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PrefaCe

PREFACE

The level of knowledge content given in this book is designed for the students who have 
completed elementary mechanics of solids for stresses and strains associated with various 
geometries including simple trusses, beams, shafts, columns, etc. At the successful completion 
of understanding the content provided, the students will be able to reach a stage where 
they can do self-directed learning at any further advanced level in the area of mechanics of 
solids. The emphasis is given on the fundamental concepts for students to quickly follow 
through for an advanced level if required in the future. Fracture mechanics is included in 
this book with necessary preliminary steps for those who might have had difficulties with 
the subject in the past.

The essence of mechanics of solids is lies in stress-strain analysis ultimately for the fail-safe 
design of structural components. It is important to keep in mind that such analysis would 
be useless without various criteria for yielding, failure, fracture, and fatigue. Materials 
behaviour is more complex than some students might think. Materials fail sometimes at 
higher or lower stress than the stress calculated. Some materials are more sensitive in failure 
to stress concentration than some other materials. They fail sometimes in a ductile manner 
and some other times in a brittle manner. The ductility of a material is not only a material 
property but also is affected by its geometry and loading condition. One approach would 
be applicable to some particular cases while the other approach is more appropriate for 
some other cases.

Engineering practitioners will be able to find this book useful as well for the fail-safe design, 
and for a way of thinking in making engineering decisions. 

This book owes to the Lecture Notes developed for many years in the past. I would like to 
thank Ms Carol Walkins of the Univerity of Newcastle, Callaghan, for typing in earlier years. 
I am grateful to Mr Kam Choong Lee of PSB Academy in Singapore for the feedback on 
Lecture Notes before I transformed that into this textbook, and for further proofreading of 
the manuscript. Also, thanks go to Ms Haleh Allameh Haery of the University of Newcastle, 
Callaghan, for assisting with some graphic material, invaluable feedback and proofreading.

Ho Sung Kim 
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1 STRESS AND STRAIN

(a) 
x

x
yyxxy

xz

zx

z

zy

z

yz

σy

(b) 

∆y
∆x

∆z

Figure 1.1 (a) A body subjected to uniform stress; and (b) one of cubes in ‘(a)’ 

subjected to uniform stress distribution.

1.1 STRESS AT A POINT

The stress components on a cubical element may be useful for describing fundamental relations 
with reference to the coordinate system. The cubical element is one of building blocks constituting 
the elastic body. Figure 1.1 (a) shows a body subjected to normal uniform stress distribution. 
The body is assumed to consist of infinite number of cubical elements. Figure 1.1 (b) shows 
one of cubes, representing a point in the body, in which nine stress components are used to 
describe a stress state in terms of location, magnitude and direction:

zzyzx

yzyyx

xzxyx

  or  

zzzyzx

yzyyyx

xzxyxx

. 

The first subscript of each stress component indicates plane and the second direction. The 
nine stress components can be reduced to six components because some of stress components 
are equal. This can be found by taking the summation of the moments (SM) about z-axis, 
y-axis and x-axis:

Mz=0  for z- axis,

xy( y z) x = yx  ( x z) y � (1.1)

and therefore xy= yx.

Similarly for x and y axes, yz = zy  and zx = xz..  Consequently, the state of stress at a point can 
be now described by six components: x, y, z, xy, xz, yz.
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1.2  RELATION OF PRINCIPAL STRESS WITH OTHER 
STRESS COMPONENTS

x
xy

K

yx

 (Principal stress) 

z

L
yyz

y

zy

z

xz

zx

x
J

0
21

Ө3

Figure 1.2 Stress components on a tetrahedron.

When a body subjected to external forces, a range of different planes may considered for 
stress analysis. The planes where no shearing stresses but normal stresses exist are called 
the principal planes. The normal stress on each principal plane is referred to as the principal 
stress. Figure 1.2 shows the principal stress on area JKL as a result of choosing the coordinate 
system in a particular orientation and for a particular position. 

Let cos 1  = l, cos 3  = m and cos 3  = n. The areas on the tetrahedron are found in relation 
with A or area JKL:

Area K0L = Al (or = A cos 1) 
Area K0J = Am
Area J0L = An.

The principal stress (s) in Figure 1.2 may be related with the stress components by taking 
the summation of the forces in x, y and z directions:

Fx=0, 

(  - x)Al - yxAm - zxAn = 0  (1.2a)

Fy=0,

- xyAl  + (  - y)Am - zyAn = 0  (1.2b)

Fz=0, 

- xzAl  - yz Am + (  - z)An = 0  (1.2c)
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These three equations are compacted for relations between the principal stresses and other 
stress components:

0
)(

)(
)(

n
m
l

zyzxz

zyyxy

zxyxx
 (1.2d)

The direction cosines l, m and n can be eliminated from the three equations to find an 
expression for s:

032
2

1
3 III  (1.2e)

where

.
222

3

222
2

1

2 xyzxzyyzxxzyzxyzyx

yzxzxyzxzyyx

zyx

I

I

I

 (1.2f )

As seen in Equation (1.2e), I1, I2  and I3  are not functions of direction cosines. They are 
independent of the coordinate system location and therefore they are called the invariants.

1.3 STRESSES ON OBLIQUE PLANE

Any other planes than the principal planes may be called the oblique planes in which always 
shear stress exists when subjected to external forces [Figure 1.3 (a)]. The total stress (S) on 
the oblique plane can be resolved into three components (Sx,  Sy , and Sz ) [Figure 1.3 (b)] and

S2= Sx
2 +Sy

2+Sz
2  (1.3a)

Taking the summation of the forces in the x, y and z directions yields:
S l m n

S l m n

S l m n

x x yx zx

y xy y zy

z xz yz z

 (1.3b)

The normal stress ( n) may be found in terms of Sx,  Sy  and Sz  [Figure 1.3 (c)] by projecting 
the total stress components (Sx,  Sy , and Sz ) onto the normal stress direction:

n = Sx l + Sym + Szn (1.3c)

Also, S2 = n
2 + 2  (1.3d)
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Therefore, the shear stress is found as a function of principle (normal) stresses ( 1, 2,,  
and 3)):

2 = ( 1- 2)2 l2 m2 + ( 1- 3)2 l2 n2 + ( 2- 3)2 m2 n2 . � (1.4)

Sx

S (Total stress) 

z

y

x

Sy

Sz

z

x

y τxz

τxy

τzxτzy τyz

S
τyx

(b) 

x

y

z

σn

Sx
Sy

Sz

θ1 θ2 

θ3 

(c) 

n

S (Total stress) 

z

y

x

τ 

(a) 

Principle plane 

Oblique plane 

Figure 1.3 Stress components on oblique plane: (a) total stress, S, consisting of normal stress ( n)) 
and shear stress (τ); (b) total stress components (Sx, Sy, and Sz) in x, y, and z directions; and (c) normal 

stress components of the total stress can be obtained by projecting total stress components onto the 

normal stress direction.

The principal (maximum) shear stresses (( 1, 2, and 3) occur at an angle of 45˚ with the 
three principal axes as shown in Figure 1.4 and found to be

2
32

1

2
31

2  (1.5)

2
21

3 . 
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2 

3 

3 

2 
1=( 2 - 3)/2 

1 

2 

2 

3=( 1 - 2)/2 

1 > 2> 3 

1 1 

3 

3 

max= 2=( 1 - 3)/2 
1 

Figure 1.4 The maximum shear planes at an angle of 45˚ with the three principal axes.

http://www.ey.com/careers
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The maximum shear stress criterion (or Tresca yield criterion) assumes that yielding occurs 

when the maximum shear stress (
2

31
max ) reaches its yielding point. In the case of 

uni-axial loading, the maximum principle stress ( 1) reaches its yielding point ( ys ) so that 

ys1 , 032 , and the maximum shear stress becomes:

22
0

2
131

max
ys .  (1.6)

Figure 1.5 Rubber modified epoxy showing cavities on fracture 

surface. The arrow indicates fracture propagation direction and 

the bar represents 10 μm. [After Kim and Ma, 1996] 1

In general, the deformation of an element consists of volume and shape changes. The volume 
change is a result of proportional change in element edge lengths. In contrast, the shape 
change is a result of disproportional change in element edge lengths as well as element 
corner angle change. The former is associated with volumetric modulus (K ) and hydrostatic 
stress (or mean stress) while the latter is associated with shear modulus (G ) and shear 
stress. For example, the hydrostatic stress creates cavities during deformation as shown in  
Figure 1.5 or increases the brittleness while shear stress contributes to the material flow. 
The total stress for deformation consists of hydrostatic stress and stress deviator i.e.

Total stress = Hydrostatic (or mean) stress ( m) + Stress deviator.

The hydrostatic stress or mean stress is defined as

333
3211 zyx

m
I

 (1.7)
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and the stress deviator ( ij) can be found by subtracting the hydrostatic stress from the 
total stress:

m

m

m

zzyzx

yzyyx

xzxyx

00
00
00

3
2

3
2

3
2

yxz
zyzx

yz
zxy

yx

xzxy
zyx

 (1.8)

This relation is graphically shown in Figure 1.6.

       

 

(  x +  y + z)/3

(  x + y + z)/3

(  x +  y + z)/3

zy

yz

yxxy

zx

(  x -  y -2 z)/3

(  x -2  y - z)/3=
(2  x - y - z)/3

xz

zy

z

y

yz

yx
xy

x

xz

zx

-

Figure 1.6 Superposition of stress components.

It can easily be shown that the stress deviator involves the principal shear stresses. For example,

3
2 zyx

x .  (1.9)

If we choose principal stresses in the equation, the stress deviator becomes a function of 
principal shear stresses,

)(
3
2

2
)()(

3
2

3
2

23
3121321

1  (1.10)
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Similarly,

)(
3
2

2
)()(

3
2

3
2

13
3212312

2  (1.11)

)(
3
2

2
)()(

3
2

3
2

12
2313213

3   (1.12)

where τ1 τ2  and τ3  are the principal shear stresses.

1.4 3D MOHR’S CIRCLE REPRESENTATION

The three principal stresses ( 1, 2, 3) with the maximum shear stresses ( 1, 2, 3) can graphically 
be represented as shown in Figure 1.7. The radius of each circle represents the maximum 
(or principle) shear stress. Accordingly, Equation (1.5) can be found from the Mohr’s circle. 
Figure 1.7 (a) shows a case of uni-axial 
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(a) 

   
(b) 

 
(c) 

1= 2= 3=50MPa 

1= 2= 3=0 
 

 

 2=50 MPa 

 1=50 MPa 

 3=50 MPa 

 2=0

 1=50 MPa 

 3= - 50 MPa 

1 3 
2 

1 

2=50 MPa 

 

 

3=25MPa 

1 

3=25MPa 

 

 

1= 2=0 

2= 3=0 

 2=0

 1=50 MPa 

 3=0

Figure 1.7 Various states of stress on elemental cube and Mohr’s circles; (a) uni-axial tension; 

(b) tension and compression without hydrostatic stress; and (c) hydrostatic stress without  

shear stress.
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tensile loading ( 1) with 2= 3=0.  If 3  varies from zero to -50MPa (compressive stress), the 
principal shear stresses ( 1  and 2) increase and becomes a state of stress where hydrostatic 
stress is zero as given in Figure 1.7 (b), resulting in more chances for material flow or 
high ductility than that of the case in Figure 1.7 (a) because of the increase in shear 
stress. Figure 1.7 (c) is the limiting case where the three circles reduces to a point where 

1= 2= 3=50MPa  and the three principle shear stresses are zero. In this case, no material 
ductility is possible in the absence of stress deviator. Therefore, it is theoretically possible to 
have a stress state where the hydrostatic stress component exists without the stress deviator. 
Examples for the state of stress where relatively large principal shear stresses are involved are 
found in various processes in metal forming (e.g. wire drawing through a die) involving 
lateral compressive stresses and a longitudinal tensile stress. Also, some localized deformation 
of reinforcing particles on fracture surfaces of advanced materials is caused by such a state 
of stress involving large shear stresses as shown in Figure 1.8.

Figure 1.8 Fracture surface of hollow microsphere reinforced epoxy 

under plane strain in the vicinity of initial crack tip. Each hollow-

microsphere experienced a tensile stress in the direction perpendicular 

to the fracture surface and simultaneously lateral compressive 

stresses. The crack propagation direction is from top to bottom. The 

scale bar represents 100 μm. [After Kim, 2007] 2
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1.5 STRAIN AT A POINT

As previously discussed, the deformation is due to the volume and shape change. We need 
to define the displacement components. When a point P moves to P' in coordinates x, y, z 
as shown in Figure 1.9, respective u, v and w are called displacement components. To find 
a general form of strain, let us consider first the length change using an element subjected 
to a load in the x-direction as shown in Figure 1.10. When the load is applied, the solid 
line becomes the dashed line. Accordingly, A moves to A'  and B moves to B'  and the x 
direction normal strain of the infinitesimal segment is given by

x
u

dx

dxdx
x
udx

AB
ABBAee xxx .  (1.13a)

Similarly, the displacement derivatives for y and z directions can be found:

y
veyy , 

z
wezz .  (1.13b)

Hellmann’s is one of Unilever’s oldest brands having been popular for over 100 years. 
If you too share a passion for discovery and innovation we will give you the tools and 
opportunities to provide you with a challenging career. Are you a great scientist who 
would like to be at the forefront of scientific innovations and developments? Then you will 
enjoy a career within Unilever Research & Development. For challenging job opportunities, 
please visit www.unilever.com/rdjobs.
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Figure 1.9 Displacement of a point P.

 

A B x dx
A B' 

u

u+(du/dx)dx
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y

Figure 1.10 Deformation in the x-direction..

du
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dy
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dv
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C' 
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eyx

B' 

B 
x

D' 

Figure 1.11 Angular distortion of an element.



MECHANICS OF SOLIDS AND FRACTURE

20

stress anD straIn

For further displacement derivatives, let us consider a shape change using an element in the 
x y plane, which is subjected to shear deformation as shown in Figure 1.11. The element 
has undergone an angular distortion and thus the angular displacement derivatives along 
the x and y axes are given by

x
v

AB
BBeyx  (1.13c)

and

y
u

DA
DDexy  (1.13d)

respectively. Similarly, the rest of components can be found:

z
w

y
w

x
w

z
v

y
v

x
v

z
u

y
u

x
u

eee
eee
eee

e

zzzyzx

yzyyyx

xzxyxx

ij   (1.13e)

In general, components such as e exy yx,  etc., other than those for length change produce both 

shear strain and rigid-body rotation. For example, those given in Figure 1.12 (a) represent 

a pure rotation with an average of x
v

y
u

2
1  and Figure 1.12 (b) a pure rotation with an 

average of y
u

x
v

2
1 . Thus, the rigid body rotation components ( ij) can be identified as:

02
1

2
1

2
102

1

2
1

2
10

z
v

y
w

z
u

x
w

y
w

z
v

y
u

x
v

x
w

z
u

x
v

y
u

zzzyzx

yzyyyx

xzxyxx

ij .  (1.14)
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Accordingly, the strain components ( ij) can be found by subtracting rigid body rotation 
components ( ij) from the displacement derivatives:

z
w

y
w

z
v

x
w

z
u

y
w

z
v

y
v

x
v

y
u

x
w

z
u

x
v

y
u

x
u

zzzyzx

yzyyyx

xzxyxx

ij

2
1

2
1

2
1

2
1

2
1

2
1

. (1.15)

For short, 
i

j

j

i
ij x

u
x
u

2
1 , 

i

j

j

i
ij x

u
x
u

2
1  and are called the strain tensor and the rotation 

tensor respectively. Also,

ijijije  (1.16)
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(a) (b) 

x

-exy=  eyx

y

x

exy= - eyx

y

Figure 1.12 Pure rotation without shear.

Referring to Figure 1.13, engineering shear strain components ( ij ) are defined as

yzyzxzxzxyyxxyyxxyxy ee 2,2,2  (1.17)

In summary, strain components are

x
u

x , 
y
v

y , 
z
w

z ,  

x
v

y
u

xy , 
x
w

z
u

xz , 
y
w

z
v

yz  (1.18)

du
y

dy

dx

dv

exy

eyx

B 
x x

y

= exy + eyx

Figure 1.13 Engineering shear strain g.

The volume strain (D) (see Figure 1.14) is defined as 

 volumeOriginal
 volumeOriginal -  volumeFinal
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or

zyx

zyx

zyx

dzdydx
dzdydxdzdydx

1111

111

  (1.19)

for small deformation.

dx 

dy 

dz

Figure 1.14 An elemental cube.

The mean strain or the hydrostatic component of strain, which contributes to volume change, 
is also defined as 

333
kkzyx

m .  (1.20)

Then, the strain deviator ( ij
' ) which contributes to shape change, can be obtained by 

subtracting m from each of the normal strain components: 

3
2

3
2

3
2

'

yxz

zyzx

yzxzy
yx

xzxy
zyx

mzzyzx

yzmyyx

xzxymx

ij

  (1.21)

In complete analogy between stress and strain equations, the principal strains are the roots 
of the cubic equation:

3
1

2
2 3 0I I I  (1.22)
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where

).(
4
1

4
1

)(
4
1

222
3

222
2

1

yzzzxyxyxyzzxxyzyx

yzzxxyxzzyyx

zyx

I

I

I

 (1.23)

As already discussed for stress, I1, I2 and I3  are not functions of direction cosines. As such, they 
are independent of the coordinate system location and therefore they are called ‘invariants’.

Also, the principal (engineering) shear strains are

.
)(

,

213

max312

321

 (1.24)
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2  LINEAR ELASTIC STRESS-STRAIN 
RELATIONS

2.1 THE HOOKE’S LAW

The elastic stress (s) is linearly related to elastic strain (ε) by means of the modulus of 
elasticity (E) for the isotropic materials:

E .  (2.1)

This relation is known as the Hooke’s law.

σxσx

x

y

z

Figure 2.1 Deformation of an element subjected to a tensile force. 

A tensile force in the x direction causes an extension of the element in the same direction. 
Simultaneously it also causes a contraction in the y and z directions (see Figure 2.1). The 
ratio of the transverse strain to the strain in the longitudinal direction is known to be 
constant and called the Poisson’s ratio, denoted by the symbol v .

E
v

v x
xzy  (2.2)

The principle of superposition is then can be applied to determine the strain produced by 
more than one stress component. For example, the stress x produces a normal strain x 
and two transverse strains xy v  and xz v . Similarly, other strain components can 
be found as listed in Table 2.1.
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Stress
Strain in the 

x direction

Strain in the  

y direction

Strain in the  

z direction

x x
x

E y
xv

E z
xv

E

y x
yv

E y
y

E z
yv

E

z x
zv

E y
zv

E z
z

E

Table 2.1 Strain components for superposition.

Accordingly, the components of strain in the x, y, and z directions are found:

yxzz

xzyy

zyxx

v
E

v
E

v
E

1

1

1

 (2.3)

The shear stresses acting on the unit cube produce shear strains independent of normal 
stresses:

xzxzyzyzxyxy GGG ,,  (2.4)

The proportional constant G is the modulus of elasticity in shear, or the modulus of rigidity. 
Values of G are usually determined from a torsion test.

