; T1= 127.0 deg-C; Vel1= 0.0 m/s;
#	z1= 0.0 m; m1= 2.0 kg;
#	Calculated: v1= 0.3723 m^3/kg; u1= -1082.2665 kJ/kg; h1= -970.568 kJ/kg;
#	s1= 6.7187 kJ/kg.K; g1= -3659.0637 kJ/kg; e1= -1082.2665 kJ/kg;
#	j1= -970.568 kJ/kg; Vol1= 0.7447 m^3; MM1= 29.7842 kg/kmol;
#	c_p1= 1.0231 kJ/kg.K;
#	
#	State-2: mixture, > ;
#	Given: p2= 10.0 bar; v2= "((p1*v1^1.3)/p2)^(1/1.3)" m^3/kg; Vel2= 0.0 m/s;
#	z2= 0.0 m; m2= "m1" kg;
#	Calculated: T2= 255.1579 deg-C; u2= -984.6251 kJ/kg; h2= -837.1525 kJ/kg;
#	s2= 6.6718 kJ/kg.K; g2= -4361.908 kJ/kg; e2= -984.6252 kJ/kg;
#	j2= -837.1525 kJ/kg; Vol2= 0.295 m^3; MM2= 29.7842 kg/kmol;
#	$c_p2 = 1.0584 \text{ kJ/kg.K};$
#	
#	Property spreadsheet starts:
#	

# State	p(kPa)	T(K)	v(m3/kg)	u(kJ/kg)	h(kJ/kg)	s(kJ/kg)
# 1	300.0	400.1	0.3723	-1082.27	-970.57	6.719
# 2	1000.0	528.3	0.1475	-984.63	-837.15	6.672
#						

#*****CALCULATE VARIABLES: Type in an expression starting with an '=' sign ('= mdot1*(h2-h1)', '= sqrt(4*A1/PI)', etc.) and press the Enter key)*******

#

Work done: W

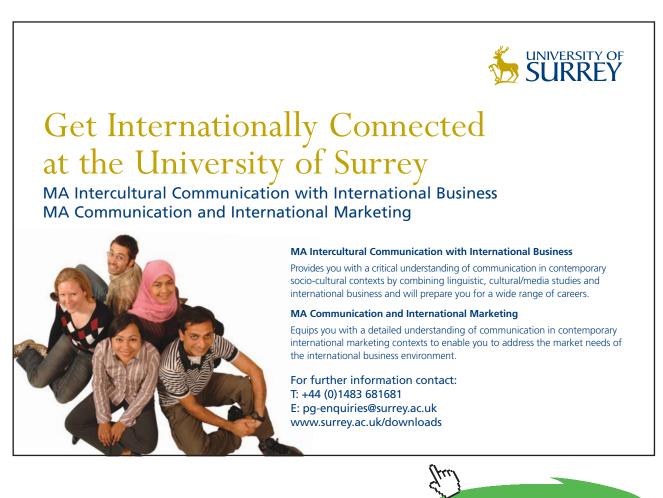
=m1 * (p1 * v1 - p2 * v2)/(1.3 - 1)

m1 * (p1 * v1 – p2 * v2)/(1.3 – 1) = -238.4946396594271 kJ Ans.

Real and ideal gases and gas mixtures

#Change in Enthalpy: dH:

=m1 * (h2 – h1)

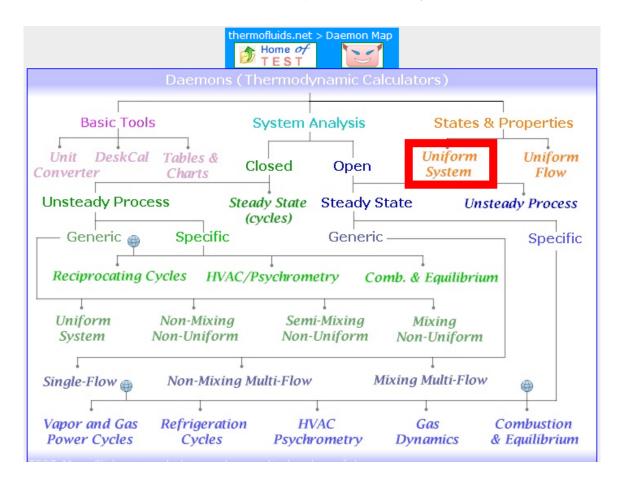

m1 * (h2 – h1) = 266.8309326171875 kJ Ans.