Another elastic constant is the bulk modulus or the volumetric modulus of elasticity (K ). The 
bulk modulus is the ratio of the hydrostatic stress or the hydrostatic pressure to the volume 
strain that it produces

1pmK  (2.5)

where p is the hydrostatic pressure and b is the compressibility. It is applicable to both fluid 
and solid.
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27

Some useful relationships between the elastic constants (E, G, v , and K ) may be derived. 
Adding up the three equations in Equation (2.3),

zyxzyx E
v21

  (2.6)

It is noted that the terms on the left of Equation (2.6) is the volume strain (D), and the 
terms ( zyx ) on the right is 3 m  Accordingly,

mE
v 321

 (2.7a)

or

v
EK m

213
  (2.7b)

The following equation is often introduced in an elementary course of mechanics of solids 
for a relationship between E, G, and n:

v
EG
12

. (2.8)
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Using Equations (2.7) and (2.8), other useful relationships can be found: 

GK
KE

31
9

,  (2.9a)

KG
KG

322
321

,  (2.9b)

v
KvG

12
213 , and (2.9c)

GE
EK
39

.  (2.9d)

2.2 CALCULATION OF STRESSES FROM ELASTIC STRAINS

The strains are measurable while the stresses can be calculated. It may be useful to have 
stresses as functions of strains. From Equation (2.6),

zyxzyx v
E
21

.  (2.10)

We eliminate y  and z in Equation (2.10) using Equation (2.3):

)(1
zyxxx E

v
E

v
.  (2.11)

Substitution of Equation (2.10) into Equation (2.11) gives:

zyxxx v
vE

v
E

2111
  (2.12a)

where

vv
vE

211  (2.12b)

and  is known as the Lamé’s constant. Further, using the volume strain zyx , 
and shear modulus (G):

xx G2 .  (2.13)

In this way, more relations can be found for other stress components ( y , x , and so on). It 
may be timely to introduce the tensorial notation to deal with a large number of equations 
and a specified system of components. All the stress components can now be expressed as 

ijkkijij G2  (2.14)
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where i and j are free indexes, k  is a dummy index, and ij  is the Kronecker delta i.e.

ij = 1 if  i = j
ij = 0 if  i  j. 

The free index assumes a specified integer that determines all dummy index values. The 
dummy index takes on all the values of its range. Upon expansion, Equation (2.14) gives 
three equations for normal stress and six equations for shear stress using indexes for a range 
of x, y and z. Equation (2.14) may be expanded in a matrix form:

zx

y

xy

z

y

x

zx

yz

xy

z

y

x

z
G

G
G

G
G

G

00000
00000
00000
0002
0002
0002

 (2.15)

or by inversion

zx

yz

xy

z

y

x

zx

y

xy

z

y

x

E

z
)1(200000

0)1(20000
00)1(2000
0001
0001
0001

1  (2.16)

As previously discussed, the stresses and the strains can be broken into deviator and 
hydrostatic components. The distortion is associated with the stress/strain deviator and its 
stress-strain relation is given by 

'2'
1

'
ijijij

G
v

E
 .  (2.17)

Also, the stress-strain relationship between hydrostatic stress and mean strain components 
in tensorial notation is given by

kkkkii K
v

E
213

.  (2.18) 



MECHANICS OF SOLIDS AND FRACTURE

30

LInear eLastIC stress-straIn reLatIons

30

2.3 PLANE STRESS AND PLANE STRAIN

Plane stress or plane strain is a state of stress/strain (Figure 2.2). An example is given for 
plane stress in Figure 2.2 (a), in which two of the faces of the cubic element are free of 
any stress. Another example is given for plane strain in Figure 2.2 (b), which occurs to the 
situations where the deformations take place within parallel planes. In practice, the plane 
strain often occurs internally within a structural component in which stress distribution is 
non-uniform when stress raisers such as rivet hole and notch are present whereas the plane 
stress occurs on its surfaces. 

For a case of plane stress ( 3  = 0 or z  = 0), Equation (2.3) becomes

211
1 v
E

 (2.19a)

122
1 v
E

  (2.19b)

213 E
.  (2.19c)

CAREERKICKSTART
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Then, two stress-strain relations can be obtained by solving simultaneously two of the 
equations:

2121 1
v

v
E

 (2.19d)

1222 1
v

v
E

. (2.19e)

(a) (b) 

y (or 2) 

x (or 1) 

z (or 3) 

y (or 2) 

x (or 1) 

z (or 3) 
Fixed 
support 

Fixed 
support 

Figure 2.2 Example for: (a) plane stress; and (b) plane strain (no displacement in the z-direction).

For a case of plane strain ( 03 ),

01
2133 v

E
 (2.20a)

so that,

213 v   (2.20b)

Therefore, a stress exists even though the strain is zero in the z (or 1) direction. Substituting 
this value into Equation (2.3), we get

21

2

1 1
1

v
v

E
v

 (2.20c)

12

2

2 1
1

v
v

E
v

 (2.20d)

03  (2.20e)

Note that when 
v

v
1

 and 
E
v21  are replaced with v  and 

E
1  respectively plane stress 

equations are obtained. 
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(a) (b) 

P

du

σxσx

x

y

z

dx du

Figure 2.3 (a) An elemental cube subjected to a tensile stress. (b) Force-displacement (P-du) 

curve and strain energy.

2.4 STRAIN ENERGY

In general, the strain energy is graphically an area under a force-displacement (P-du) diagram 
(Figure 2.3). When an elemental cube is subjected to a tensile stress in the x-direction, its 
elastic strain energy (L) is given by

.
2
1

2
1

2
1

dxA

dxAduPd

xx

xx

 (2.21)

Equation (2.21) describes the elastic energy absorbed by the element volume (A dx). If we 
define the strain energy density ( 0) as the energy per unit volume, it is given by 

E
E x

x
xx

2
2

0 2
1

2
1

2
1  (2.22)

Similarly, the strain energy per unit volume of an element subjected to pure shear ( xy) is 
given by

G
G xy

xy
xyxy

2
2

0 2
1

2
1

2
1

.  (2.23)

For a general three-dimensional stress distribution, it may be obtained by superimposing 
the six components:

yzyzxzxzxyxyzzyyxx2
1

0  (2.24)
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or in tensorial notation,

ijij2
1

0 .  (2.25)

To identify volume- and shape- dependent quantitative characteristics, we first find an 
expression for strain energy per unit volume ( 0)  as a function of the stress and the elastic 
constants. Substituting the equations of Hooke’s law [Equations (2.3) and (2.4)] into 
Equation (2.24), we find: 

222222
0 2

1
2
1

yzxzxyzxzyyxzyx GE
v

E
 (2.26a)

where 
GK

KE
31
9  and 

KG
KG

322
321

. . The strain energy density ( 0)  may be rewritten for 

separate volume and shape dependent parts:

)3(
6
1

18 2
2
1

2
1

0 II
GK

I
 (2.26b)

where 3211I  (first invariant) and 3132212I  (second invariant).

http://campus.oracle.com
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The strain energy density ( )3(
6
1

18 2
2
1

2
1

0 II
GK

I
) can be found for incompressible materials i.e. K = ∞:

2
13

2
32

2
210 )()()(

12
1
G

.  (2.27)

A uni-axial yield stress ( ys) can be related for the distortion energy ( 0) to be

2
0 6

1
ysG

 for ys1 02 , and 03  when subjected to a uni-axial loading. Accordingly, 

Equation (2.27) becomes

2
13

2
32

2
21

2 )()()(2 ys  .  (2.28)

This equation is known as the distortion energy criterion or von Mises’ yield criterion.

To find stress-strain relations involving the strain energy density, the following equation is 
first found by substituting Equation (2.15) into Equation (2.24):

2222222
0 2

1
2
1

yzxzxyzyx GG  (2.29)

and then we find that the derivative of O  with respect to any strain component gives the 
corresponding stress component and vice versa. For example,

xx
x

G20  (2.30a)

yy
y

G20  (2.30b)

zz
z

G20   (2.30c)

or

x
x

0  (2.30d)

y
y

0
 (2.30e)

z
z

0 .  (2.30f )

This mathematical concept is applicable to a large structural component for force-deflection 
relation as described in the Castigliano’s theorem.
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2.5 GENERALISED HOOKE’S LAW

The generalized Hooke’s law is not only for three-dimensional loading but also for all the 
possible linear elastic material properties. It may be expressed as

klijklij C  (2.31)

and

klijklij S  (2.32)

where Cijkl  is the compliance tensor and Sijkl  is the stiffness tensor (physically elastic constants). 
Equation (2.32) represents: 

11 = S1111 11 + S1112 12 + S1113 13 + S1121 21 + S1122 22 + S1123 23 + S1131 31 +  
 S1132 32 + S1133 33  

12 = S1211 11 + S1212 12 + S1213 13 + S1221 21 + S1222 22 + S1223 23 + S1231 31 +  
 S1232 32 + S1233 33

13 = S1311 11 + S1312 12 + S1313 13 + S1321 21 + S1322 22 + S1323 23 + S1331 31 +  
 S1332 32 + S1333 33 

21 = S2111 11 + S2112 12 + S2113 13 + S2121 21 + S2122 22 + S2123 23 + S2131 31 +  
 S2132 32 + S2133 33

22 = S2211 11 + S2212 12 + S2213 13 + S2221 21 + S2222 22 + S2223 23 + S2231 31 + 
 S2232 32 + S2233 33

23 = S2311 11 + S2312 12 + S2313 13 + S2321 21 + S2322 22 + S2323 23 + S2331 31 + 
 S2332 32 + S2333 33 

31 = S3111 11 + S3112 12 + S3113 13 + S3121 21 + S3122 22 + S3123 23 + S3131 31 + 
� (2.33)

 S3132 32 + S3133 33

32 = S3211 11 + S3212 12 + S3213 13 + S3221 21 + S3222 22 + S3223 23 + S3231 31 + 
 S3232 32 + S3233 33

33 = S3311 11 + S3312 12 + S3313 13 + S3321 21 + S3322 22 + S3323 23 + S3331 31 +  
 S3332 32 + S3333 33 

We know that ij  and ij  are symmetric tensors ( ij = ji, Cijlk ij = Cijkl ji, ij = ji, ij = ji). This 
leads to simplification of Equation (2.33):

11 = S1111 11 + S1122 22 + S1133 33 + S1123(2 23)  + S1113(2 13) + S1112(2 12) 
12 = S1211 11 + S1222 22 + S1233 33 + S1223 (2 23) + S1213(2 13) + S1212(2 12) 
13 = S1311 11 + S1322 22 + S1333 33 + S1323 (2 23) + S1313(2 13) + S1312(2 12) 
21 = S2111 11 + S2122 22 + S2133 33 + S2123 (2 23) + S2113(2 13) + S2112(2 12) 
22 = S2211 11 + S2222 22 + S2233 33 + S2223 (2 23) + S2213(2 13) + S2212(2 12) 
23 = S2311 11 + S2322 22 + S2333 33 + S2323 (2 23) + S2313(2 13) + S2312(2 12) 
31 = S3111 11 + S3122 22 + S3133 33 + S3123 (2 23) + S3113(2 13) + S3112(2 12) 
32 = S3211 11 + S3222 22 + S3233 33 + S3223 (2 23) + S3213(2 13) + S3212(2 12) 
33 = S3311 11 + S3322 22 + S3333 33 + S3323 (2 23) + S3313(2 13) + S3312(2 12) 

 (2.34)



MECHANICS OF SOLIDS AND FRACTURE

36

LInear eLastIC stress-straIn reLatIons

36

or knowing engineering shear strain g (=2ε),

11 = S1111 11 + S1122 22 + S1133 33 + S1123 23 + S1113 13 + S1112 12

…………………………………………………………………………………
…………………………………………………………………………………

23 = S2311 11 + S2322 22 + S2333 33 + S2323 23  + S2313 13 + S2312 12

…………………………………………………………………………………
…………………………………………………………………………………

 (2.35)

Similarly, Equation (2.31) is expanded as:

11 = C1111 11 + C1122 22 + C1133 33 + 2C1123 23 + 2C1113 13 + 2C1112 12

…………………………………………………………………………………
…………………………………………………………………………………

23 = 2 23 = 2C2311 11 + 2C2322 22 + 2C2333 33 + 4C2323 23  + 4C2313 13 + 4C2312 12

…………………………………………………………………………………
…………………………………………………………………………………

 (2.36)
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If contracted notation is used to follow the usual convention, only two subscripts instead 
of four for compliance and stiffness tensors are sufficient and Equations (2.35) and (2.36) 
are expressed as

11 = S11 11 + S12 22 + S13 33 + S14 23 + S15 13 + S16 12

22= S21 11 + S22 22 + S23 33 + S24 23 + S25 13 + S26 12

33 = S31 11 + S32 22 + S33 33 + S34 23  + S35 13 + S36 12

23 = S41 11 + S42 22 + S43 33 + S44 23  + S45 13 + S46 12

13= S51 11 + S52 22 + S53 33 + S54 23 + S55 13 + S56 12

12 = S61 11 + S62 22 + S63 33 + S64 23 + S65 13 + S66 12

( 21 = S61 11 + S62 22 + S63 33 + S64 23 + S65 13 + S66 12)
� (2.37)

( 31 = S31 11 + S32 22 + S33 33 + S34 23 + S35 13 + S36 12)
( 32= S31 11 + S32 22 + S33 33 + S34 23 + S35 13 + S36 12)

and

11 = C11 11 + C12 22 + C13 33 + C14 23 + C15 13 + C16 12

22= C21 11 + C22 22 + C23 33 + C24 23 + C25 13 + C26 12

33= C31 11 + C32 22 + C33 33 + C34 23 + C35 13 + C36 12

23 = C41 11 + C42 22 + C43 33 + C44 23  + C45 13 + C46 12

13 = C51 11 + C52 22 + C53 33 + C54 23  + C55 13 + C56 12

12= C61 11 + C62 22 + C63 33 + C64 23  + C65 13 + C66 12.

� (2.38)

It can be noted that the subscripts of coefficients have been rearranged systematically: 11→1, 
22→2, 33→3, 23→4, 13→5, 12→6, 21→6, etc and S2322= S42, S1122= S12, C1122= C12, 2C2311= 
C41, 4C2323= C44,  etc.

The elastic stiffness and compliance constants are defined as

S11=
11

11 , S44=
23

23 ,  etc

and 

C11=
11

11 , C44=
23

23 , etc.

In general, Sij= Sji  and Cij= Cji  for linear elastic materials. This can be easily shown as follows.

For

11

0  = 11 = S11 11 + S12 22 + S13 33 + S14 23 + S15 13 + S16 12, 

the second derivative is given by

2211

0
2

= S12.  (2.39a)
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For

22

0  =  22 = S21 11 + S22 22 + S23 33 + S24 23 + S25 13 + S26 12, 

another second derivative is given by

1122

0
2

= S21.  (2.39b)

Therefore,

2211

0
2

=
1122

0
2

= S12 = S21.  (2.39c)

Now, we started with 36 elastic constants as given in Equation (2.37), but as a result of 
analysis, these can be reduced to 21 independent elastic constants.

2.6 ELASTIC PROPERTIES DEPENDANT ON ORIENTATION

The elastic properties such as elastic modulus and Poisson’s ratio may be characterised by a 
set of planes of symmetry in a particular orientation. Each plane of symmetry is defined as 
a plane to which elastic properties are symmetric. A material having an infinite number of 
sets of such planes in any orientation is called an isotropic material and otherwise is called 
an anisotropic material.

 

1 or x 

2 or y 

3 or z 

Figure 2.4 Orthotropic material: it has three mutually 

perpendicular orientations for respective three sets of 

planes of symmetry. 
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One of the important classes of engineering materials is one that has three mutually 
perpendicular orientations for respective three sets of planes of symmetry. Materials in such a 
class are called the orthotropic materials (see Figure 2.4). Examples for orthotropic materials 
include unidirectional fibre reinforced laminates and highly textured cold rolled metal 
sheets. For orthotropic materials, constants Sij  in Equation (2.37) and Cij  in Equation (2.38) 
reduces to

66

55

44

332313

232212

131211

00000
00000
00000
000
000
000

S
S

S
SSS
SSS
SSS

Sij  (2.40a)

and

66

55

44

332313

232212

131211

00000
00000
00000
000
000
000

C
C

C
CCC
CCC
CCC

Cij   (2.40b)
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respectively. Thus, the stress-strain relations for an orthotropic material are given by

11 = C11 11 + C12 22 + C13 33 
22= C12 11 + C22 22 + C23 33 
33= C13 11 + C23 22 + C33 33 
23 = C44 23   
13 = C55 13 
12= C66 12 � (2.41a)

or 

x = C11 x + C12 y + C13 z 
y= C12 x + C22 y + C23 z 
z= C13 x + C23 y + C33 z 
yz = C44 yz   
xz = C55 xz 
xy = C66 xy 

� (2.41b)

The constants in Equation (2.41) can be related to elastic moduli and Poisson’s ratios or 
directly determined by conducting the tests. For example, stress components for a uni-axial 
tensile test in the x-direction are given by: x  0, y = 0, and z = 0. From Equation (2.41), 

x = C11 x = 
xE

1
x,       y= C12 x, z= C13 x. 

Accordingly, C11  is now determined to be 
xE
1  and further

C12 = 
x

yx

xx

y

x

y

EE
, and C13 = 

x

zx

E

where 
x

y

yx  and 
x

z
zx . Similar relationships can be obtained by applying stresses in 

different directions. Therefore,

C11=
xE

1 ,   C12 = 
y

xy

E
,    C13 =

z

xz

E
 

C12= 
y

xy

E
,  C22= 

yE
1 ,  C23= 

z

yz

E

C31= 
x

zx

E
,  C32=

y

zy

E
,  C33= 

zE
1

C44 =
yzG

1  

C55 =
xzG

1

C66 =
xyG

1 . 
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Another class of materials are transversely isotropic. When two of three sets of symmetry 
planes for the orthotropic properties become an infinite number of sets, the properties are 
called transversely isotropic. Figure 2.5 illustrates an example for a transversely isotropic material 
using a unidirectional fibre reinforced composite. Therefore, Ex=Ez, Gyz=Gxy, and yz = xy. .

 

 

1 or x 

2 or y 

3 or z 

Figure 2.5 Transversely isotropic material.

For isotropic materials, Ex = Ey = Ez = E,  Gyz = Gxz = Gxy= G  and xy= yx = zy = zx =  . 
Accordingly, the following equations can be recovered for isotropic materials:

yxzz

xzyy

zyxx

v
E

v
E

v
E

1

1

1

 (bis 2.3)

xzxzyzyzxyxy GGG ,,  (bis 2.4).
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3 CIRCULAR PLATES

The plates are meant to be subjected to the bending loads. Some examples for the use of 
plates include pressure vessel end caps and piton heads. An analysis can be conducted for 
the axi-symmetric loading with the benefit of the circular geometry. The analysis is based 
on the linear stress distribution across the thickness. For a circular plate (Figure 3.1), x in 
the coordinate system may be exchangeably used with r to indicate the radial direction.

y

x

x or r 

z
Tangential

(b) (a) 

Radial

Figure 3.1 (a) A circular plate. (b) An infinitesimal element for directions in the  

axi-symmetric analysis.
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3.1 STRESS AND STRAIN

The general relations between stresses and strains previously discussed for isotropic materials 
are applicable:

yxzz

xzyy

zyxx

v
E

v
E

v
E

1

1

1

 (bis 2.3).

The state of plane stress is also applicable to the circular plate. The stresses in the radial  
(x) and tangential directions (z) in the current coordinate system (Figure 3.1) are given by: 

xzz

zxx

v
v

E

v
v

E

2

2

1

1
 (bis 2.19)

θ

θ
x

y

R 
dθ

dx

dθ

u
dy 

Figure 3.2 Cross section of circular plate.

The following procedure is given for finding strains ((εx  and εz)) in above equations as 
functions of slope ( ).

In general, the following relation is applicable to pure bending of an infinitesimal element 
having a liner strain distribution: 

REI
M 1

 (3.1)

where M is the bending moment, R is the radius of curvature, E is the elastic modulus and 
I is the second moment of area.
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The strain in the x-direction due to pure bending in x-y plane (Figure 3.2) is 

xy
x R

u
 (3.2)

where u is the distance of any point from the neutral axis.

In general, the curvature (1/R ) for small deflection (Figure 3.2) is given by 

2

21
dx

yd
R

 (3.3)

and for a small angle,

tan
dx
dy  (3.4)

Therefore, the curvature in the x-y plane is given by

dx
d

dx
yd

Rxy
2

21
 (3.5)

u

Assumed circle

uθ

θ 
dθ 

a
x

M M 

Figure 3.3 An exaggerated cross section of circular plate forming assumed spherical 

deflection for small deformation when a couple (M) consisting of two equal and opposite 

forces is applied.

and bending strain in radial direction in the circular plate ((εx)) is given by

dx
d

ux .  (3.6)
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For a plate subjected to a couple (M) consisting two equal and opposite forces is applied 
(Figure 3.3), the circumferential strain ((εz)) at a (= εz), to which the distance from the neutral 
axis is u, due to the pure bending:

x
u

x
xux

z . (3.7)

Thus, using the plane stress equation, the stresses in the radial (x) and tangential directions 
(z) are found as functions of slope (q):

x
v

dx
d

v
Euv

v
E

zxx 22 11
 (3.8)

and

dx
dv

xv
Euv

v
Eu

xzz 22 11
.  (3.9)

Equations (3.8) and (3.9) will be useful for finding stresses when the slope (q�) and its 
derivative are known.
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Unit length 

h
u

du

σr or 
σz

Figure 3.4 A section of the circular plate.

3.2 BENDING MOMENT

Let us consider the small section of the circular plate with a unit length (Figure 3.4). From 
the simple bending theory, 

u
h

u
IM

uI
M

12

3
 (3.10)

where M is the bending moment per unit length, the bending moment (Mr) due to the 
stress in the radial direction ((σx)),

x
v

dx
dD

x
v

dx
d

v
Eh

u
h

M x
r 2

33

11212  (3.11)

where 
2

3

112 v
EhD .

Similarly, the bending moment (Mz)  due to the stress in the tangential direction (σz)),

dx
dv

x
DM z   (3.12)

where 2

3

112 v
EhD .

It is useful to know that, unlike beams, the bending moments (Mr  and Mz) here will be 
eliminated rather than calculated.

3.3 SLOPE AND DEFLECTION WITHOUT BOUNDARY CONDITIONS

Consider an infinitesimal element in Figure 3.5 to relate deformation with the shear force 
(Q) and then external forces such as concentrated force and pressure.
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Mr +dMr

Mr

Mz

Mz

dxx

dø

Q+dQ

Q
Unit thickness 

dø/2

Figure 3.5 An infinitesimal element of circular plate.

The moments in the radial and tangential directions per unit length are Mr and Mz  respectively 
and Q is the shear force per unit thickness.

Taking the moments about the outside edge under the equilibrium:

0)
2
1sin(2))(( dxQxdddxMxdMddxxdMM zrrr .  (3.13)

Neglecting small quantities, this reduces to

0QxdxdxMxdMdxM zrr .  (3.14)

and rearranging,

QxM
dx

dM
xM z

r
r .  (3.15)

To eliminate moments, substituting 

x
v

dx
dDM r and

dx
dv

x
DM z  (bis 3.11 & 3.12)

into Equation (3.15) yields,

D
Q

xdx
d

xdx
d

22

2 1  (3.16)

or

D
Q

dx
xd

xdx
d )(1

.  (3.17)
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For a circular plate, it is convenient to replace x with r so that

D
Q

dr
dyr

dr
d

rdr
d )(1

.  (3.18)

Note that 
dr
dy

 and y in equation above are the slope (q) and the deflection respectively. The 
following section will show how to relate Equation (3.18) with external forces.

3.4  A GENERAL AXI-SYMMETRIC CASE WHERE A CIRCULAR PLATE 
IS SUBJECTED TO COMBINED UNIFORMLY DISTRIBUTED LOAD 
(P) AND CENTRAL CONCENTRATED LOAD (F) 

p

r dr

Figure 3.6 A circular plate subjected to pressure (p).

http://www.pgs.com/careers


MECHANICS OF SOLIDS AND FRACTURE

49

CIrCULar PLates

A general axi-symmetric case where the pressure (p) is applied uniformly on the circular 
plate is given in Figure 3.6 without boundary conditions yet. The shear force per unit length  
(Q) may be found from the equilibrium at any radius (r):

2
2 2 prQrprQ   (3.19)

so that Equation (3.18) is related with an external load, pressure (p),

D
pr

D
Q

dr
dyr

dr
d

rdr
d

2
)(1

.  (3.20)

 

p

r dr

F

Figure 3.7 A circular plate subjected to pressure p and point force F.

Similarly, for the case (Figure 3.7) where both pressure (p) and central concentrated load (F) 
on the circular plate are applied, the shear force per unit length (Q):

r
FprQFrprQ

22
2 2   (3.21)

so that

Dr
Fpr

dr
dyr

dr
d

rdr
d 1

22
)(1

.  (3.22)

To find the slope (
dr
dy

) and the deflection ( y), this equation may be integrated,

rCrFrpr
D

dr
r

Fpr
Ddr

dyr
dr
d

1

3

ln
24

1
22

1)(   (3.23)

where C1  is an integration constant. Integrating again,

r
CrCr

D
Fr

D
pr

dr
dy 21

3

2
1ln2

816
.  (3.24)

Then,

32

2
1

24

ln
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1ln
864

CrCrCr
D
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D

pry .  (3.25)
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The integration constants can be determined according to the boundary conditions as will 
be introduced for different cases.

3.5  A CASE WHERE A CIRCULAR PLATE WITH EDGES CLAMPED IS 
SUBJECTED TO A PRESSURE (P)

                  (b) 

p

2R0

(a) 

Figure 3.8 Circular plate with edges clamped: (a) cross sectional view; and  

(b) perspective view of plate.

To determine the integration constants in Equations (3.24) and (3.25) for the case where 
a circular plate with edges clamped is subjected to a pressure (p) with F=0 (Figure 3.8):

r
CrC

D
pr 21

3

216
.  (3.26a)

and

32

2
1

4

ln
464

CrCrC
D

pry .  (3.26b)

The slope (q�) is zero at r =0, then, C2  should be zero if the slope q is not to approach 
infinity near the centre of the plate. If the centre of the circular plate is taken as the origin, 
deflection y = 0 at r = 0, and then C3==0. At the clamped edge where r = R0 , q = dy/dr=0, 
from Equation (3.26a),

0
216216

01
3
021

3 RC
D

pR
r

CrC
D

pr

D
pRC
8

2
0

1 .  (3.27a)

Therefore, the three integration constants are determined.

The maximum deflection (ymax)  of the plate occurs at r = R0: 

D
pRR

D
pR

D
pR

y
644864

4
0

2
0

2
0

4
0

max   (3.27b)
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To determine stresses ( x and r ) using Equations (3.8) and (3.9), the slope (q�) is 
determined first,

)(
16216

2
0

221
3

Rr
D

pr
r

CrC
D

pr  (3.27c)

and then,

)3(
16

2
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.  (3.27d)

Therefore, 
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and 
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The maximum stress ((σrmax)) will occur at the edge at which r = R0  and at the surface where 
u = h/2,

2

2
0

max 4
3

h
pR

r  (3.28c)

and σzmax takes place at r=0 so that

)1(
8
3

2

2
0

max v
h
pR

z . (3.28d)

3.6  A CASE WHERE A CIRCULAR PLATE WITH EDGES CLAMPED IS 
SUBJECTED TO A CENTRALLY CONCENTRATED LOAD (F)

             

F 

(b) 

F 

2R0 
(a) 

Figure 3.9 Circular plate with a radius of R0, subjected to a centrally concentrated load (F), 

where edges of the plate are clamped: (a) cross sectional view; and (b) perspective view.

To determine the integration constants in Equations (3.24) and (3.25) for a case where a 
circular plate with edges clamped is subjected to a centrally concentrated load (F ) as given 
in Figure 3.9, the slope (q) at the centre is zero at r=0 so that C2=0. If the origin of the 
coordinate system is taken as the centre of the plate, y = 0 at r = 0, therefore, C3=0. Also, 
to determine C1, a boundary condition is q = 0 at r=R0 , therefore, from Equation (3.24),

2
1ln2

8
1rCr

D
Fr

→
4
1

2
ln 0

1
R

D
FC  (3.29)

The maximum deflection (ymax)  will occur at r=R0 , according to the current coordinate 
system, From Equation (3.25),

D
FR

y
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To determine σr  at r=R0 , the slope (q) and its derivative need to be determined first:

r
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 (bis 3.24)
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and
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Therefore, from Equations (3.8) and (3.9),
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and
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The stress distribution according to Equation (3.32a) is shown in Figure 3.10.

Figure 3.10 Stress distribution in the radial direction.

Accordingly, the stresses are found at 0Rr  and 
2
hu  with 2

3

112 v
EhD :
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v
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and

22 2
3

10 h
F

r
v

dr
d

v
Eu

Rz . (3.33b)

3.7  A CASE WHERE A CIRCULAR PLATE WITH EDGES FREELY 
SUPPORTED IS SUBJECTED TO A PRESSURE (P)

    (b) 

p

2R0

(a) 

Figure 3.11 Circular plate with edges freely supported: (a) cross sectional view;  

and (b) perspective view.
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To determine the integration constants in Equations (3.24) and (3.25) for a case where a 
circular plate with edges freely supported is subjected to a pressure (p) as given in Figure 3.11,  
the boundary conditions may be considered with:

r
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pr
dr
dy 21
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, (bis3.24)
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At r = 0, the slope (q) at the centre is zero and therefore C2 = 0  if the slope (q ) is not to 
approach infinity near the centre of the plate.

Again, if the centre of the circular plate is taken as the origin of the coordinate system, 
deflection y = 0 at r = 0 and therefore C3=0

To determine C1, we consider that the bending moment (Mr) is zero at any free support 
(r = R0). From 

0
r

v
dr
dDM r , (bis3.11)

we find,

r
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.  (3.34)

Using Equations (3.34) and (3.24), we find,

216

216
3

1
2

1
2

C
D

pr
r

C
D

pr
dr
d

→
216216

3 1
2

1
2 C

D
prC

D
pr

  (3.35a)

and
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The maximum deflection (ymax)  occurs at r =R0 if we use the current coordinate system:
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with 
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y  (3.35d)

To determine stresses ( r  and z ) using Equations (3.8) and (3.9), we need to determine 

the slope (q ) and 
dr
d  first:

)1(
)3(

161162
1ln2

816

2
0

3
21

3

D
pRr

D
pr

r
CrCr

D
Fr

D
pr ,  (3.36a)

)1(
)3(

1616

2
0

2

D
pR

D
pr

r
,  (3.36b)
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Therefore, the radial stress ( r) is found,
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The maximum stress σrmax  occurs at r = 0,
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Similarly, the maximum stress in the tangential direction occurs at r = 0 and
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3.8  A CASE WHERE A CIRCULAR PLATE WITH EDGES FREELY 
SUPPORTED IS SUBJECTED TO A CENTRAL CONCENTRATED 
LOAD (F) 

               

F 

(b) 

F 

2R0 
(a) 

Figure 3.12 Cross section of a circular plate with a radius of R0, subjected to a point force (F), 

where edges are freely supported: (a) cross sectional view; and (b) perspective view.

To determine the integration constants in Equations (3.24) and (3.25) for a case where a 
circular plate with edges freely supported is subjected to a central concentrated load (F ) as 
given in Figure 3.12, the boundary conditions may be considered with:
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At r=0, the slope (q) at the centre is zero and therefore C2  = 0 if the slope (q) is not to 
approach infinity near the centre of the plate.

Again, if the centre of the circular plate is taken as the origin of the coordinate system, 
deflection y = 0 at r = 0 and therefore C3=0. 

To determine C1, we consider that the bending moment (Mr) is zero at any free support  
(r = R0). As before, from, 

0
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v
dr
dDM r , (bis 3.11)

we find,
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.  (bis 3.34)

Using Equations (3.34) and (3.24) again,
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Equating these two equations with r = R0 
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The maximum deflection (ymax) occurs at the supports ( r = R0 ), if we use the current coordinate 
system. From Equation (3.25), (p = 0, C2= C3=0)
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This maximum deflection is approximately 2.5 times that of the plate with the clamped 
edge for Poisson’s ratio n = 0.3.

To determine stresses ( r  and z) using Equations (3.8) and (3.9), we need to determine 

the slope (q ) and 
dr
d  first. From Equation (3.24),
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Accordingly, 
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Note that r  is zero at the edge and infinite at the centre. In practice, the concentrated 
load is on a finite area.

The stress in the z-direction,
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3.9  A CASE WHERE A CIRCULAR PLATE WITH EDGES FREELY 
SUPPORTED IS SUBJECTED TO A LOAD (F) ROUND A CIRCLE 

                     

(a) (b) 

F

R0

R1

Figure 3.13 Circular plate with a radius of R0, subjected to a load round a circle (F),  

where edges are freely supported: (a) cross-section (b) perspective view.
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To determine the integration constants in Equations (3.24) and (3.25) for a case where a 
circular plate with edges freely supported is subjected to a load (F ) round a circle as given 
in Figure 3.13, the boundary conditions may be considered with:
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There will be two sets of integration constants because of the discontinuity between two 
parts. For the inner part of the circular plate, r < R1, p = F = 0. From Equation (3.25), the 
deflection ( y) is found to be

32

2
1 ln
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CrCrCy  (3.42a) 

and from Equation (3.24), the slope (q) is found as

r
CrC 21

2
.  (3.42b)

If the centre of the circular plate is taken as the origin of the coordinate system, deflection 
y = 0 at r = 0 and therefore C3=0. For non-infinite slope at the centre, C2 =0.

Thus, the deflection ( y) for the inner part of the circular plate (r < R1),

4

2
1rCy  (3.43a)

and

2
1rC

.  (3.43b)

The constant C1 is to be determined later.

For the outer part of the circular plate, r ≥ R1, another set of integration constants ( 1C , 2C , 
and 3C ) may be introduced and Equations (3.24) and (3.25) reduce respectively to

r
CrC

r
D

Fr
dr
dy 21

2
1ln2

8
  (3.44a)

and

32

2
1

2

ln
4

1ln
8

CrC
rC

r
D

Fry .  (3.44b)
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Now, four constants ( 1C , 1C , 2C , and 3C ) need to be determined and we need to find four 
simultaneous equations. Inner and outer plate parts are common at r = R1 for deflection  
( y) and slope (q). Accordingly, equating Equation (3.43a) to Equation (3.43b), and Equation 
(3.43b) to Equation (3.44b), two of the four simultaneous equations are found:

1

211
1

111

2
1ln2

82 R
CRCR

D
FRRC

  (3.45a)

and

312

2
11

1

2
1

2
11 ln

4
1ln

84
CRCRCR

D
FRRC

.  (3.45b)

Also, using

r
v

dr
dDM r ,  (bis 3.11)

with the common Mr at r = R1, two more equations can be found.

For the inner part (F=0, r<R1) using Equation (3.42b),

2
1rC

  (3.46a)

then,

2
1C

dr
d  (3.46b)

and

2
1C

r
.  (3.46c)

For outer part (F≠0, r≥R2), using Equation (3.44a),

2
21

2
112ln2

8 r
CC

r
rr

D
F

dr
d  (3.47a)

and for 1Rr ,

2
1

21
1 2

1ln2
8

1 R
CC

R
D

F
dr
d

Rr

.  (3.47b)
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Also,

2
21

2
1ln2

8 r
CCr

D
F

r
 (3.47c)

and for 1Rr ,

2
1

21
1 2

1ln2
8

1
R
CCR

D
F

r Rr

.  (3.47d)

Substituting Equations (3.46) and (3.47) into Equation (3.11) and then equating resulting 
two equations:

)1()1(
2

)1()1(ln2
8

)1(
2 2

1

21
1

1

R
CCR

D
FC

.  (3.48)

This is the third equation of the four simultaneous equations.

For one more simultaneous equation, we may use Mr = 0 at the outside edge (r = R0) with 
Equation (3.11),

0)1()1(
2

)1()1(ln2
8 2

1

21
0 R

CCR
D

F
.  (3.49)
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Thus, four simultaneous Equations (3.45a), (3.45b), (3.48), and (3.49) have been found 
for four unknowns. The solution yields

)
)1(

))(1(ln21(
4 12

0

2
1

2
0

1

0
1 R

R
RR

R
R

D
FC ,  (3.50a)
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4 R
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D
FC , (3.50b)

D
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8

2
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2 , (3.50c)

and

)1(ln
8 1

2
1

3 R
D

FRC .  (3.50d)

The deflection ( y) for the outer part of the circular plate, r ≥ R1 with the origin of the 
current coordinate system at the centre of the plate, Equation (3.44b) yields:

).1(ln
8

ln
8)1(

))(1(ln2
44

1ln
8

ln
4

1ln
8

1

2
1

2
1

2
0

2
1

2
0

0

22

32

2
1

2

R
D

FRr
D

FR
R

RRR
D

Frr
D

Fr

CrCrCr
D

Fry
  (3.51)

The maximum deflection (ymax)  occurs at the supports (r =R0)  and is given by

1

02
1

2
1

2
0max ln)(

)1(2
3

80 R
RRRR

D
Fyy Rr .  (3.52)

The stress σrmax  for this case occurs at r = R1. Using Equation (3.8),

2
0

2
1

2
0

1

0
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3.10  A CASE WHERE AN ANNULAR RING WITH EDGES FREELY 
SUPPORTED IS SUBJECTED TO A LOAD ROUND A CIRCLE (P = 0)

    (b) 

F

R0

R1

(a) 

Figure 3.14 Annular ring with a radius of R0, subjected to a load round a circle (F),  

where edges are freely supported: (a) cross-section; and (b) perspective view.

The plate subjected to a load round a circle (p = 0) shown in Figure 3.14 is an annular 
ring with edges freely supported. The following equations derived previously for the outer 
part of the circular plate in Figure 3.13 is directly applicable for the annular ring:

r
CrC

r
D

Fr
dr
dy 21

2
1ln2

8
  (bis 3.44a)

and

32

2
1

2
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4

1ln
8

CrC
rC

r
D

Fry .  (bis 3.44b)

To determine constants in equation above, we may use Mr = 0 at both r = R1 and r = R0  with

r
v

dr
dDM r .  (bis 3.11)

Differentiating Equation (3.44a),

2
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2
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,  (3.54a)

then,
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and

2
0
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0 2
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8
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d
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.  (3.54c)

Using Equation (3.44a),
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D
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,  (3.54d)
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and
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0 2

1ln2
8

0
R
CCR

D
F

r Rr

.  (3.54f ).

Setting Equation (3.11) to zero for r = R1,
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 (3.55)

Increase your impact with MSM Executive Education

For more information, visit www.msm.nl or contact us at +31 43 38 70 808 

or via admissions@msm.nl
 the globally networked management school

For more information, visit www.msm.nl or contact us at +31 43 38 70 808 or via admissions@msm.nl

For almost 60 years Maastricht School of Management has been enhancing the management capacity 

of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open  Enrollment Executive Programs offers you a unique interactive, stimulating and 

multicultural  learning experience.

Be prepared for tomorrow’s  management challenges and  apply today.  