#Change in Internal energy: dU:

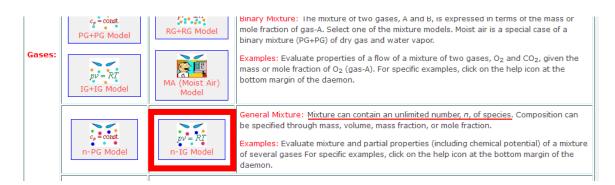
=m1 * (u2 - u1)

m1 * (u2 – u1) = 195.28271484375 kJ

Prob.9.41. Natural gas as a mixture of 75% Methane and 25% Ethane by mass, is flowing to a compressor at 17 C and 100 kPa. The reversible adiabatic compressor brings the flow to 250 kPa. Find the exit temp and the needed work per kg flow. [Ref: 2]


Download free eBooks at bookboon.com

Click on the ad to read more


TEST Solution:

Following are the steps:

1. Go to Daemons tree, select States & Properties - Uniform System:

2. For Material model, select General mixture – n- IG model as shown below. It can contain an unlimited number, n, of species.

3. Now, form the mixture: To do this, follow Instructions given in the blue window:

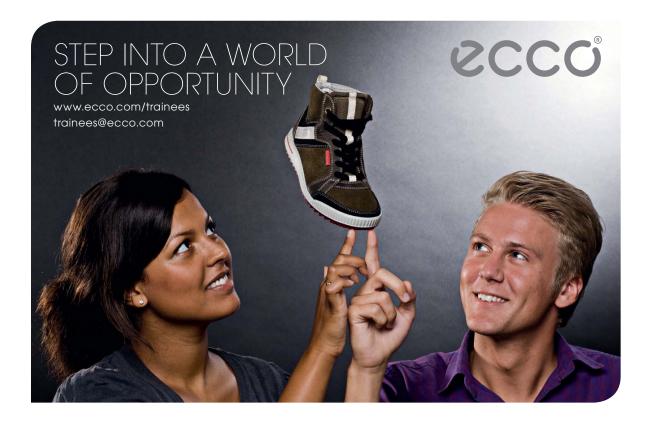
i.e. to form the mixture, go down to the lower blue window, and select the gas from the widget, enter its % by mass or volume etc. as shown and click on Add/Modify. Then that gas gets entered in the blue window below. Do this for each component, and also enter **for State 1** (in the State panel) values for p1, T1 and m1. Then, click on Calculate. Many properties of the mixture are calculated immediately:

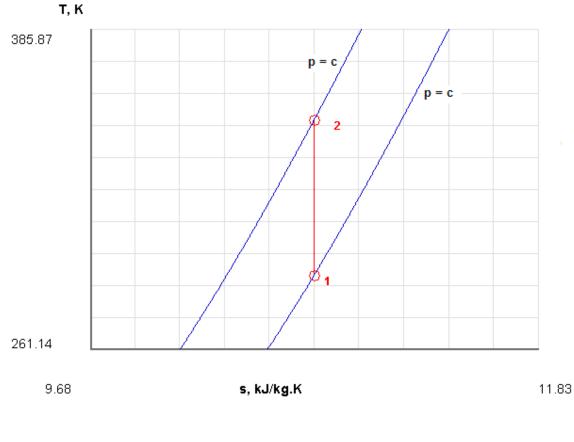
• Mixed	a Osi	OEn	glish	I ∨ He	elp Messa	ges On	Su	per-Iterate		Super	-Calculate	L	oad		Super-Initiali	ze
			State F	Panel							I/	0 Panel				
	< ©State	-1 ~	>			Calcula	ate			No-Plot	ts 💌			Initia	alize	
🖌 p1			1	71			v1			u1				h1		
00.0	kPa	~	17.0		deg-C	✓ 1.3	2851	m^3/kg	*	-4347.518	B kJ/kg	*	-4214	.667	kJ/kg	
s1			9	1			Vel1			✓ z1	1			e1		
10.75587	kJ/kg.K	~	-7335.4	83	kJ/kg	✓ 0.0	-	m/s	~	0.0	m	~	-4347	.518	kJ/kg	
j1			✓ n	n1			Vol1			MM1				c_p1		
4214.667	kJ/kg	~	1.0		kg	✓ 1.3	2851	m^3	~	18.15803	kg/km	ol 🗸	2.141	39	kJ/kg.K	
	Ethane(C	2H6)	✓ 2	5.0	% by I	Wass 🗸	Add/Mo	dify			Format	ion Entha	ılpy: (DNo 🖲	Yes	
Composition an	d Partial Prop	ierties (pa	artial proper	ties calculat	ed only afte	er mixture	pressure and	temperature a	re ent	ered or calc	cuated.):					
1M_k(kg/kmol) 016.04 030.07	00.750 0	k(kmol) 0.047 0.008	x_k(m_k/m) 0.7500 0.2500	y_k(n_k/n) 0.8490 0.1510) h_k(kJ/kg -0004685 -0002802	.6 -0	_k(kJ/kmol))0075157.0)0084257.8	p_k(kPa) 0084.904 0015.096	 1 	(kJ/kg.K) 11.55145 07.57095	s0bar_k(kJ/kmo 185.285 227.658	i 1	J/kg.K) I.64310 3.09735	sbar_k(i 186.7 243.4	755 -	_k(kJ/ -080 -051:

Note from the above that Mixture vol. = 1.32851 m³, Mixture Mol. wt. = 18.15803 kg/kmol, Mixture cp = 2.14139 kJ/kg.K.

4. For State 2, enter p2, m2 = m1, and s2 = s1 (since rev. adiabatic process is an isentropic process), m2 = m1. Hit Enter:

• Mixe	d Osi	O Eng	llisn	M H	elp Messa	ages Or	n Su	iper-Iterate		Super-Cal	culate	Loa		Super-Initialia	ze
			State	Panel							I/O P	anel			
	< ©State-	2 🗸 🤉				Calcu	ilate			No-Plots			Init	ialize	
p2			_	T2			v2			u2			h2		
50.0	kPa	~			deg-C	✓ 0	.64246	m^3/kg	~	-4241.1143	kJ/kg	× -	080.4985	kJ/kg	
s2				g2		•	Vel2			🖌 z2			e2		
s1	kJ/kg.K	~	-7853.	552	kJ/kg	~ <mark>0</mark>	.0	m/s	~	0.0	m	× -4	241.1143	kJ/kg	
j2			<u><</u>	m2			Vol2			MM2			c_p2		
080.4985	kJ/kg	*	=m1		kg	✓ 0	.64246	m^3	~	18.15803	kg/kmol	▼ 2	.30294	kJ/kg.K	
	02		~	1.0	% by	Mass	✓ Add/Mo	dify			Formation	Enthalpy	No O	Yes	
							e pressure and								
M_k(kg/kmol) 16.04	m_k(kg) n_k 00.750 0	(kmol) :).047	x_k(m_k/r 0.7500	n) y_k(n_k/n 0.8490	 h_k(kJ/l -000454) 		ar_k(kJ/kmol) -00072940.1	p_k(kPa) 0212.259			r_k(kJ/kmol.K) 92.216	s_k(kJ/kg 11.60		(kJ/kmol.K) g_ł	k(kJ/ -086


We see from the above that properties in State 2 are calculated.


5. Now, click on **SuperCalculate** and go to I/O panel. TEST code etc are available there. Also, we can use the I/O panel as a calculator to calculate the required quantities. Here, the advantage of using I/O panel is that you can transfer the quantities from the States panel just by entering the names of variables:

i.e. We get:

#Exit temp. T2 = 77.64 C = 350.790 K ... Ans.

#Work needed per kg flow, W = m1 * (h2-h1) = 134.168 kJ/kg Ans.