Executive Education-170x115-B2.indd   1 18-08-11   15:13

http://www.msm.nl


MECHANICS OF SOLIDS AND FRACTURE

67

CIrCULar PLates

and for r = R0 ,

0)1()1(
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)1(ln)1(2
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F
. (3.56)

From the two simultaneous Equations (3.55) and (3.56), two of the three integration 
constants are found to be
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If we use the same coordinate system, y = 0 at r = R1, 
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More cases with different boundary conditions are shown in Figure 3.15. The maximum 
stress ( max ) for all those cases can be in a generalised form given by

2

2
01

max h
pRk

 (3.58a)

or

2
1

max h
Fk

 (3.58b)

where 1k  is a factor dependant on the boundary condition, Poisson’s ratio, and 
1

0

R
R . Likewise, 

the maximum deflection (ymax)  for the same cases is given by

2

2
02

max Eh
pRk

y  (3.58c)

or
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y  (3.58d)

where 2k  is a factor dependant on the boundary condition, Poisson’s ratio, and 
1

0

R
R .
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Figure 3.15 Cross sections of various cases for different boundary conditions.
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4  FUNDAMENTALS FOR THEORY 
OF ELASTICITY

In the elementary mechanics of solids, assumptions are used for simplification before 
arriving at solutions. For example, a linear stress distribution is assumed for a beam or a 
shaft. In the theory of elasticity, however, the stress distribution is to be found by satisfying 
the equilibrium equations, compatibility equations, and boundary conditions without such 
assumptions. It is a mathematical process.
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4.1 EQUILIBRIUM AND COMPATIBILITY EQUATIONS

      
(a) (b) 

x

x

y

xy

xz

zx

z

zy

z

yz

σy
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dz
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xy+
x
xy dx

xz+
x
xz dx 

x+
x

x dx 

z+
z

z dz

zy+
z
zy dz 

zx+

z
zx dz 

y+
y

y dy 

xx
yz+

y
yz dy 

x

yx+
y
yx dy

Figure 4.1 (a) A body subjected to external forces. (b) One of the elements where stress varies from 

one face to another.

For the stress variation within a elastic body [Figure 4.1(a)], let us consider one of the stress 
elements given in Figure 4.1(b). To find the equilibrium equations, we need to consider the 
forces acting on the element. The forces are found by multiplying the stress on any face by 
the surface area. Also, we need to consider a body force though the centroid of the element 
and having components X, Y, Z per unit volume. Taking the summation of forces in the x, 
y, z directions results in the following differential equations of equilibrium:

for x-direction,

0X
zyx
zxyxx ;  (4.1)

for y-direction,

0Y
zxy
zyxyy ;  (4.2)

for z-direction, 

0Z
xyz
xzyzz .  (4.3)



MECHANICS OF SOLIDS AND FRACTURE

71

fUnDaMentaLs for theory of eLastICIty

Also, the body forces are given by

x
X ,  (4.4)

y
Y ,  (4.5)

z
Z  (4.6)

where W is called the potential function. The body forces are to deal with gravitational forces, 
magnetic forces and/or inertia forces. The force of one body acting on another by a direct 
contact is the surface force. It may be noted that the equilibrium Equations (4.1–4.3) do not 
provide a relationship between the stresses and the external loads, although they give the 
rate of change of the stresses at any point in the body. One of the requirements to establish 
such a relationship is that the deformation continuity of each element must be preserved. 
This means that the displacement in components must be continuous and single-valued 
functions. Certain relationships between the strain components must be satisfied to meet 
the requirement. These relationships are called the equations of compatibility. The relationship 
between the stresses and the external loads is required to also satisfy the boundary conditions.

To derive the equations of compatibility, let us consider the strain-displacement relations 
previously given in Equation (1.18):

x
u

x ,  (a)

y
v

y ,  (b)

z
w

z ,  (c)

x
v

y
u

xy ,  (d)

x
w

z
u

xz ,  (f )

y
w

z
v

yz .  (g)

To eliminate the displacements from the above equations, we differentiate Equation (a) twice 
with respect to y and Equation (b) twice with respect to x and Equation (d) once with 
respect to x and then once with respect to y results in the following compatibility equation, 

yxxy
xyyx

2

2

2

2

2

.  (4.7)
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Thus, the compatibility equations are to establish relationships between different strain 
components as well.

Two additional compatibility equations may be obtained in a similar way:

zyyz
yzzy

2

2

2

2

2

,  (4.8)

zxzx
xzxz
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2
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.  (4.9)

The following equations may be found from Equation (1.18) for more compatibility equations:
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,  (4.10)
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,  (4.11)
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We may add Equation (4.11) and Equation (4.12) together and then subtract Equation 
(4.11) to get

zyx
u

xyxzx
yzxzxy

3

2

222

2 .  (4.14)

From Equation (4.10) and Equation (4.14), we find a compatibility equation,

zyxxzy
xyxzyzx

2

2 . (4.15)

Similarly, two more compatibility equations can be found:

xzyyzx
yzxyxzy

2

2   (4.16)

yxzzyx
xzyzxyz

2

2 .  (4.17)

4.2 AIRY’S STRESS FUNCTION

As discussed, to find equations for stress distribution on a solid body, any candidate equations 
are required to satisfy the boundary conditions, equilibrium equations and compatibility 
equations. This procedure can be simplified using the Airy’s stress function (F) which is 
defined by the following three equations:

2

2

yx   (4.18)

2

2

xy  (4.19)

yxxy

2

.  (4.20)

The three equations above containing the Airy stress function (F) satisfy the equilibrium 
equations for two dimensional cases. Thus, the procedure for finding equations for stress 
distribution involves finding the Airy stress function (F) and satisfying the compatibility 
equations. The compatibility equations and Airy stress function (F) will be further discussed 
in relation with plane stress and plane strain.
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4.2.1 PLANE STRESS

Equations (4.18)–(20) are substituted into the following equations for plane stress 
( 0yzxzz ), 

yxx E
1

 (bis 2.19a)

xyy E
1

  (bis 2.19b)

yxz E
  (bis 2.19c)

xyxyxy EG
)1(21

 (bis 2.4 & 2.8)

and then into the compatibility equation (4.7) to obtain

2

2

2

2

4

4

22

4

4

4

)1(2
yxyyxx

.  (4.21)

The symbol ∇ is called del operator and∇4 is called the biharmonic operator defined as

4

4

22

4

4

4
4 2

yyxx
 (4.22)

and ∇2 is called the Laplacian operator defined as 

2

2

2

2
2

yx
.  (4.23)

Thus, Equation (4.21) becomes

4  = - (1- ) 2  � (4.24a)

Note that no use has been made of the remaining five compatibility equations. Two of these 
vanish because of the stress field here is independent of z but the other three will not be 
satisfied. However, the stresses above are known to be good approximations. For the case 
of zero body forces Equation (4.24a) reduces to the so called the biharmonic equation:

4  = 0.  (4.24b)
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4.2.2 PLANE STRAIN

We employ the same Airy stress function F(x, y) [see Equations (4.18)–(4.20)] as for the 
plane stress case in conjunction with the following relations for plane strain ( z = 0):

yxz v   (bis 2.20b)

yxx v
v

E
v

1
1 2

 (bis 2.20c)

xyy v
v

E
v

1
1 2

.  (bis 2.20d)

For the plane strain case, five of the compatibility equations are satisfied, leaving only 

Equation (4.7), 
yxxy
xyyx

2

2

2

2

2

, to be considered. If we consider the compatibility 

Equations (4.15), (4.16) and (4.17), we obtain

24

1
1

.  (4.24c)
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When there are no body forces, the same biharmonic equation as that for plane stress is 
obtained as

4  = 0. � (4.24d)

Therefore, to find the equation for a stress distribution, we need to find an Airy’s stress 
function with the biharmonic equation satisfied.

The following is an example for using the Airy stress function to find equations for stress 
distribution. A case is given in Figure 4.2, in which the pressure p varies along the bar. The 
stress function Φ = By3  may be considered for it (B is a constant). It is found that The stress 
function satisfies the biharmonic equation ( 4 =0) and therefore produces the following 
equations for stress distribution:

By
yx 62

2

,  (4.25a)

02

2

xy , and (4.25b)

0
2

yxxy .  (4.25c)

To determine the constant (B ), boundary conditions are used:

σx = pA = 0 at y=0 

and 

σx = 6Bl = pB at y=l. 

Accordingly, 
l

pB B

6
 and therefore the stress distribution is described by

l
ypBy

y Bx 62

2

. (4.25d)
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Figure 4.2 A bar subjected to a linear stress distribution.

For many problems, the stress function may be possible to be in the form of the following 
polynomial expression:

...54322345

432234

3223

22

TySxyyRxyQxyPxNx
MyLxyyKxyJxHx

GyFxyyExDx
CyBxyAx

 (4.26)

Terms containing x or y up to the third power satisfy the biharmonic equation. However, 
terms containing higher powers remain in the biharmonic equation. Those terms can be 
sometimes vanished by relating associated coefficients.

4.3  APPLICATION OF EQUILIBRIUM EQUATIONS IN PHOTO-
ELASTIC STRESS ANALYSIS

The equilibrium equations may be useful for photo-elastic stress analysis. 

For example, 

0X
zyx
zxyxx  (bis 4.1)

can be rewritten for plane stress as

0
yx
yxx  (4.27a)
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and rearranging,

dx
y

d yx
x .  (4.27b)

Therefore, the normal stress in the x-direction may be obtained by integration

cdx
y
yx

x  (4.27c)

where c is an integration constant.

Accordingly, a stress difference ( x ) between any two points ((x0  and x) is found to be,

dx
y

x

x

yx
x

0

.  (4.27d)

For numerical calculation, if a stress at the point (x0 , 
0xxx
 is known, then the stress at 

the point x ( x )  can be translated into 

x
y

n
yx

xxxx
1

0
.  (4.27e)
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Equation (4.27e) may be practically useful in conjunction with photo-elastic stress analysis 
for finding stress values.

Photoelasticity has been used as an experimental method for finding stress distributions on 
various geometries. It is based on a material property called birefringence (double refraction) 
which reacts to stresses. In practice, there are two types of patterns on the model for stress 
analysis may be used –isoclinic and isochromatic. As shown in Figure 4.3(a), an isochromatic 
is the locus of the points, along which the difference between major and minor principal 
stresses is constant while an isoclinic is a locus of points at which the principle stresses are 
all in the same direction.The loci appear on the photoelastic model in a form of lines called 
fringes – isoclinics appear in black and isochromatics in other colours as shown in Figure 4.3(b). 

 

 
 

(a) (b) 

x 

y 
σ1 

σ2 

σ1 

σ2 
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σ2 σ1 

σ2 
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σ1 σ2 σ1 σ2 

σ1 σ2 

σ1 σ2 

Figure 4.3 (a) Isoclinics with the principle stress directions – the principle stress directions of each 

point are inclined at a constant angle to x and y axes. (b) Fringes on a plate with a hole.

When a ray of plane polarized light pass through a photo-elastic material model, it resolves 
along the two principal stress directions and each of these components experiences different 
refractive indices as they travel at different velocities within the model. When the light 
comes through the analyzer (Figure 4.4), the phase difference or relative retardation (R) in 
wave lengths between the two resolved rays is given by3

max21 2)( CtCtR  (4.28a)

where C is a constant known as the stress optic coefficient, t is the thickness of the model 
plate, and σ1  and σ2 are major and minor the principal stresses.
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Eye 

Figure 4.4 A photoelasticity arrangement to view a fringe pattern on the model. The fringe pattern 

viewed is due to the plane polarized light. Each fringe is a locus of isochromatic points at which the 

difference between two principal stresses or the maximum shear stress is constant.

When a material of birefringence is stressed, fringes are created. Fringes for stress may be 
similar to contour lines on a map where a close spacing between contour lines indicates a 
high slope and vice versa. Each fringe line is a locus of points of constant difference between 
the major (s1 ) and minor (s2 ) principal stresses and can be used for stress calculation using

t
nf

21   (4.28b)

where n is the fringe number or fringe order, f is the model material fringe value, and t is 
the model thickness.

Equation (4.28b) can be used for finding shear stress ( yx ) with the stress relation in 
Figure 4.5.

 

θ 

σ1

σ2

τxy

x

y

σy

Figure 4.5 Principal stresses with other stress components.
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A relation according to the equilibrium in the x-direction (Figure 4.5) is 

0sincoscossin 21 xy  (4.28c)

so that

2sin
2

21
xy .  (4.28d)

In practice, the variables in Equation (4.28d) can be measured from the photo-elastic 
experiment and then stress at any point can be calculated according to Equation (4.27e).

Further, the stress distribution for a three- dimensional model or real component can be 
obtained using the same theory if reflective surface and photo-elastic coating are used as 
shown in Figure 4.6.
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opportunities to provide you with a challenging career. Are you a great scientist who 
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enjoy a career within Unilever Research & Development. For challenging job opportunities, 
please visit www.unilever.com/rdjobs.
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Component
or model 

Reflective
surface

Photo-
elastic
coating

Light source 

Eye 

Figure 4.6 A photoelasticity arrangement for a three dimensional component or model.

4.4 STRESS DISTRIBUTION IN POLAR COORDINATES

The polar coordinate system is useful for some particular geometries such as cylinder and 
circular plates. Stress components on an infinitesimal element in polar coordinates are given 
in Figure 4.7.

dθ 
θ

r

dr 

σr 
τrθ 

σθ 

τθr 

dθ/2

 dr
r
r

r

dr
r

d

dr
r

x

y

Figure 4.7 Stress components on an infinitesimal element in the polar coordinate system.
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The equilibrium equations in radial and tangential directions are given by

01 R
rrr

rrr  (4.29)

021 T
rrr
rr  (4.30)

where R is a radial body force and T is a tangential body force.

The normal stress distributions in radial and tangential directions and shear stress are given by

2

2

2
11
rrrr ,  (4.31)

2

2

r
, (4.32)

rrrrrr
111 2

2
 (4.33)

where F is the Airy stress function.

The biharmonic equation without the body force is

01111)( 2

2

22

2

2

2

22

2
22

rrrrrrrr
 (4.34)

4.4.1 THICK WALLED CYLINDER

The Airy stress function for the general continuous axi-symmetric stress distributions 
independent of q can be found by solving the biharmonic equation (4.34). The biharmonic 
equation independent of q is given by 

011)( 2

2

2

2
22

rrrrrr
  (4.35)

or 

0112)( 32

2

23

3

4

4
22

rrrrrrr
.  (4.36)

Solving the differential equation,

22 )(lnln rrDCrrBA .  (4.37)
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Consequently, the normal stress distributions in radial and tangential directions and shear 
stress are given by

C
r
B

r 22 ,  (4.38)

C
r

B 22  (4.39)

0r .  (4.40)

The stress distributions for a thick walled cylinder shown in Figure 4.8 may be determined 
using the following boundary conditions when pressures exist both internally ( pi) and 
externally ( po):

ir p  at r =ri 

or p  at r =r0 

0r  at both r =ri  and r =r0 .
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pi 
po 

ro 
ri 

Figure 4.8 Thick walled cylinder cross section with  

an internal pressure ( pi) and an external pressure ( po).

Therefore,

)()(
)(2 22

22

222

22

2
oi

iioo

oi

iooi
r rr

rprp
rrr

rrppC
r
B  (4.41)

and

)()(
)(2 22

22

222

22

2
oi

iioo

oi

iooi

rr
rprp

rrr
rrppC

r
B

.  (4.42)

4.4.2  STRESS DISTRIBUTION FOR AN INFINITELY LARGE THIN PLATE WITH A 

SMALL CIRCULAR HOLE

x

y

өσ 

2A

Figure 4.9 An infinitely large thin plate with a small circular hole.
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The Airy stress function F for the stress distribution for an infinitely large thin plate with 
a small circular hole (Figure 4.9) is found to be 

2cos)(ln2
4 2

222
22

r
ArrAr   (4.43)

where s is a uni-axial tensile stress applied in a remote place. Accordingly, the stress 
distributions are given by

2cos)341(1
2

11
4

4

2

2

2

2

2

2

2 r
A

r
A

r
A

rrrr   (4.44a)

]2cos)(ln2
4
[ 2

222
22

2

2

2

2

r
ArrAr

rr
 (4.44b)

2sin321
2

1
4

4

2

2

r
A

r
A

rrr  (4.44c)

where A is the radius of the hole.

4.4.3  STRESS DISTRIBUTION ACTING ON A STRAIGHT BOUNDARY OF A SEMI-

INFINITE PLATE SUBJECTED TO A NORMAL LINE FORCE (P)

 

θ

dθ

P

σr

r

Figure 4.10 A semi-infinite plate subjected to a normal line force (P).

The Airy stress function F for the stress distribution due to a concentrated normal force 
(P ) acting on a straight boundary of a semi-infinite plate (see Figure 4.10) is given by

Φ = Ar θ sin θ  (4.45a)
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so that

r
A

rrrr
cos211

2

2

2   (4.45b)

0)sin(
2

2

2

2

r
Ar

r
  (4.45c)

01
rrr  (4.45d)

where A is a constant. The radial stress (sr ) appears to be a principal stress in the absence 
of shear stress ( 0r ). The constant A is determined according to the equilibrium of forces 
acting on any cylindrical surfaces of radius r so that

r
P

r
cos2

. (4.46a)

A locus for a constant radial principle stress (sr ) for a given load (P ) may be found by 
eliminating q, given that rd cos  in the circle with a diameter (d ) shown in Figure 4.10, 
which is given by 

d
P

r
2

.  (4.46b)

http://s.bookboon.com/GTca
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In other words, the principle stress direction constantly varies along the circle although the 
radial stress (sr ) is constant.

θ
r

P

σr= -2P/πd

d: circle diameter 

σθ=0 

Figure 4.11 A locus of radial stress (sr ) for a given load (P).

4.4.4 STRESS DISTRIBUTION IN A CIRCULAR DISK

In order to obtain the stress distribution for a finite circular disk subjected to a force (P ), the 

stress distribution in the semi-infinite plate may be used. If two equal tensile radial stresses 

(
d
P

r
2

)  with another force P are added on the circle circumference in Figure 4.11, then, 

the radial compressive stresses are offset and, as a result, no stress exists on the circumferential 

surface and the circle is equivalent to a finite disk as shown in Figure 4.12. Therefore, the 

stress distribution within the disk can be calculated by superimposing the two equal tensile 

radial stresses on the previous stress distribution in the circle.
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θ

P

r

θ1

P

x

d: Disk diameter 

r1

M

σr=2P/πd

σr=2P/πd

Figure 4.12 A circle is isolated from the semi-infinite 

plate subjected to the force P and then two equal 

tensile radial stresses (sr  = 2P / πd) with another force 

P are added on the circle circumference to offset the 

compressive stresses. As a result, no stress exists on 

the circumferential surface and the circle is equivalent 

to a finite disk.