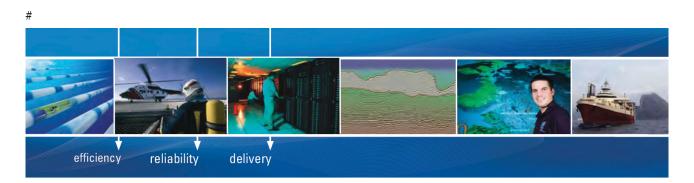
6. From the Plots widget, get **T-s diagram**, shown below:

7. And, the TEST code etc from the I/O panel:

#~~~~~OUTPUT OF SUPER-CALCULATE

#

Daemon Path: States>System>IG-GenMixModel; v-10.ca08


#

#-----Start of TEST-code------States { State-1: mixture, ; Given: { p1= 100.0 kPa; T1= 17.0 deg-C; Vel1= 0.0 m/s; z1= 0.0 m; m1= 1.0 kg; } State-2: mixture, ; Given: { p2= 250.0 kPa; s2= "s1" kJ/kg.K; Vel2= 0.0 m/s; z2= 0.0 m; m2= "m1" kg; } } #-----End of TEST-code-----#*****DETAILED OUTPUT: # **#** Mixture composition: # # k MM_k(kg/kmol) m_k(kg) n_k(kmol) $x_k(m_k/m)$ $y_k(n_k/n)$ # # Methane(CH4) 0.84904 16.04 0.75 0.04676 0.75 # Ethane(C2H6) 30.07 0.25 0.00831 0.25 0.15096 # Total 18.16 1.0 0.05507 # **# Evaluated States:** # State-1: mixture, > ; # Given: p1= 100.0 kPa; T1= 17.0 deg-C; Vel1= 0.0 m/s; # z1= 0.0 m; m1= 1.0 kg; # Calculated: v1= 1.3285 m^3/kg; u1= -4347.518 kJ/kg; h1= -4214.667 kJ/kg; # s1= 10.7559 kJ/kg.K; g1= -7335.483 kJ/kg; e1= -4347.518 kJ/kg; # j1= -4214.667 kJ/kg; Vol1= 1.3285 m^3; MM1= 18.158 kg/kmol; # c_p1= 2.1414 kJ/kg.K; # #

```
#
       State-2: mixture, >;
#
               Given: p2= 250.0 kPa; s2= "s1" kJ/kg.K; Vel2= 0.0 m/s;
                       z2= 0.0 m; m2= "m1" kg;
#
               Calculated: T2= 77.6401 deg-C; v2= 0.6425 m^3/kg; u2= -4241.1143 kJ/kg;
#
                       h2= -4080.4985 kJ/kg; g2= -7853.552 kJ/kg; e2= -4241.1143 kJ/kg;
#
#
                       j2= -4080.4985 kJ/kg; Vol2= 0.6425 m^3; MM2= 18.158 kg/kmol;
                       c_p2= 2.3029 kJ/kg.K;
#
#
#-----Property spreadsheet starts:
#
# State p(kPa) T(K)
                     v(m3/kg)
                                      u(kJ/kg)h(kJ/kg)s(kJ/kg)
#1
       100.0
               290.2
                      1.3285
                                      -4347.52
                                                      -4214.67
                                                                      10.756
# 2
       250.0 350.8 0.6425
                                      -4241.11
                                                      -4080.5
                                                                      10.756
```

#

#*****CALCULATE VARIABLES: Type in an expression starting with an '=' sign ('= mdot1*(h2-h1)', '= sqrt(4*A1/PI)', etc.) and press the Enter key)********

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

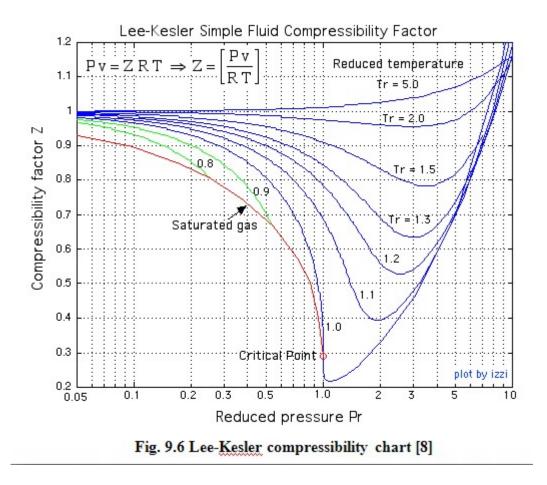
Download free eBooks at bookboon.com

#Exit temp. T2:

T2 = 350.7901306152344 K ... Ans.

#Work needed per kg flow, W:

m1 * (h2-h1) = 134.16845703125 kJ/kg Ans.


9.14 REFERENCES:

- 1. Y.A. Cengel and M.A.Boles. *Thermodynamics An Engineering Approach*. 4th ed. New Delhi: Tata McGraw-Hill, 2003
- 2. Sonntag et.al. Fundamentals of Thermodynamics. 5th ed. Singapore: John Wiley & Sons, 1999
- 3. http://www.lon-capa.org/~mmp/applist/pvt/pvt.htm (Java Applet for Ideal gas)
- 4. <u>http://antoine.frostburg.edu/chem/senese/javascript/realgas.shtml</u> (Van der Waals eqn_calculator)
- 5. http://en.wikipedia.org/wiki/Equation_of_state
- 6. http://en.wikipedia.org/wiki/Table_of_thermodynamic_equations
- 7. http://www.ecourses.ou.edu/
- 8. http://www.ent.ohiou.edu/~thermo/me321/Potter/Chapter2b.html
- 9. http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/waal.html#c1
- 10. http://en.wikipedia.org/wiki/Van_der_Waals_constants_(data_page)
- 11. http://www.science.uwaterloo.ca/~cchieh/cact/c123/phasesdgm.html
- 12. http://www.eng.usf.edu/~campbell/ThermoI/Proptut/tut1.html
- 13. http://hyperphysics.phy-astr.gsu.edu/Hbase/thermo/pvtexp.html#c1
- 14. http://www.lsbu.ac.uk/water/index2.html (Water phase diagram etc)
- 15. www.thermofluids.net
- 16. http://athena.ecs.csus.edu/~reardonf/ThermoNotesI/
- Moran, Shapiro, Munson and DeWitt. *Introduction to Thermal Systems Engineering*. John Wiley & Sons, 2003
- R.K. Rajput. A Text Book of Engineering Thermodynamics. Laxmi Publications. New Delhi, 1998

Appendix

EES Function to find out the compressibility Factor, Z when Tr and Pr are given:

Recall that we have the compressibility factor chart as shown below:

Now, in computer calculations, it is not very convenient to refer to the above graph as and when required. Also, interpolation in this graph is difficult because the x-axis is in logarithmic scale.

Therefore, it is preferable to have an EES Function to calculate Z when Tr and Pr are given. It makes the calculations very easy and simple.

To write the EES Function, following are the steps:

- Digitize each curve in the above plot using the 'free' software "Plot Digitizer" available from http://plotdigitizer.sourceforge.net. It is a Java based program, which is very easy to use.
- 2. Copy the x-y data produced in PlotDigitizer to EXCEL.
- 3. Use EES to re-cast the data such that x-axis (i.e. Pr) values are common for all the curves i.e. for Tr = 5, 2, 1.5,0.8, by linear interpolation.

	А	В	С	D	E	F	G	Н	1	J	K	L
319			9.55	1.157	1.144	1.327	1.24	1.158	1.146	1.133		
320			9.6	1.158	1.146	1.337	1.244	1.161	1.148	1.138		
321			9.65	1.159	1.149	1.348	1.249	1.164	1.151	1.143		
322			9.7	1.159	1.151	1.359	1.253	1.167	1.153	1.147		
323			9.75	1.16	1.153	1.37	1.258	1.17	1.156	1.152		
324			9.8	1.161	1.155	1.381	1.262	1.172	1.158	1.157		
325			9.85	1.162	1.158	1.391	1.267	1.175	1.161	1.162		
326			9.9	1.166	1.16	1.402	1.271	1.178	1.163	1.167		
327			9.95	1.176	1.162	1.413	1.276	1.181	1.166	1.172		
328			10	1.185	1.164	1.424	1.278	1.183	1.168	1.177		
220												

4. Set up the final Table in EXCEL as shown below. Table is shown only partially, to conserve space.

	А	В	С	D	E	F	G	Н	1	J	K	L
319			9.55	1.157	1.144	1.327	1.24	1.158	1.146	1.133		
320			9.6	1.158	1.146	1.337	1.244	1.161	1.148	1.138		
321			9.65	1.159	1.149	1.348	1.249	1.164	1.151	1.143		
322			9.7	1.159	1.151	1.359	1.253	1.167	1.153	1.147		
323			9.75	1.16	1.153	1.37	1.258	1.17	1.156	1.152		
324			9.8	1.161	1.155	1.381	1.262	1.172	1.158	1.157		
325			9.85	1.162	1.158	1.391	1.267	1.175	1.161	1.162		
326			9.9	1.166	1.16	1.402	1.271	1.178	1.163	1.167		
327			9.95	1.176	1.162	1.413	1.276	1.181	1.166	1.172		
328			10	1.185	1.164	1.424	1.278	1.183	1.168	1.177		