θ

x
r

M’ σr

σy

σr

σx

σr

σy

σr

σx

At point M’ (for solid arrow) 
 
ΣFy=0 
σy= σrsinθsinθ = σrsin2θ 
 
ΣFx=0 
σx= σrcosθcosθ = σrcos2θ 

At point M’ (for dashed arrow) 
 
ΣFy=0 
σy = σrcosθcosθ = σrcos2θ 
 
ΣFx=0 
σx=σrsinθsinθ = σrsin2θ 

At point M’ (for both arrows) 
 
ΣFy=0 
σy=σr(sin2θ+ cos2θ)= σr 
 
ΣFx=0 
σx= σr(sin2θ+ cos2θ)= σr  

d: Disk diameter 

Figure 4.13 The stress distribution caused by the tensile stresses added along the circumference is uniform 

within the disk i.e. σx=σy=σr  without force P.
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(a) (b)  (c) 

P

P

=
θ r

2P

σr= -2P/πd

σθ=0

+ 

Figure 4.14 A finite disk with a diameter of d subjected to line force P.
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Before we obtain the stress distribution for a finite circular disk, we need to know that the two 
equal tensile radial stresses ( dPr /2 ) added along the circumference causes a uniform stress 
distribution where dPyx /2 within the disk as shown in Figure 4.13. Accordingly, 
we use the superposition as shown in Figure 4.14 to find the stress distribution on the 
horizontal diametral section of the circular disk subjected to a force P [Figure 4.14(a)]. The 
stress in the y-direction (σy) on the horizontal diametral section where the stress directions 
are symmetric [Figure 4.14(c)] is given by 

r
P

ry

3
2 cos4cos2  (4.47a)

and the stress in the y-direction (σy) due to the two equal tensile radial stresses at any point 
in Figure 4.13(b) is given by

d
P

y
2

.  (4.47b)

Superimposing these together,

d
P

r
P

y
2cos4 3

.  (4.47c)

The maximum compressive stress (= minor principal stress) along the horizontal diameter 
occurs at the center of the disk (q=0) and is found to be

d
P

y
6

max .  (4.47d)

Similarly, the stress in the x-direction along the horizontal diameter (σx) is given by

d
P

r
P

x
2sin)cos4( 2   (4.47e)

and the stress at the center of the disk (= major principal stress) is found to be

d
P

x
2

max .  (4.47f )

It follows that 

d
P

yx
8

21 ,  (4.47g)

which may be useful for the photo-elasticity calibration. 
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5  LINEAR ELASTIC STRESS FIELD IN 
CRACKED BODIES

Most engineering materials contain small cracks or defects produced during service or 
manufacturing. When an engineering component is fractured, new surfaces are created. They are 
caused by the rupture of atomic bonds due to high local stresses. The phenomenon of fracture 
may be approached at different scales. As the crack size decreases, smaller scale analyses would 
be required. At a small scale for some cases, the phenomena of interest may be considered 
within distances of the order of 10-7 cm so that the problem is studied using the concepts of 
uncertainty. However, as the crack size increases, the material behaviour based on continuum 
mechanics may be more appropriate. The complex nature of cracking behaviour prohibits a 
unified approach of the problem, and the existing theories deal with the subject from either 
the microscopic or the macroscopic point of view. In this chapter, the linear elastic stress 
analysis for cracked bodies will be introduced as part of the continuum mechanics. 

Mode I   Mode II   Mode III 

Figure 5.1 The three modes of cracking.

When we consider a two-dimensional crack extending through the thickness of a flat plate, 
three different cracking modes need to be defined by the loading position and direction. 
These three basic modes are illustrated in Figure 5.1, which presents three types of relative 
displacements of the crack upper and lower surfaces. Mode I, mode II and mode III are 
also called opening mode, shearing mode and tearing mode respectively. Some practical loading 
examples of testing for such modes are given in Figure 5.2.
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Figure 5.2 Practical loading examples of testing for different modes: (a) mode I, (b) mode I, 

(c) mode I, (d) mode II, (e) mode II [after Kim and Ma, 1998] 4, (f)1 mode II, and (g) mode III.

5.1 COMPLEX STRESS FUNCTION 

The stress field around a crack tip can be found mathematically using the equations with 
the Airy’s stress function (F) as discussed previously:

2

2

yx   (bis 4.18)

2

2

xy   (bis 4.19)

yxxy

2

.  (bis 4.20)
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The complex function is defined as

ZiZzZ ImRe)(  (5.1)

where z = x + iy.

The Cauchy-Riemann conditions for the complex function are given by

y
Z

x
Z

dz
dZ ImReRe  (5.2)

y
Z

x
Z

dz
Zd

y
Z

x
Z

dz
dZ ReImImorReImIm . (5.3)

The Airy’s stress function5 is given by 

 = ZyZ ImRe � (5.4)

where Z
dz
Zd , Z

dz
Zd  and Z

dz
dZ . 
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Therefore, the stresses are found:

ZyZx ImRe  (5.5)

ZyZy ReRe  (5.6)

Zyxy Re .  (5.7)

(a) 

 
(b) 
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2a 

y

x
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τxy 

τxy

x x

θ
2v r

kk

Figure 5.3 Crack in an infinite plate: (a) mode I and II; and (b) mode III.
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5.2 THE STRESS AROUND A CRACK TIP

Let us consider mode I crack problem when k =1 in Figure 5.3 with a crack length of 2 
a in an infinite plane under biaxial stresses. The boundary conditions of the problem at 
infinity and on the crack surface may be stated as:

x = y =   and xy = 0 for 22 yxiyxz  

and along the crack face 0y  and 0xy  for y=0, -a<x<a .

The stress function for symmetric crack problems satisfying the boundary conditions is

22 az
zZ  .  (5.8)

The equation is analytic except for - a ≤ x ≤ a  at y = 0.

To move the origin of the coordinate system to the crack tip (z = a) from the middle of 
the crack, z is replaced by z + a:

....
26

5
4
3

2
1

24
3

2
1

22
11

2
)( 32

22 a
z

a
z

a
z

az
az

az

zZ .  (5.9)

For small z ,

z
KZ I

I 2
 where aK I .  (5.10)

Using the polar coordinates with z = r(cos  +i sin )=reiθ,  the stresses near the crack tip are 
obtained for mode I:

)1(
2
3sin

2
sin1

2
cos

2
k

r
K I

x
 (5.11a)

2
3sin

2
sin1

2
cos

2 r
K I

y  (5.11b)

2
3cos

2
sin

2
cos

2 r
KI

xy  (5.11c)

yxz  for plain strain (5.11d)

where aK I
.

The last term )1( k  in the equation for x  is obtained separately for 1k  by the 
superposition principle.
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Also, the vertical displacement (v ) along the crack:

v
E

a x

v a x

2 1 2 2 2

2 2

for plane strain

for plane stress= 2
E .

  (5.12)

The stresses around the crack tip for Mode II are given by:

2
3cos

2
cos2

2
sin

2 r
K II

x  (5.13a)

2
3cos

2
cos

2
sin

2 r
KII

y  (5.13b)

2
3sin

2
sin1

2
cos

2 r
KII

xy  (5.13c)

yxz  for plain strain (5.13d)

where aK II .

http://campus.oracle.com


MECHANICS OF SOLIDS AND FRACTURE

98

LInear eLastIC stress fIeLD In CraCKeD BoDIes

The stresses around the crack tip for Mode III are given by:

xz

yz

III

x y xy

K
r2

2
2

0

sin
cos  (5.14)

where K aIII .

The stress intensity factors (KI ,  KII  and KIII ) given above are for an infinity body. Obviously, 
the finite size of the cracked body is expected to have an influence upon crack tip stress field. 
Accordingly, the expressions for the stress intensity factor have to be modified to account 
for this effect. A more general expression for the stress intensity factor may take the form:

K Y a   (5.15)

where Y is a factor which accounts for geometric effect and Y 1 for an infinite plate. 
Some authors do not incorporate   in the expression. Mode I is the usual one for fracture 
toughness tests and a critical value of stress intensity factor ( IcK ) determined for this mode 
would be K Y aIc c .

5.3 STRESS INTENSITY FACTOR DETERMINATION

The stress intensity factors may be determined for various loading cases using the stress 
intensity factor for a case given in Figure 5.4 with the superposition principle.

 

y

x

a

Pb

a

AB

P

Figure 5.4 Crack subjected to a point forces P.
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Figure 5.4 shows a plate containing a crack subjected to point forces (P ) at crack surfaces, 
which may resemble a practical case where a crack originates at a bolt or rivet hole under 
loading. The stress function satisfying the boundary conditions is given by

2/1

22

22

)( az
ba

bz
PZ  (5.16)

and, accordingly, the stress intensity factors for A and B sides are found6 to be

ba
ba

aB
PKIA  (5.17a)

and

ba
ba

aB
PKIB  (5.17b)

where B is the thickness, and (K IA  and K IB) denote the stress intensity factors for A and B 
sides respectively. When b = 0 for a centrally located point force (P ), the equations reduce to

aB
PKK IBIA .  (5.18)

Equation (5.18) descirbes that the stress intensity factor decreases for increasing crack size 
at a constant P. It is therefore possible that a crack can be arrested after some growth when 
its stress intensity factor falls below a critical value (K Ic ). 

The superposition principle can be used to calculate the stress intensity factor if the same 
stress field equations are applicable for mode I cases or mode II cases or mode III cases. 
However, it is not permitted for a combination of different fracture modes because of 
different stress fields.

As an example for the calculation of a stress intensity factor, let us consider the case of a 
crack with an internal pressure. Figure 5.5(a) shows a plate without a crack under uni-axial 
tension and hence the stress intensity factor KIa 0 . The stress distribution in Figure 5.5(a) 
may be equivalent to a case given in Figure 5.5(b) where a crack with a length of 2a  is 
made at the centre of the plate and an external stresses (s) are applied to the crack edges. 
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(c) (d) 

Figure 5.5 Illustration of superposition principle.

Case (b) in Figure 5.5 is a case where a plate given in Case (c) with a central crack under 
uni-axial tensile stress (s) is superimposed with a plate given in Case (d) with a crack having 
uniformly distributed stress (s) along its edges. Accordingly, the stress intensity factor for 
Case (c) is found

aKKKKK IdIcIbIdIc or0   (5.19)

A case where a crack is subjected to an internal pressure p  is equivalent to the case in 
Figure 5.5(d) except the pressure acting in an opposite direction to s. If the sign of K in 
Equation (5.19) is reversed, the stress intensity factor for a crack with internal pressure is 
found to be

K p aI .  (5.20)
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Further examples for the determination of stress intensity factor will follow. For cracks 
emanating from a loaded rivet hole (Figure 5.6), it can now be derived using the superposition 
principle. The hole is assumed to be small with respect to the crack. The case given in 
Figure 5.6(a) is broken up into components (b), (d) and (e). The components (b) and 
(d) can be obtained first with satisfied equilibrium conditions, and then component (e) 
is found to take away the stress (s) and force (P) used for the equilibrium in (b) and (d) 
respectively. Accordingly, the stress intensity factor ( IaK ) is given by:

IeIdIbIa KKKK  (5.21)
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Figure 5.6 Cracks emanating from loaded rivet hole and superposition.

and, given that K KIa Ie :

K K K a W
aIa Ib Id

1
2

1
2 2

( ) .  (5.22)

The internal pressure (p) [Equation (5.20)] is equivalent to a series of evenly distributed 
point forces. This allows us to use Equation (5.17) for determining stress intensity factors 
by integration for various cases. For example, Equation (5.19) can be found by integration:

dx
xa
xa

xa
xa

a
pK

a

oI  

a

o xa
dxap

22
2  

ap
a
xap

a

0

1cos2 .  (5.23)

Thus, the two methods validate each other. 



MECHANICS OF SOLIDS AND FRACTURE

103

LInear eLastIC stress fIeLD In CraCKeD BoDIes

5.4 STRESS INTENSITY FACTOR WITH CRAZING

Crazing is a phenomenon which occurs in polymers when crack-like discontinuities are 
formed, in which fibrils connect the two faces of the crack. The restraining of the faces 
may be described by a uniform stress c over the crack faces [Figure 5.7 (a)] and from 
Equation (5.19) we have:

K aI c
 (5.24)

where 2a is the length of the craze and KI  is the stress intensity factor due to the crazing. 
The applied stress  at infinity also gives rise to a stress intensity factor ( IK ),

aKI  (5.25)

so that the net stress intensity factor ( IK ) is given by

aKKK cIII .  (5.26)

This is illustrated in Figure 5.7 using the superposition principle.

 

σ 

σ 

= 

σc 

σc 

(a) (b) 

+ 

σ 

σ 
(c) 

Figure 5.7 Superposition with crazing: (a) fully crazed to resist applied stress;  

(b) sc represents resisting stress by crazing; and (c) a crack subjected to stress, s.
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σ 

σ 
(a) (b) 

+ 

σ 

σ 
(d) 

σc σc

= 

(c) 

a
a1

σ 

σ 

Figure 5.8 Craze development and superposition of stress intensity factors for crazing: (a) fully crazed to 

resist applied stress; (b) partial craze breakage; c) sc represents resisting stress due to crazing at the tips; 

and (d) a crack subjected to stress, s.
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σc σc 

x

a

a1

σ 

Figure 5.9 Stresses in a craze.

As the applied stress (s) increases, the crack length increases and becomes partially crazed 
as illustrated in Figure 5.8. The stress intensity factor due to the craze [Figure 5.8(c)] may 
be derived:

a

a

c
I

xa

dxa
K

1
22

2
 (5.27)

i.e.

K a a
aI c

2 1 1cos .  (5.28)

The stress intensity factor ( IK ) due to the applied stress (s) is the same as before and 
hence the net value of the stress intensity factor ( IK ) for the case given in Figure 5.8(b) 
or Figure 5.9 is given by:

a
aaKKK c

III
11cos21 .  (5.29)

To calculate the craze zone size ( pr ) or a plastic zone size in the case of metals using the 
model given in Figure 5.9, we need to find a condition for it. It can be supposed that 
the crazes grow as the load increases but cease to grow at a stage where no further craze 
stress increases i.e. the craze stress and length remain constant at c. Therefore, the critical 
condition is found to be 0IK . Accordingly, setting Equation (5.29) to zero leads to

c

a
a

2 1 1cos .  (5.30)
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If we consider small values of stress, i.e. c  and aaarp )( 1  for approximation, 
we find,

2

22
1

42
11

2
cos

cca
a

.  (5.31)

Therefore, the craze size (rp) becomes

r a
p

c

2 2

28
.  (5.32)

If we let K aI , then,

r K
p

I

c8

2

. (5.33)

Figure 5.10 Comparison between true and approximated approaches.

The relationship between applied stress and craze length at the critical condition is shown 
in Figure 5.10 for both approximated and true values. There is very rapid change in a  for 
s greater than about 0.8sc. Dugdale7 conducted an experiment and found that there is a 
good agreement between experimental data and theory for a steel.
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Figure 5.11 (a) A surface crack subject to uniaxial tension and (b)8 the associated elastic 

magnification factors on stress intensity.
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5.5 SEMI-ELLIPTICAL CRACK

The semi-elliptical crack resembles a surface crack occurring in practice (Figure 5.11). 
A three-dimensional geometry is useful involving crack depth (a), crack length (2c) and 
thickness of plate (B ) to model a semi-elliptical part-through crack. An empirical stress 
intensity factor9 subjected to a remote stress (s) is given by 

QMaK eI   (5.34)

where Me, is called an elastic magnification factor on stress intensity, and Q is an elastic 
shape factor for an elliptical crack. Me and Q are functions of a/B and a/c; plots of the 
factor M Qe  are given in Figure 5.11(b). It is found that long, shallow cracks have high 

M Qe  values increasing with a/B whereas short, deep cracks have essentially constant low

M Qe  values. Equation (5.34) may be useful in the design of pressure vessels. 

5.6 ‘LEAK-BEFORE-BURST’ CRITERION

The safety may be one of the most important factors for consideration in the pressure 
vessel design. There are two different possibilities in pressure vessel failure process. When 
the fracture toughness of a material chosen is sufficiently high and the growing surface 
crack reaches the other external surface, the pressure vessel starts to leak before it bursts 
(Figure 5.12 (a)). However, if the fracture toughness is low and the growing crack reaches 
its critical value (KIC)  before it leaks, the pressure vessel would burst. 

We may consider crack geometry and fracture toughness for ‘leak before burst’ design. One 
of the conditions to be satisfied for design is 

a > B

as given in Figure 5.12 (b). Another condition is that fracture toughness should be 
sufficiently high. We can find a ‘leak before burst’ criterion from Equation (5.34) satisfying 
the conditions:

QMBK eIC .  (5.35) 
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Note that the crack depth (a) is replaced with the thickness (B).

 

      
 (a)  (b) 

2c 

B 

a ≈ B 

a  

Pressure 

Crack 

Figure 5.12 Cross section of pressure vessel: (a) different stages of semi-elliptical  

crack growth; and (b) assumed crack geometry for ‘leak before burst’. 

5.7 RELATION BETWEEN ENERGY RELEASE RATE G AND KI

Consider an infinite plate (for plane stress) with fixed ends containing a crack size (a) as shown 
in Figure 5.13.Two different stages are shown – before and after crack length increment 
over a distance a . If we want to close the crack over an infinitesimal distance a , the 
strain energy for the closure ( ) is calculated as:

a
E

BK
dr

v
B I

a
y

2

0 2
2   (5.36) 

where B is the thickness. When the crack length (a) increases, the strain energy ( ) will 
be released and its release rate, GI  (strain energy release rate), is defined as, 

aB
GI .  (5.37)
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Figure 5.13 Before and after crack length increment over a distance ( a ).
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Combining Equations (5.36) and (5.37) yields:

E
K

G I
I

2
 (plane stress) (5.38)

and

)1( 2
2

E
K

G I
I  (plane strain). (5.39)

5.8 FRACTURE CRITERIA FOR MIXED MODE LOADING

In mechanics of solids, various criteria are used for yielding, failure, and fracture. The 
fracture criteria to be introduced here are those involving the stress intensity factor for 
mode I and mode II.

KIc 
KI 

KIIc 

KIIc 

KII 

Circle 
K2

I + K2
II = K2

Ic 

           Ellipse 
(KI/KIc)2 +(KII/KIIc)2= 1 

 KIIc = KIc 

Figure 5.14 Fracture criterion based on the energy balance for combined loading.

The stress fields under mode I and mode II loading can be characterised by stress intensity 
factors aKI  and K aII  respectively. When the stress intensity factors increase 
under mixed mode loading, fracture must be assumed to occur when a certain combination 
of the two stress intensity factors reaches a critical value.

One of the fracture criteria is based on an energy balance principle. According to the energy 
conservation, the total energy release rate (Gt)  is the sum of individual contributions for 
I – II mixed mode loading and assumed to be a constant:

IIIt GGG  = constant (5.40)
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where EKvG II
221  (for plane stress), 

E
KG I

I

2
 (for plane stress), G v K EII II1 2 2  (for plane 

strain) and 
E

KG II
II

2
. Alternatively, the fracture condition would be:

22
III KK  = constant. (5.41)

According to Equation (5.41), when KII = 0  for mode I cracking, 22
IcI KK = constant, and, 

when KI = 0  for mode II cracking, K KII IIc
2 2 . Consequently,

2222
IIcIcIII KKKK . (5.42)

This is depicted in Figure 5.14. However, Equation (5.42) is problematic if KIc  KIIc. In 
practice, unfortunately KIc  KIIc  is the case, indicating the energy consumption for creating 
fracture surfaces under mode I loading is different from that under mode II loading. Also, it 
is usually observed that crack extension under mode II loading takes place at an angle with 
respect to the original crack direction. The fracture condition is then empirically modified 
to satisfy the condition KIc  KIIc:

K
K

K
K

I

Ic

II

IIc

2 2

1.  (5.43)

As shown in Figure 5.14, it is elliptical. 

dθ 
θ

r

dr 

σr 
τrθ 

σθ 

τθr 
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y
r σθ 

τrθ τθr 

Crac

Figure 5.15 Stress components in the polar coordinate system.



MECHANICS OF SOLIDS AND FRACTURE

113

LInear eLastIC stress fIeLD In CraCKeD BoDIes

113

Another criterion proposed by Erdogan and Sih10 is based on the postulation that crack 
growth occurs in a direction perpendicular to the maximum principal stress to derive the 
fracture condition under mixed loading. 