5. Now, copy this Table as a Lookup Table in to EES and name it as 'CompressibilityFactor'.

- Now, this Table is in a format suitable for 2D interpolation in EES, i.e. top horizontal row gives Tr values: 5 , 2, 1.5 0.8, and left vertical column gives Pr values: 0.05, 0.1, 0.1510. Rest of the numbers in the Table are corresponding Z values.
- 7. Z value for given Tr and Pr is found out by 2D interpolation in EES using the built-in Function **interpolate2DM**.
- 8. The simple EES Function to find Z when Tr and Pr are given is now written:

\$UnitSystem SI Pa C J

FUNCTION Compressibility_Factor_Z(Tr,Pr)

{ Compressibility_Factor_Z ... finds the compressibility factor, given Tr (=T/Tc) and Pr (=P/Pc)}

Compressibility_Factor_Z = Interpolate2DM('CompressibilityFactor,'Tr,Pr)

Appendix

END

"_____"

"Example:"

Tr = 1.5

Pr = 5

"Then, Z is found out by:"

Z = Compressibility_Factor_Z(Tr,Pr)

Result:

Main	Compressibility_Factor_Z	
Unit	Settings: SI C Pa J mass deg	
Pr = 5	Tr = 1.5	Z = 0.8212

Use of the above Function is demonstrated with the following example:

Example: Calculate the density of Nitrogen at 260 bar and 15 C using the compressibility chart.

Following is the EES program:

"Data:"

P = 260 **"bar"**

T = 15+273 **"K"**

R = 8314/28 "J/kg.K ... Gas const. for N2"

P_c = 33.94"bar...critical pressure for N2....from Table on page 18"

T_C = 126.2"K...critical temp. for N2..from Table on page 18"

"Calculations:"

Pr = P/P_c "...reduced pressure"

 $Tr = T/T_c$ "....reduced temp."

Z = Compressibility_Factor_Z(Tr,Pr)"....finds compressibility factor, Z Using the EES Function written above"

"And, density, rho:"

"rho = P/(Z * R * T) ... where rho is in kg/m^3, P in Pa, R in J/kg.K and T in Kelvin"

"Therefore:"

rho = $P * 10^5 / (Z * R * T)$ "....finds rho in kg/m^3"

Results:

Unit Settings: SI C Pa J mass deg

P = 260 [bar]	Pr = 7.661
P _c = 33.94 [bar]	R = 296.9 [J/kg-K]
ρ = 285.8 [kg/m ³]	T = 288 [K]
Tr = 2.282	T _C =126.2 [K]
Z = 1.064	

Thus:

Compressibility Factor, Z = 1.064 Ans.

Density of N2 = rho = $285.8 \text{ kg/m}^3 \dots \text{Ans.}$

To continue...

As we mentioned in the Preface in Part-I, generally, the subject of Thermodynamics is taught over two semesters, under the titles **Basic Thermodynamics** and **Applied Thermodynamics**.

Now, in this book entitled **Basic Thermodynamics: Software Solutions**, presented in four parts, we have solved problems on the topics such as: Units, Pressure, Temperature, Properties of Pure substances, Zeroth Law, Heat and Work, First Law of Thermodynamics for a closed system and for flow processes, Second Law of Thermodynamics, Heat engines, Refrigerators and Heat Pumps, Entropy, Availability and Irreversibility, Real and Ideal gases and Gas mixtures etc.

In the next series of books entitled **Applied Thermodynamics: Software Solutions,** we shall solve problems on the following topics: Thermodynamic relations, Vapour power cycles, Gas power cycles, Refrigeration cycles, Psychrometrics, Reactive Systems and Compressible fluid flow.

At the beginning of each chapter, definitions, Statements and Formulas used are presented. Then, problems are solved using Mathcad, Engineering Equation Solver (EES) or The Expert System on Thermodynamics (TEST).