It is convenient to use the polar coordinate system for analysis (Figure 5.15). The stresses 
in the polar coordinate system are given by

r
I IIK
r

K
r2 2

1
2 2 2

1 3
2

2 2cos ( sin ) sin ( sin )  (5.44a)

2
cos

2
sin3

22
cos

2
23 III

r
K

r
K

sin
2
3

2
cos

2
cos

2
1 2

III KK
r

 (5.44b)

1cos3sin
2

cos
22
1

)
2

sin31(
2

cos
22

cos
2

sin
2

22

III

III
r

KK
r

r
K

r
K

.  (5.44c)

Note that the stress fields around the crack tip are obtained by superimposing the stress 
fields from mode I and mode II.
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The cracking angle ( m) with respect to the x-direction can be found if the major principal 
stress direction is known. The stress  will be the principal stress ( 1) if r 0  as we readily 
find that a mode I crack extends along q = 0. Accordingly, setting Equation (5.44b) to zero:

K KI m II msin cos3 1 0 .  (5.45)

Equation (5.45) can be rewritten using 1
2

sin
2

cos 22 mm  and 
2

sin21cos 2 m
m  as

0
2

cos
2

sin
2

sin
2

cos3
2

cos
2

sin2 2222 mm
II

mm
II

mm
I KKK  (5.46)

which yields a quadratic equation

2
2 2

02K K KII
m

I
m

IItan tan .  (5.47)

Solving this equation, the cracking angle ( m) is found to be

8
4
1

4
1

2
tan

2

2,1 II

I

II

Im

K
K

K
K

 (5.48a)

or

8
4
1

4
1

2
tan

2

2,1 II

I

II

Im

K
K

K
K

. (5.48b)
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Figure 5.16 Sign convention and theoretical crack extension angle according to Equation (5.48b)
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Accordingly, the principal stress ( 1) is also found as

2
cos

2
sin3

22
cos

2
23

1
mmIImI

m r
K

r
K .  (5.49)

A sign convention and theoretical crack extension angle as a function of KII/KI  according 
to Equation (5.48b) are given in Figure 5.16. According to the sign convention, the crack 
propagation angle under mode II loading is negative.

Figure 5.17 Comparison between theory [Equation (5.51)]  

and experimental data for PMMA.

To find the fracture condition under mixed loading, we postulate that the crack extension 
takes place if 1 under mixed loading has the same value as 1 at fracture under mode I 
loading. The principal stress for pure mode I at fracture is given by

1 2
0K

r
Ic ( )  (5.50)

from

2
3sin

2
sin1

2
cos

2 r
K I

y .  (bis 5.11b)
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The fracture condition under mixed loading, then, is found by equating Equations (5.49) 
and (5.50):

2
cos

2
sin3

2
cos 23 mm

II
m

IIc KKK .  (5.51)

A comparison between theory [Equation (5.51)] and experimental data for PMMA is 
shown in Figure 5.17. The theoretical prediction appears to be conservative compared to 
experimental data.

STUDY. PLAY.
The stuff you'll need to make a good living The stuff that makes life worth living

NORWAY. 
YOUR IDEAL STUDY DESTINATION.

WWW.STUDYINNORWAY.NO
FACEBOOK.COM/STUDYINNORWAY

http://s.bookboon.com/studyinnorway


MECHANICS OF SOLIDS AND FRACTURE

117

LInear eLastIC stress fIeLD In CraCKeD BoDIes

(a) (b) 

 
(c)          

 
 

 

σ 

σ 

β 
y x' 

y' 
x 2a cσ cσ 

 
σ'y 

σ'x 
τ'xy 

β τ'xy 

τ'xy 
τ'xy 

σ'x 

σ'y 

 cσ 

σ 

σy' 
β 

τ'xy 

m 

n 

1

Figure 5.18 (a) An infinite plate subjected to remote stresses s and cs 

biaxially. (b) Applied stresses at a different angle to find separate mode 

I and mode II. (c) Stress components in equilibrium.

Let us consider an infinite plate containing a crack of length 2a at an angle ( ) to the y 
direction as shown in Figure 5.18(a). It is subjected to stresses  and c  in the y- and 
x- directions respectively at infinity. We need to find stresses for mode I and mode II to use 
the fracture criterion under mixed mode loading. To this end, we need to find the stress 
components defined in Figure 5.18(b) in relation with those in Figure 5.18(a) using the 
equilibrium condition as shown in Figure 5.18(c). Consequently, the stress intensity factors 
for this case are obtained as

accK I 2cos11)21(  (5.52)

and 

K c aII
1

2
2sin  (5.53)

for mode I and mode II respectively. 
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Example) A thin walled cylindrical pressure vessel with a large radius of R and a wall thickness 
of B contains a through-the-thickness crack oriented at an angle b with the circumferential 
direction as shown in Figure 5.19. Determine the stress intensity factors of the crack when 
the vessel is subjected to an internal pressure, p. Assume the geometry factor is 1.

Solution) The hoop h  and longitudinal l  stresses for the cylindrical vessel are 
B

pR
l 2

 

and 
B
pR

h  respectively. The ratio c=1/2 in Equations (5.52) and (5.53). Thus, the stress 

intensity factors due to hoop and longitudinal stresses are given by

a
B
pRK Is 2cos15.015.05.0  = 0.5 a

B
pR2sin1   (5.54a)

and 

a
B
pRKIIs 2sin

2
15.0 = a

B
pR
2

2sin5.0 .  (5.54b)

The stress intensity factors due to pressures over the cracked surfaces are apKIp  and 
0IIpK . Therefore, the total stress intensity factors by superposition are

a
B

RpK I 1
2

sin1 2  and a
B

pRKII 4
2sin .  (5.54c)

+ 
p

2a l

h

h

l

 

Figure 5.19 A cylindrical pressure vessel with an inclined ‘through the thickness’ crack and 

superposition.
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6  PLASTIC DEFORMATION AROUND 
A CRACK TIP

6.1 ONE-DIMENSIONAL PLASTIC ZONE SIZE ESTIMATION

The elastic stress field around the crack tip is very high so that a cracked body is usually 
accompanied by plastic deformation and non-linear effects. There are, however, cases where 
the extent of plastic deformation and the non-linear effects are very small compared to the 
crack size. In such cases, the linear elastic theory is still validly used to address the problem 
of stress distribution in the cracked body. The elastic stress field solutions discussed in the 
previous chapter show a stress singularity exists at the tip of a crack i.e. the stress approaches 
infinity. However, the stress in the vicinity of a crack tip, in reality, is limited to a yield 
stress when subjected to loading, and deform plastically. A simplistic estimate of the size 
of the plastic zone can be made, whether in plane strain or in plane stress. Let us consider 
first a plane stress case for a one-dimensional horizontal extent of plastic zone, which occurs 
on the surface of a plate. 
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rp 

x
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y

x
θ = 0 

σ 

σ 

a

Figure 6.1 One-dimensional plastic zone with stress distribution  

of y  and yield stress ( ys)). 

The stress distribution of y  on a plate with a yield stress of ys) for q = 0 when subjected 
to an applied stress (s) is shown in Figure 6.1 according to Equation (5.11b),

2
3sin

2
sin1

2
cos

2 r
K I

y .  (bis 5.11b)

One can realise that the stress ( y ) cannot increases in a real material beyond the yield 
stress ( ys)). Accordingly, the corresponding distance from the crack tip ( pr ) to the yield stress 
( ys)) may be used as a simplistic estimate for the plastic zone size. Substituting θ = 0, y = ys  
and prr  into Equation (5.11b), we find

2

2

2

2

22 ysys

I
p

aKr .  (6.1a)
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Figure 6.2 Modified one-dimensional plastic zone size

In this calculation, though, the hatched area in Figure 6.1 is ignored. If we compensate 
for the loss of the hatched area, the actual plastic zone size must be larger than pr  [see 
Equation (6.1a)]. Such shortcomings may be reduced if the material immediately ahead of 
the plastic zone ( pr ) is allowed to carry some more stress by introducing an effective crack 
size (aeff )11 which is longer than the physical crack length (a ). To this end, the crack tip 
position can be shifted for calculation. Then, the effective crack size becomes aeff = a+  where 
d is the length contributed by the hatched area as shown in Figure 6.2. Accordingly, the 
plastic zone is calculated by adding l and d together. The distance l is found by replacing 
a  with a +d in calculation using Equation (5.11b):

r
a

r
K

ys
I

y 2
)(

0)when(
2

 (6.1b)

or

2
a

ys  (6.1c)
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for <<a. Therefore, for small plastic deformation,

p
ys

ra
2

2

2
.  (6.1d)

The distance d is obtained by equating area A to area B in Figure 6.2:

ys
eff

ys
I

ysy dr
r

a
dr

r
Kdr

000 22
 (6.1e)

ysysdr
r

a

0

1
2

)(

so that, for <<a,

2

2

2

2

22 ys

I

ys

Ka . (6.1f )

Accordingly, it is found that 

pr  (6.2)
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and that the modified plastic zone size ( *
pr ) is given by

pp rr 2* .  (6.3)

The size of the plastic zone ( *
pr ) calculated according to the second model (Figure 6.2) 

appears twice as large as the one calculated according to the first model (Figure 6.1).

6.2 TWO DIMENSIONAL SHAPE OF PLASTIC ZONE

The two dimensional shape can be obtained by examining the yield condition around the 
crack tip. Either the Tresca criterion or the Von Mises criterion may be adopted. The Von 
Mises yield criterion, in terms of the principal stresses, is given by

2
13

2
32

2
21

22 ys  (bis 2.28)

where ys  in the uniaxial yield stress. 

The crack tip stress field equations in terms of principal stresses can be found by substituting 
the following equations [for the case where k =1],

)1(
2
3sin

2
sin1

2
cos

2
k

r
K I

x  (bis 5.11a)

2
3sin

2
sin1

2
cos

2 r
K I

y  (bis 5.11b)

2
3cos

2
sin

2
cos

2 r
KI

xy  (bis 5.11c)

yxz
 for plain strain (bis 5.11d)

into Equation (6.4) for two dimensional principal stresses ( 1  and 2 ),
2/1

2
2

21 22
or xy

yxyx  (6.4)

yielding,

2
sin1

2
cos

21 r
K I  (6.5a)

2
sin1

2
cos

22 r
K I   (6.5b)

2
cos

2
2213 r

Kvv I  (plane strain) (6.5c)
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or

03  (plane stress). (6.5d)

The two-dimensional plastic zone (rp) as a function of q can be obtained by substituting 
Equation (6.5) into distortion energy criterion (or Von Mises criterion) Equation (2.28):

cos121sin
4

22
2
3

2

2

vKr
ys

I
p  for plane strain (6.6)

and

cossin1
4

2
2
3

2

2

ys

I
p

Kr   for plane stress. (6.7) 

Substituting q = 0 in Equation (6.7) for plane stress, we recover the one-dimensional estimate:

2

2

2 ys

I
p

Kr .  (bis 6.1a)

 
(a) (b) 

Plane stress 

Plane strain 

1 

Rp/(KI/πσ)2

Plane stress 

Plane strain 

1 

0.5 

Figure 6.3 Plastic zone shapes calculated according to Von Mises and Tresca yield  

criteria: (a) Von Mises criterion ; (b) Tresca criterion.

The two-dimensional shape can be shown by plotting Equations (6.6) and (6.7) as shown 
non-dimensionally in Figure 6.3(a). It is seen that the plastic zone in plane strain is smaller 
than that in plane stress. 
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Similarly, the Tresca yield (or maximum shear stress) criterion may be employed for the two-

dimensional plastic zone. As already discussed, the Tresca yield criterion assumes that yielding 

occurs when the maximum shear stress 
2

31
max

 or )(
2
1

21max
, whichever is the 

largest, reaches its yielding point. In the case of uni-axial loading, the maximum principle 

stress ( 1) reaches its yielding point ( ys ) so that ys1 , 032 . Accordingly, the 

maximum shear stress is given by

22
0

2
131

max
ys .  (bis 1.6)

By substituting Equation (6.5) into the maximum shear stress ( max) or the maximum shear 
stress criterion (or Tresca yield criterion), we obtain

r K
p

I

ys

2

2

2

2 2
1

2
cos sin  for plane stress (6.8)

and the larger of

2
2

22
2

2

2

sin
2

and
2

sin21
2

cos
2 ys

I
p

ys

I
p

KrvKr   for plane strain. (6.9)
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The two-dimensional shape then can be shown by plotting Equations (6.8) and (6.9) as 
shown non-dimensionally in Figure 6.3(b). The difference is seen between Von Mises and 
Tresca plastic zone shapes and sizes. The Tresca plastic zone size appears slightly larger than 
Von Mises plastic zone size.

Similar calculations are made for modes II and III and plastic zone shapes based on the 
Von Mises yield criterion are shown in Figure 6.4.

 

Crack 
Mode III 

Mode II 

Crack 

Plane 
stress 

Plane 
strain 

2)//( ysIp Kr

Figure 6.4 Plastic zone shapes based on Von Mises for modes II and III. 

Figure 6.5 shows a plastic deformation zone obtained experimentally on a steel using an 
etching technique. We can find some similarities in plastic zone profile. The etching response 
is sensitive to grain orientations. Nonetheless, it offers a good guide for understanding the 
simple theoretical calculations. It is noted that the plastic zone size has been shown to be 
proportional to KI ys

2 2/   regardless of the different calculation methods, which may be a 
basis for developing a valid practical testing method of fracture toughness.

 

 

Crack 

Figure 6.5 Plastic zone around a crack tip, bound-

aries of which were traced out from an experi-

mental plastic deformation image obtained by an 

etching technique. [Hahn et al, 1971] 12
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6.3 THREE DIMENSIONAL SHAPE OF PLASTIC ZONE 

The three dimensional plastic zone around a crack tip may be theoretically estimated when 
the plane strain condition exists for a thick plate. The plane stress condition is, also, applicable 
depending on how far the location of interest is away from the plate surface. The plane stress 
exists at the surface of the plate if the surface is free from stresses ( z 3 0). In contrast, 
plane strain prevails in the interior of the plate because the stress 3  gradually increases from zero 
at the surface towards the middle of the plate. The three dimensional plastic zone is illustrated 
schematically in Figure 6.6 using the previous calculations based on the Von Mises yield criterion.

    

Figure 6.6 Three-dimensional plastic zone  

shape based on the Von-Mises yield criterion.

 

Constrained yielding 

Thickness 

Free yielding 

Figure 6.7 Yielding at different  

states of stress. 
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Figure 6.7 shows a cross section schematically of the three dimensional plastic zone shown 
in Figure 6.6. The plastic deformation at the surface takes place more freely than that in 
the interior because of plane stress condition. Concurrently, the plastic deformation in the 
interior is much more constrained than that at the surface because of plane strain condition 
( z  = 0). Therefore, more hydrostatic component than deviatoric stress component prevails 
internally, resulting in the smaller plastic zone and more brittleness. Such different stress 
conditions may be shown using the Mohr’s circles and stress elements under mode I loading 
in Figure 6.8. For q ≈ 0, the stresses y , x  and z  near the crack tip correspond to 
the principal stresses 1, 2  and 3  respectively according to Equation (6.5). In the case of 
plane stress, the maximum shear stress ( max ) occurs at planes inclined at angles of 45° to 
the directions of 2 , and 3  as shown on the stress element in the figure. In the case of 
plane strain, 1 and 2  have the same magnitude as that in plane stress but 213 v  
is acting in the z-direction. The Mohr’s circles represent such a difference between plane 
stress and plane strain for ν = 0.5. Accordingly, the hydrostatic stress ( m ) 

333
3211 zyx

m
I

 (bis 1.7)

is not only higher in plane strain than in plane stress but also the maximum shear stresses 
( max ) occurs at planes inclined at angles of 45° to 1  and 2  directions (Figure 6.8). 
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Figure 6.8 (a) Planes of maximum shear stresses near the crack tip for q ≈ 0; and (b) Mohr’s circle 

representation for plane stress and plane strain.
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Such maximum shear stress planes manifest themselves in a form of slip bands as depicted 
graphically in Figure 6.9. The 45° slip bands appear internally at the cross section 
perpendicular to the specimen surface in the case of plane stress while they appear also, in 
the case of plane strain, internally on the cross section but parallel with the specimen surface. 
In the plane strain case, the 45° slip bands constantly varies as a function of q because the 
principal stress directions for 1  and 2  varies although the principal stress direction for 3  

is always in the z direction. Figure 6.10 shows sketches of experimental slip bands with 
plastic deformation on the specimen surface in plane stress.

 (a) (b) 

Slip 
b d

Figure 6.9 Deformation patterns around the crack tip: (a) 45o shear planes in plane stress; 

and (b) hinge type deformation in plane strain in the middle section.
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Crack 

Figure 6.10 Experimental plastic zones in plane stress: (a) front surface section, (b) cross section 

normal to the front and back sections, and (c) back surface section. [Sketches were provided by 

Haleh Allameh Haery.]
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(a) 

 

 
(b) 

Figure 6.11 Compact tension specimen after fracture: 

(a) depression along the crack; and (b) flat fracture surface 

in the middle section and slant fracture along the edges. 

Also, the plane stress and plane strain deformations affect the failure mode as shown in 
Figure 6.11. The slant regions so called ‘shear lips’ are formed on the specimen surfaces along 
the edges and the flat fracture surfaces are created in the middle section [Figure 6.11(b)]. 
The shear lips coincide with the 45° shear planes indicating that their formation is associated 
with the ductile failure mode. However, the flat fracture surfaces do not coincide with the 
shear planes but appear to be caused directly by the maximum principal stress involving 
the brittle failure mode.
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6.4 PLASTIC CONSTRAINT FACTOR

The yielding behaviour in the vicinity of a crack tip is affected by plane thickness. For 
instance, the plane strain plastic zone is significantly smaller than the plane stress plastic 
zone. Such a difference is caused by different constraints. A plastic constraint factor (p.c.f.) 
may be introduced for quantification defined as

ys

1p.c.f.  (6.10)

where 1 is the maximum principal stress. To relate 1 with other principal stress components, let 

2 1n  and 3 1m . 

From the Von Mises yield criterion,

2
13

2
32

2
21

2 )()()(2 ys   (bis 2.28)

the following relation is found:

1 1 22 2 2
1
2 2n n m m ys .  (6.11)

Therefore, 

p.c.f. max

ys ys

n m n m mn1 2 2
1
21 .  (6.12)

From the stress field equations,

2
sin1

2
cos

21 r
K I  (bis 6.5a)

2
sin1

2
cos

22 r
K I  (bis 6.5b)

2
cos

2
2213 r

Kvv I  (plane strain) (bis 6.5c)

or

03
 (plane stress) (bis 6.5d)
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we found,

n 1 2 1 2sin sin  (6.13)

and

m 2 1 2/ ( / )sin  (for plane strain)  (6.14a)

0m  (for plane stress). (6.14b)

Accordingly, we found p.c.f = 1 for plane stress when q = 0, and p.c.f. = 3 (and n = 1, m = 
2n=0.67) for plane strain when q  = 0 and n = 1/3. The maximum stress in plane strain 
appears as high as three times the uni-axial yield stress. 

A comparison of approximate stress distribution between plane stress and plane strain based 
on the calculations is shown in Figure 6.12. In the case of plane strain, the stress continues 
to rise beyond ys  until it becomes 3 ys  around the crack tip. 
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Figure 6.12 Comparison of approximate stress distribution 

between plane stress and plane strain in relation with yield 

stress ( ys ): (a) plane stress; and (b) plane strain.
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6.5 THE THICKNESS EFFECT

As discussed, the failure mode (e.g. ductile mode) is affected by plastic deformation and 
hence by the thickness of specimen. Therefore, the fracture behaviour is ultimately affected 
by the specimen thickness until it reaches a point where the plane stress condition is 
negligibly small. The transition from plane stress dominant deformation to plane strain 
dominant deformation is graphically illustrated in Figure 6.13. Figure 6.13(a) shows a 
thin specimen with plastic zone shape and size according to the Von Mises yield criterion. 
As the thickness (B) increases, the proportion of plastic deformation governed by plane 
stress is maintained until it reaches a stage where the plastic deformation occurs with plane 
stress slip planes as shown in Figure 6.13(b). Eventually, the thickness reaches another stage 
[Figure 6.13(c)] where the plastic deformation occurs with slip planes generated by both 
plane stress and plane strain. 

The maximum depth ( h
pr ) of the zone can be shown to be at about 80o and to have a value:

0
59.2 p

h
p rr   (6.15a)

and is given by

crit
h
p Br  (6.15b)

at the transitional stage [Figure 6.13(b)]. Therefore, the critical thickness ( critB ) is found:
22

41.0
2
59.2

ys

I

ys

I
crit

KKB   (6.16)

According to the ASTM standard, the minimum specimen thickness requirement for plane 
strain fracture toughness test is given by

B KIC

ys

2 5
2

.   . (6.17)

A higher stress intensity and a lower yield stress give rise to a larger plastic zone. As a result, 
a larger thickness is required for the plane strain fracture toughness test. 
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Crack

B
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h

Figure 6.13 Graphical representation of plastic deformation transition from plane stress to 

plane strain at the back face of the specimen as the specimen thickness increases: (a) plane 

stress; (b) at the transition; and (c) plain strain deformation in addition to that of plane 

stress. The plastic zone shape in ‘(a)’ is based on the Von Mises yield criterion.13

The dependence of K1c  on thickness is illustrated given in Figure 6.14. (The critical stress 
intensity for cracking is usually denoted by Kc, but the notation K1c  will be adopted here 
to indicate mode I cracking for both plane stress and plane strain.) The figure shows also 
cross sections for shear lips and flat fracture surface regions corresponding to K1c . The curve 
suggests that, beyond a certain thickness (Bs), a state of plane strain prevails and toughness 
reaches the plane strain toughness value ( K1c ) practically independent of thickness for B> Bs. 
It also suggests there is an optimum thickness B0  where the toughness reaches its highest 
level. In the transitional region between B0  and Bs, the toughness has intermediate values. 
For thicknesses below B0 , it is possible that there is not much material available for the 
plastic flow before the fracture, resulting in low values of K1c  as the thickness decreases.
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Figure 6.14 Toughness as a function of thickness and cross sections of specimens with 

different thicknesses.

GET THERE FASTER

Oliver Wyman is a leading global management consulting firm that combines 

deep industry knowledge with specialized expertise in strategy, operations, risk 

management, organizational transformation, and leadership development. With 

offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and 

executive teams of Global 1000 companies.  

An equal opportunity employer.

Some people know precisely where they want to go. Others seek the adventure of 
discovering uncharted territory. Whatever you want your professional journey to be, 
you’ll find what you’re looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers 

DISCOVER
OUR WORLD

http://www.oliverwyman.de/careers/index.html


MECHANICS OF SOLIDS AND FRACTURE

139

PLastIC DeforMatIon aroUnD a CraCK tIP

6.6 THICKNESS OF ADHESIVE LAYER

The adhesion between different components is important for the integrity of engineering 
structure made of composites. The thickness of adhesive layer significantly affects the 
fracture toughness (GIc) of adhesively jointed section although, for highly brittle adhesives, 
this parameter may be not as much significant. Figure 6.15 shows the fracture toughness 
as a function of adhesive layer thickness for both toughened and un-toughened epoxies. 

GIc

(kJ/m2) 

ham
1 2 

Adhesive layer thickness (ha) 

1 

2 

3 Toughened epoxy 

Un-toughened epoxy 

GIc (max)

Figure 6.15 Adhesive fracture energy (GIc) as a function of thickness (ha) of the adhesive 

layer for joints consisting of steel bonded with a rubber-toughened or un-toughened epoxy. 

[After Kinloch and Shaw, 1981]14

A relatively complex behaviour with toughened adhesives arises from the plastic deformation 
in the vicinity of the crack tip, which is highly constrained with high modulus and high 
yield strength substrates such as steel or aluminium alloy. The constraint of adhesive joint 
may be higher than that of an adhesive without substrates. It may restrict the full volume 
development of the plastic zone in the adhesive layer ahead of the crack tip (Figure 6.16). 
Since the toughness is largely derived from the energy required for forming the plastic 
zone, the adhesive fracture energy (GIc) steadily increases as the adhesive layer thickness (ha) 
increases up to a certain value. The maximum toughness, GIc(max)  occurs when the adhesive 
layer thickness and the plastic-zone height ( h

pr ), are similar to each other (Figure 6.15). 
Accordingly, the following equation based on plastic zone size calculation [see Equation (6.6)] 
would provide a good guidance for the adhesive thickness (ham) at GIc(max): 

2

control1

ys

Ich
pam

EG
rh   (6.18)

where E is the elastic modulus and ys is the yield stress. Table 6.1 lists some experimental results. 
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Figure 6.16 Elastic-plastic model for plastic deformation zone at a crack tip in the 

adhesive layer with high yield stress (elastic) substrates. 
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Temperature 
(oC)

Log  
(rate of test)

GIc(max)  
(Control)  
(kJ/m2)

GIc(max) (max) 

(Joint)  
(kJ/m2)

ham  
(mm)

h
pr  

(mm)

20 -6.08 2.10 3.90 1.0 0.85

20 -4.78 1.85 3.65 0.8 0.70

20 -3.78 1.55 3.55 0.55 0.49

20 -3.08 1.50 3.15 0.4 0.43

50 -4.66 4.70 2.95 1.1 1.6

37 -4.66 3.75 2.85 0.9 1.16

25 -4.66 2.70 3.85 0.6 0.57

0 -4.66 1.65 3.00 0.5 0.39

-20 -4.66 1.00 3.15 0.25 0.15

Table 6.1 Comparison of measured adhesive layer thickness (ham) at maximum adhesive fracture energy (GIcm) 

and calculated plastic zone diameter ( h
pr ). [After Kinloch and Shaw, 1981]17

6.7 EXPERIMENTAL DETERMINATION OF KIC

The experimental determination of plane strain fracture toughness ( K1c ) is based on the 
theories discussed up to now to obtain reproducible values of K1c  under the conditions of 
maximum constraint. The plastic zone size in the vicinity of a crack tip must be very small 
relative to the specimen dimensions. The procedure for measuring K1c  has been standardised 
by the American Society for Testing and Materials (ASTM) to meet the requirements. In 
this section, the salient points of the ASTM standard test method will be introduced. 

6.7.1 TEST SPECIMEN DIMENSIONS

The dimensions of specimens are specified for the minimum thickness (B) for a valid plane 
strain fracture toughness ( K1c ) is given by

B KIc

ys

2 5
2

.  (6.17 bis)

and the crack length (a ) is given by

a KIc

ys

2 5
2

. .  (6.19)
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The ASTM E 399 describes many pre-cracked test specimens such as three-point bend 
specimen, compact tension specimen, arc-shaped specimen, and disk-shaped compact specimen. 
The three-point bend specimen and compact tension specimen are shown in Figures 6.17 
and 6.18. The stress intensity factor expressions15 for the standard specimens are:

S=4W±0.2W 

a

B

W 

Figure 6.17 Three-point bend specimen.

W±.005W 

1.25W±.010W 
B=

2
W ±.010W 

.275W 
±.005W 

.275W 
±.005W 

.6
W

±.
00

5W
 

.6
W

±.
00

5W
 

.25W±.005W DIA 
2 HOLES 

 a 

Figure 6.18 Compact tension specimen.
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a
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a
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a
W

I 3 2

1 2 2

2

3 2

3 199 1 215 3 93 2 7

2 1 2 1

. . . .

/  (6.20)

for three point bend specimen, and

K P
BW

a
W

a
W

a
W

a
W

a
W

a
W

I 1 2

2 3 4

3 2

2 0 886 4 64 13 32 14 72 5 6

1

. . . . .
 (6.21)

for compact tension specimen. The dimensions a, W and B are shown in Figures 6.17 and 
6.18. The P in equations is a measure of the load, and S is the distance between the points 
of support of the beam in Figure 6.17. Equation (6.20) is accurate within ±0.25 per cent, 
over the entire range of a/W (a/W < 1). Equation (6.21) is also accurate within ±0.25 per 
cent for 0.2 < a/W < 1.
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Figure 6.19 Chevron Notch: (a) Cracked surface with different crack lengths;  

and (b) side view. (see Figure 6.11)
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Figure 6.20 Effect of notch radius (r) on the critical stress intensity factor K1c . 
[After Irwin, 1964]16



MECHANICS OF SOLIDS AND FRACTURE

145

PLastIC DeforMatIon aroUnD a CraCK tIP

6.7.2 PRE-CRACK

The pre-crack of test specimen is made of mechanical and fatigue cracks as shown in Figure 6.19. 
The mechanical crack is first machined for a chevron starter notch and then a fatigue crack 
follows. There is an advantage of using the chevron notch in that it forces crack initiation 
into the centre so that a reasonable symmetric crack front is obtained before testing. If the 
initial machined notch front is straight, the subsequent fatigue crack tends to initiate from a 
corner. The prepared crack front may be not straight so that an average of three crack lengths 
is used. One of the crack lengths is measured in the centre of the crack front, and the other 
two lengths are measured in the midway between the centre and the end of the crack front, 
giving 

3
321 aaa

a . The reason for using the fatigue crack is that the crack tip radius should 
be sufficiently small. The effect of the notch radius (r) on the stress intensity factor (K1c) is 
shown in Figure 6.20. The stress intensity factor (K1c) decreases with decreasing notch radius 
(r) until a transitional point is reached, and then a plateau value is found. The fatigue 
loading should satisfy some requirements to achieve such a small radius of crack tip and 
consistent results. The maximum stress intensity factor during fatigue cycling should not 
exceed 60% of K1c. 
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Figure 6.21 Determination of PQ for three types of load-displacement response according  

to ASTM standards.



MECHANICS OF SOLIDS AND FRACTURE

146

PLastIC DeforMatIon aroUnD a CraCK tIP

146

6.7.3 INTERPRETATION OF TEST RECORD AND CALCULATION OF KIC

The procedure for conducting the test is straightforward. A typical instrumentation for 
measurement requires a clip gauge to produce a load-displacement curve. A typical record 
of load-displacement for metallic materials would look like one of the three curves shown 
in Figure 6.21. Type I represents nonlinear behaviour involving a large plastic deformation, 
type III dominantly linear response and type II reflects the phenomenon of ‘pop-in’. From 
the output record, three values PQ, P5  and Pmax  are extracted – PQ  is the load for calculation 
of the fracture toughness [see Equations (6.20) and (6.21)], P5  is the limit of allowable 
plastic or non-linear deformation, and Pmax  is the maximum load. To identify the three 
different loads, a secant line 0P5  is drawn through the origin with a slope equal to 0.95 of 
the slope of the tangent to the initial linear part of the record. The load P5  corresponds to 
the intersection of the secant with the test record. The load PQ  is then determined as follows. 
If the load at every point on the record between the initial tangent line and a secant line 
0P5  is lower than PQ  as in Type I, then PQ  = P5 . If, however, there is a load higher than 
P5  between the initial tangent line and a secant line 0P5 , then PQ  is equal to this higher 
load as in Types II and III. Furthermore, the test is not valid if Pmax/PQ  is greater than 1.10, 
where Pmax  is the maximum load the specimen was able to resist. When a test is invalid, 
it is necessary to use a larger specimen to determine K1c. 
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7  CRACK GROWTH BASED ON THE 
ENERGY BALANCE

The theories of crack growth based on the energy conservation for fracture will be introduced 
in this chapter. They not only complement various methods based on the linear stress 
analysis for the fracture toughness determination but also are capable of dealing with non-
linear materials behaviour. Also, the equivalence of the energy conservation approach to 
that based on the linear stress analysis will be found. The energy principles, thus, provides 
further benefits for understanding the fracture behaviour of materials. 

7.1 ENERGY CONSERVATION DURING CRACK GROWTH

The fracture process is associated with the energy conservation. The energy is supplied to 
the structural system by the externally applied load, and is simultaneously consumed when 
the rupture of atomic bonds of a material takes place for a new crack surface formation, 
for elastic and plastic deformations, and for kinetic behaviour. Let us consider a cracking 
body creating a cracked area A [= thickness (B) × crack length (a)]. According to the law 
of conservation of energy, we have,

W K
. . . .

 (7.1)

where W
.

 is the work performed per unit time by the applied load, 
.
 and 

.
K are the rates 

of change for the strain energy and kinetic energy of the body respectively, and 
.
 is the 

energy per unit time for increasing the crack area. (A dot over a letter denotes differentiation 
with respect to time.) 

The strain energy L can be broken up into two parts i.e. one for elastic work and the other 
for plastic work,

e p  (7.2)

where e  is the elastic strain energy and p the plastic strain energy.

If the crack grows slowly in a stable manner, the kinetic term K is negligible and can be omitted. 
Since all the changes with respect to time are caused by change in crack size, we find that

A
A

At
A

t
 0A   (7.3)
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and Equation (7.1) becomes

W
A A A A

e p

.  (7.4)

Equation (7.4) describes the energy balance during the crack growth. In other words, the 
work rate supplied to the cracking body by the applied load is balanced with the rate of 
the elastic strain work, the rate of plastic strain work, and the energy consumption rate for 
crack surface creation. From Equation (7.4), the potential energy ( ) in the system may 
be defined as

A A A

p

  (7.5)

where

We .  (7.6)

Equation (7.5) describes that the rate of potential energy reduction during the crack growth is 
balanced with the rate of energy consumed for plastic deformation and crack surface creation.

7.2 GRIFFITH’S APPROACH17

The energy consumed for plastic deformation in an ideally brittle material is negligibly small 
and can be omitted from Equation (7.4). Then, Equation (7.4) is rewritten as

AAA
WG

e

.  (7.7)

The symbol G is introduced in the equation and represents the crack driving force involving 
W and e . Equation (7.7) describes that the crack driving force is balanced with the resistance 
of the material having a characteristic value of . 

Two limiting loading cases may be considered in practice – one is the constant displacement 
with varying load and the other is the constant loading with varying displacement. In the 

case of constant displacement, 0
A
W  in Equation (7.7). Therefore, we find,

A
G

e

.  (7.8)
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Equation (7.8) describes the energy release rate when the energy stored in material is 
released for crack growth. Hence, the symbol G is usually referred to as the elastic strain 
energy release rate. In the case of constant loading, the work performed by the constant load 
is approximately twice the increase of elastic strain energy AAW e2 . Consequently, 
Equation (7.7) becomes,

A
G

e

. (7.9)

In this case, the energy required for crack surface creation is supplied by the external load. 

Thus, G is found to be independent of the loading method and Equations (7.8) and (7.9) 
can be put in the form for ideally brittle materials:

A
G  (7.10)

where the potential energy  is defined in Equation (7.6). Also, the energy balance in 
general may be written as

A
0 .  (7.11)
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The elastic strain energy ( e ) can be calculated using the stress field and displacement (v ) 
around a crack tip. Let us consider a line crack of length 2a  in an infinite plate subjected 
to a uniform stress�(s), perpendicular to the crack (Figure 7.1). The change in elastic strain 
energy ( ) due to the crack length increment ( a) is found:

2v 

a

x

y
σ

σ

∆a

Figure 7.1 An infinite plate with a thickness (B) and a crack  

length (a ) subjected to a remote stress (s).

dr
v

B
a

y

0 2
2 = a

E
aB 2

 for plane stress. (bis 5.36) 

According to the following definition for a critical energy release rate (Gc),

aB
Gc  (7.12)

the critical stress ( c) required for crack growth is given by

a
EGc

c   (7.13)

for plane stress, and

21 va
EGc

c  (7.14)
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for plane strain. One of conclusions drawn by Griffith (1921) is as follows:

“The breaking load of thin plate of glass having in it a sufficiently long straight crack normal 
to the applied stress, is inversely proportional to the square root of the length of the crack. 
The maximum tensile stress in the corners of the crack is more than ten times as great as 
the tensile strength of the material, as measured in an ordinary test.”

7.3 GRAPHICAL REPRESENTATION OF THE ENERGY RELEASE RATE

The graphical representation of the energy balance for crack growth is useful for interpretation 
of experimental results for finding the energy release rate. The load-displacement response of 
cracked plate as can be obtained from a testing machine will be discussed for three different 
cases: (a) constant displacement, (b) constant load, and (c) generalised case of changing 
both the load and the displacement.

a1 

a2 

a1 

a2 

P

u

A 

B 

C 
0 

Figure 7.2 Load-displacement response of a cracked plate to a crack length  

change from length a a1 2to  under constant displacement.

7.3.1 CONSTANT DISPLACEMENT CASE

The load-displacement response of a cracked plate is represented in Figure 7.2. Two different 
crack lengths ((a1 and a2) are shown for a2 > (a1. The straight line OA is a linear response 
of the cracked plate with a crack length of and the other straight line OB is that with a 
crack length of a2. It is noted that the cracked plate with a shorter crack is stiffer than that 
with a longer crack. The magnitudes of strain energy stored at point A and point B are 
represented by area OAC and area OBC respectively. If the crack length changes from (a1 
to a2, the load drops from point A to point B and hence the strain energy in the cracked 
plate is reduced by a magnitude represented by area OAB. Therefore, the elastic energy 
release rate (G) equivalent to Equation (7.8) is graphically obtained as:



MECHANICS OF SOLIDS AND FRACTURE

152

CraCK growth BaseD on the energy BaLanCe

152

aB
ABG 0area

  (7.15)

 

a1 

a2 

P

u

A 
B 

C 0 D 

E 

a1 

a2 

P, u 

Figure 7.3 Load-displacement response of a cracked plate to a crack  

length change from a a1 2to  under constant load.

http://s.bookboon.com/GTca
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7.3.2 CONSTANT LOAD CASE

The load-displacement response of a cracked plate is represented in Figure 7.3. Two different 
crack lengths ((a1 and a2) are again shown for a2 > (a1. The straight line 0A is a linear response 
of the cracked plate with a crack length of (a1 and the other straight line 0B is that with 
a crack length of a2 as before. The strain energy stored in the cracked plate at point A is 
represented by area 0AC. If the crack length changes from (a1 to a2, the displacement (u) 
increases from point A to point B. At this point, the total energy supplied by the load (P) 
is represented by area 0ABD and the strain energy stored in the cracked plate is represented 
by area 0BD. Thus, the strain energy released from the cracked plate due to the crack length 
change is represented by 

area 0BD – area 0AC

Also, the total energy lost from the total energy supplied due to the crack length change is 
represented by area 0AB. However, 

area 0AB ≈ area 0BD – area 0AC

because area ABE diminishes as the crack length change a  approaches zero. Therefore, 
the elastic energy release rate (G) equivalent to Equation (7.9) is graphically obtained as:

aB
ABG 0area

.  (7.16)

7.3.3 GENERALIZED CASE

The previous two cases are the limiting ones and the crack growths cannot be produced 
directly by the load (P) without assistance. The different crack lengths ((ai)) in the generalised 
case shown in Figure 7.4 are, however, directly produced by the applied load. The crack 
length a1  is the initial crack length and a1<a2<a3<a4< a5. As the crack length increases 
during quasi static crack growth, the stiffness of a cracked plate decreases but displacement 
(u) increases. Therefore, the elastic energy release rate (G) equivalent to Equation (7.8) or 
(7.9) is graphically obtained as

ii

ii

aaB
AA

G
1

10area
 (7.17)

with i =1, 2, 3, etc.
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P

u

a1

a2

a3

a4

a5

0

A1

A2

A3

A4

A5

Figure 7.4 Load-displacement response of a cracked plate to  

crack propagation with crack lengths a1< a2< a3< a4< a5. 

In an experimental determination of G, the locations of different crack lengths are recorded 
on the P-u output and the corresponding radial stiffness lines 0Ai  are drawn for finding 
areas. The linear elastic behaviour of the cracked plate is verified by unloading if P-u follows 
the radial stiffness lines.

7.3.4 G – A REPRESENTATION

The elastic energy release rate (G) may be represented as a function of crack length (a) as 
shown in Figure 7.5. It is given by [see Equation (13) and (14)]

k
E

aG
2

 (7.18)

where k=1- 2  for plane strain and k=1 for plane stress. Figure 7.5 shows three different 
stresses 3> 2> 1  for various crack lengths. According to Equation (7.18) at a given stress 
1, G linearly increases with increasing crack length and reaches a critical point for fracture 

(G= Gc). At a lower stresses (( 2  and 3), though, longer crack lengths are required to reach 
the same critical point for fracture (G= Gc). 
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G

a1 a2 a3

Gc

1 2 
3 

1> 2> 3 

Figure 7.5 The elastic energy release rate (G) versus crack length (a) 

for a crack of length 2a in an infinite plate subjected to a uniform 

stress s, perpendicular to the crack axis.

7.4 ANALYTICAL APPROACH

The analytical approach is based on the energy balance principles. From Equation (7.7)

AAA
WG

e

  (bis 7.7)
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we find that

GdAdPdu .  (7.19)

The L without the subscript e denotes the elastic strain energy unless otherwise stated. The 
Pdu in Equation (7.19) represents dW, the infinitesimal amount of external work done, 
during the crack area growth (dA), and GdAd  the internal work done for strain energy 
and crack growth. Equation (7.19) is the basis for the following derivations. 

 

 

 

P

u

Figure 7.6 Stain energy in a linear elastic system.

In a linear elastic system, the strain energy (L) is the triangular area under a given stiffness 
line (Figure 7.6) so that

d d Pu1
2 .  (7.20a)

Thus, from Equation (7.19) for the applied force P and associated displacement u, we find,

Pdu Pdu udP GdA1
2  (7.20b)

or

Pdu udP GdA2 .  (7.20c)

Dividing both sides by P2, we have

2

2
P
G

dA
Pud

  (7.21a)

Or

dA
P
ud

PG
2

2  (7.21b)
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Equation (7.21) is practically useful for the fracture toughness determination. The derivative 

dA
P
ud  in the equation is the rate of change of (u/P) with respect to crack area. In other words 

it represents the slopes of the curve in Figure 7.7 (b). It can be found experimentally using 

multiple specimens for a series of different crack lengths as shown for sequence in Figure 7.7. 

The specific work of fracture (R) is equal to Gc for linear elastic fracture and given by 

cPP

c
c dA

P
ud

P
GR

2

2

 (7.21c)

where Pc  is the fracture load at a crack length a6  (Figure 7.7).

 

(a) (b) 

 

 
(c) 

 a1  

P

u

a2  
a3  

a4  
a5  

a6  
Fracture point  

 

u/P

a 

a1  a2  
a3  a4  a5  

a6  

a  

da
Pud )/(

Fracture point  

Figure 7.7 Analysis for experimental results from multiple specimens for different crack lengths: 

(a) a series of stiffness lines for different crack lengths; (b) compliance (u/P) versus crack length; 

and then (c) dA
P
ud /  versus crack length with a critical value at fracture.
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More analytical expressions can be derived from Equation (7.19) for quasi static linear 
elastic cracking. They are

cPP

c

dA
u

Pd
Ru 22  

 (7.22a)

cPP

c

A
uPR

2  (7.22b)

cuu

c

A
PuR

2
 (7.22c)

c

c

PP

c

PP

dA
duP

A

Pu
R

2
2
1

 (7.22d)
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c

c
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c
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dA
dPu
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R

2
2
1

.  (7.22e)

B
P

P

h

ha

Figure 7.8 DCB Specimen

If the compliance (u/P) is theoretically known, a single specimen instead of multiple specimens 
may be sufficient for the fracture toughness determination. For example, the compliance 
of a double cantilever beam (DCB) specimen shown in Figure 7.8 is determined using the 
deflection formula for a cantilever beam. The theoretical compliance is given by

2
3

3

EI
a

P
u  (7.23a)

so that

EIB
a

dA
Pud 22

.  (7.23b)

Using Equation (7.21c), we find the critical fracture load (Pc) as

2
2

a
REIBPc .  (7.23c)

7.5 NON-LINEAR ELASTIC BEHAVIOUR

The non-linear elastic behaviour may be analyzed using the same energy principles. The 
symbol J is commonly used for non-linear rate of change of potential energy with respect 
to crack area to be distinguished from G (strain energy release rate) for linear behaviour. 
When quasi-static fracture occurs, J or G has the critical value JC  or GC  which exactly 
matches the specific work of fracture given by R. Accordingly, 
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P

u

Figure 7.9 The strain energy (L) and complementary strain energy (W).

GdAdPdu  (bis 7.19)

is rewritten as

JdAdPdu   (7.24)

for non-linear elastic cracked bodies. The strain energy (L) for a non-linear elastic cracked 
body (Figure 7.9) is given by

Pdu   (7.25)

and the complementary strain energy (W) is given by

udP .  (7.26)

From Pu  and Equation (7.24), we have

JdAdudP   (7.27)

From Equations (7.27) and (7.24), we have 

constPA
J  (7.28a)

and 

constuA
J   (7.28b)

respectively.
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Figure 7.10 Analysis for experimental results from multiple specimens for different crack lengths: 

(a) a series of curves for strain energy from different crack lengths; (b) strain energy versus crack 

length; and then (c) J  versus displacement (u) with a critical value at fracture (Jc).

Equation (7.28) form the basis for the experimental determination of J and Jc. The quantity 
of A/  in Equation (7.28b) is the rate of change of strain energy with respect to crack 
area (A=Ba). Accordingly, the strain energy (L) is obtained from P-u curves [Figure 7.10(a)] 
for a constant displacement (u) to construct a strain energy versus crack length (a ) diagram 
shown in Figure 7.10(b). Then, the values for a/  is plotted as shown in Figure 7.10(c). 
The value of Jc  corresponds to the point of fracture. 

If the non-linear elastic behaviour can theoretically be characterized by a power relation

C u
Pn

n

 (7.29a)
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where n is a constant, the strain energy (L) is given by

du
C
UPdu

n

n

  (7.29b)

Also, from Equation (7.24), we find,

dA
dPu

dA
dunP

n
J

1
1  (7.30)

and we have J in terms of Cn,

dA
dC

C
u

ndA
dC

CP
n

J n

n

n
nn

n
nn

2

1
111

1
1

1
1

.  (7.31)

For n = 1, we recover the linear elastic parameter (G), 

dA
P
ud

PG
2

2

. 
 (bis 7.21b)
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7.6 CRACK GROWTH RESISTANCE CURVE (R-CURVE)

It is possible that, as the crack grows under loading, much more energy is consumed in 
the plastic deformation under plane stress than under plain strain condition. Also, such a 
plastic deformation takes place as the crack grows. The crack resistance (R) curve is useful for 
describing the crack growth involving a relatively large plastic deformation. The theoretical 
basis is found from Equation (7.5) and R is defined as

R
A A

p

.  (7.32)

The crack resistance (R) consists of the energy consumption rate for crack surface creation 
and the rate of plastic strain work as previously discussed. 

In the case of plane strain or small plastic deformation,

AA
WGR

e

c  (7.33)

and Gc  or R is a constant as shown in Figure 7.11(a). Otherwise, R increases non-linearly 
as shown in Figure 7.11(b). The R-curve is known as a unique property independent of 
the initial crack size and the geometry of the specimen.

 
 

(b) (b) 

R

a

G

a

Gc or R

Figure 7.11 Typical load (P)-crack length (a) curves for: (a) plane strain and (b) plane stress.
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7.7 R-CURVE AND STABILITY

The rate at which strain energy may be released depends on the geometry of a cracked body 

and the conditions of loading. Figure 7.12 shows an R-curve and a set of radial lines of 

slope a
G

=
E

2
1tan  for the geometry of a small crack in a large sheet for which 

E
aG

2

  

is applicable. (The radial lines for some cracked body geometries would not necessarily be 

straight if a geometry factor is considered.) The slope increases as the applied stress (s) 

increases. As the stress increases from zero, the available G increases from point A to point 

B without the crack growth. The point B represents the minimum fracture toughness of 

the material before any subsequent increase in R along the R-curve. Cracking can thus 

commence at point B stably. We may compare the set of radial lines of slopes represented 

by by
a
G  with the other set of slopes represented by 

da
dR  which is independent of the initial 

crack length ((a0)). At point B, and we see that 

B
a
G

da
dR

.  (7.34a)

AXA Global 
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA


MECHANICS OF SOLIDS AND FRACTURE

165

CraCK growth BaseD on the energy BaLanCe

As the R increases, the slope 
a
G  also increases. As the crack further grows quasi-statically 

under increasing load, point C is reached. At point C, we find that

c
a
G

da
dR

.  (7.34b)

The crack growth between point B and point C is stable because of the balance between 
energy consumption rate and energy supply rate. However, beyond point C along the 
R-curve, we find that

dR da G a   (7.34c)

representing an instability condition because of the higher energy supply rate than the energy 
consumption rate. The part of the R curve beyond C at which C and a = ac  is not observable 
with the given geometry unless a longer initial crack ((a0)) or a stable geometry is used.

 

G orJ 

a

R curve 

a0 ac

A 

B 

C 

at σc

Figure 7.12 G versus a curve for constant applied stress s; 

R versus a curve is also superimposed.
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7.8 GEOMETRIC STABILITY FACTORS IN ELASTIC FRACTURE

The cracking stability is also dependent on the testing machine type because the testing 
machine itself stores the strain energy and/or the energy balance is not exactly maintained 
unless a special control circuitry is used for controlling a crosshead. In practice, there are two 
typical types of testing machines viz displacement controlled machines and load controlled 
machines (Figure 7.13). The increment of the crosshead (du) in a displacement controlled 
machine is always positive because it does not reverse the loading direction during testing. In 
a load controlled machine, on the other hand, the increment of load (dP) is always positive.

 
 (a) (b) 

Crosshead 

Figure 7.13 Testing machines: (a) Displacement controlled; and (b) load controlled.

We may consider the following equation for a linear elastic cracked plate,

P R

d u
P

dA

c
2 2

. 
 (bis 7.21c)

Since R may vary during the crack propagation, the variation of R with respect to incremental 
input P and output A (thickness × crack length a) is obtained by differentiating Equation 
(7.21c) to have

dA
Pud

dA
Pud

dA
dR

RdA
dP

P
2

2

12
.  (7.35)
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For stability in a load controlled testing machine, the condition dP > 0 applies so that

uP
dA

uPd

dA
uPd

dA
uPd

dA
Pud

dA
Pud

dA
dR

R
21 2

2

2

2

.  (7.36)

Similarly, from Equation (7.22a) 

u G

d P
u

dA

2 2
 
 (bis 7.22a)

for stability in a displacement controlled testing machine (du > 0), we find

Pu
dA

Pud

dA
Pud

dA
Pud

dA
uPd

dA
uPd

dA
dR

R
21 2

2

2

2

.  (7.37)

Designed for high-achieving graduates across all disciplines, London Business School’s Masters 
in Management provides specific and tangible foundations for a successful career in business. 

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM 
employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to 
work in consulting or financial services. 

As well as a renowned qualification from a world-class business school, you also gain access 
to the School’s network of more than 34,000 global alumni – a community that offers support and 
opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or 
give us a call on +44 (0)20 7000 7573.

Masters in Management

The next step for  
top-performing  
graduates

*  Figures taken from London Business School’s Masters in Management 2010 employment report

http://www.london.edu/mm/


MECHANICS OF SOLIDS AND FRACTURE

168

CraCK growth BaseD on the energy BaLanCe

In the equation, 
dA

uPd  is negative if the stiffness decreases with increasing crack length. In 

the right hand sides of Inequalities (7.36) and (7.37), 
dA
dR

R
1  is called the geometry stability 

factor (GSF) of a test specimen. It can be calculated for the stability. For example, for a DCB 

specimen is calculated to have aEIuPdAd 429  and 2522 236 BaEIuPdAd  to give

1 4
R

dR
dA A

 

for stability in a displacement controlled testing machine. If R is constant in this condition, 
GSF becomes zero and accordingly the stability condition becomes 0 > -4/A. Therefore, 
the DCB specimen satisfies the stability condition. If a test specimen does not satisfy the 
stability condition, instability of cracking is expected. Sometimes it may be possible that 
test specimens with satisfied stability conditions have instabilities if the crack front is blunt. 

Also, the GSF can be calculated using a stress intensity factor relation with G ( EKG II
2 ) 

for plane stress. From Equation (7.21b), we obtain

aY
da

Pud
B

EPEGK II
22

2
2

2
 (7.38)

where Y is the geometry factor. Accordingly, for displacement controlled machine

1 1 1 2 2 2

2

0
R

dR
da a

aY
Y

Y a

Y a da
a   (7.39a)

and for load controlled machine

1 1 1 2
R

dR
da a

aY
Y

 (7.39b)

where Y dY da.

7.9 TESTING MACHINE STIFFNESS

The total deflection ( *u ) of the system including test specimen and testing machine is 
given by

CPuu *   (7.40)

where C is the compliance of testing machine. It is found that

dA
P
ud

dA
P

ud *
 (7.41a)
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and

2

2

2

2 *

dA
P
ud

dA
P

ud
 . 

 (7.41b)

Therefore, it follows from Equation (7.36) that the stability of test specimen in the load 
controlled machine is unaffected by the flexibility of the testing machine. However, the 
situation is different under du 0  for displacement controlled machine, as P u P u *. 
Now, we have for du 0,

P u
P u
C P u

*
1

 (7.41c)

so that

21
*

uPC
dA

uPd

dA
uPd  (7.41d)

and

3

2

2

2

2

2

1

21
*

uPC
dA

uPdC
dA

uPduPC

dA
uPd

.  (7.41e)

Therefore,

uPC
dA

uPdC

dA
uPd

dA
uPd

dA
dR

R 1

21 2

2

.  (7.42)

Inequality (7.42) may be compared with Inequality (7.37) for testing machine stiffness 

effect on the stability. For increasing crack length, 
dA

uPd  is negative and hence the value 

of right hand side of the Inequality (7.42) increases due to the additional term. Therefore, 

the stability is decreased by the flexibility of the testing machine.
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Figure 7.14 Effect of machine stiffness on load-deflection diagram and on R-locus.
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The testing machine stiffness effect is illustrated in load (P)-displacement (u) diagram given 
in Figure 7.14. Two G-loci are shown: one for infinitely stiff testing and the other for 
displacement controlled testing machine with a finite compliance. Points A and B indicate 
the transition between crack lengths for stability in infinitely stiff testing machine and 
displacement controlled testing machine respectively. They also indicate the minimum crack 
displacements. Point B lies on a longer crack length with a lower load for transition than 
point A. It is noted that, for a constant load, the energy stored in a testing machine with 
a finite compliance is larger than that with infinitely stiff testing machine.

7.10 ESSENTIAL WORK OF ENERGY

Resistance to tear is one of important mechanical properties of flexible materials such as thin 
polymer sheets, rubbers, etc. The trousers test under mode III loading has drawn attention 
for material evaluation since Rivlin and Thomas18 considered trouser tear criterion for rubbers. 
Joe and Kim19 analysed the load–displacement records to determine the critical J-integral 
(or just J) value and crack resistance (R). The determination of the critical J value, however, 
requires the detection of the crack initiation which is not an easy task for highly deformable 
materials. Alternatively, the resistance to tear may be evaluated using the essential work of 
fracture (EWF) approach which was first developed for mode I fracture of ductile metals20. The 
EWF approach was further developed by Mai and Cotterell21 for elasto-plastic fracture of thin 
metal sheets under mode III loading using trouser specimens with various widths, taking into 
account the work done in plastic bending and unbending of the trousers. Muscat-Fenech and 
Atkins22 expanded this Mai and Cotterell’s work for a wide range of specimen dimensions and 
geometric change. For tearing of polymer sheets, however, the work for plastic bending and 
un-bending of the trousers is negligible due to their low stiffness, and deformation reflected 
in the model for metals cannot be translated into that for the tearing of thin polymer sheets.
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Figure 7.15 (a) Configuration of trousers test. (b) Plastic zone model consisting of zones I, V and S for 

tear specimens with sufficiently long ligaments. (c) Polarised light microscopic image for plastic deformation 

in PET (0.25 mm thick) near the crack tip showing zones I and V. [After Kim and Karger-Kocsis, 2004] 23
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Wong et al.24 proposed a two-zone model for deformation and tearing behaviour of thin 
polymer sheets under mode III loading. In the first zone, which is called zone A in their paper 
and is adjoining the initial crack tip, the outer plastic zone height lineally increases with the 
torn ligament and thus the zone is of triangular shape. At the end of zone A, the deformation 
enters zone B. The height of the zone B remains constant with further increase of torn ligament 
length. The zone A, though, did not consider plastic deformation caused by loading prior to 
tearing (which is referred to as initial plastic zone in the paper). The two-zone model hence 
would lead to overestimation of EWF if tearing is the case where increasing height of the 
initial plastic zone does not coincide with that of subsequently following zone B. In the light 
of the deficiency, Kim and Karger-Kocsis developed a three-zone model for tear fracture under 
mode III loading to include the initial plastic deformation and analysis based on the EWF 
approach for prediction of overall tear resistance. In tearing of thin ductile polymeric sheets, 
mode III fracture mode is expected at the beginning of loading but the mode tends to be 
mode I later so that tearing becomes virtually mixed mode. In this section, the three-zone 
model for tear fracture under mode III loading will be introduced. 
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As schematically indicated for a specimen with sufficiently long ligament in Figure 7.15 (if 
the ligament is not long enough, only partial deformation occurs), generally two different 
types of deformation appear along the torn ligament after tearing. One is plastic deformation 
and the other characterized by whitening. The whitening, accompanied by a weak change 
of transparency, is found in some polymers and is of non-plastic deformation as seen in a 
polarized image along the torn ligament – note photo-elastic fringe pattern does not appear 
in plastic deformation. Also it did not cause any visible change in the surface texture of 
the specimens. This indicates that its deformation energy would be small compared to the 
plastic deformation which requires relatively large deformation energy as expected. 

Therefore, the whitened zone is not included in the model formulation despite its considerable 
size. The plastic zone is found to have three distinctive zones as detailed in Figure 7.15. The 
three zones will be referred to as: zone I (initial), zone V (v-shape) and zone S (saturation). 
Zone I is initially formed as loading increases prior to the crack propagation. After zone I 
fully developed, the following events took place sequentially to form zone V: (a) change of 
specimen configuration as a result of further lining up of the trouser legs with increasing 
load; (b) change in the fracture mode from mode III to mode I to include more mode I 
component due to rotation of the area around the crack tip; and (c) gradual increase in 
duration of straining applied to the plastic zone around the crack tip as a result of increase 
in plastic deformation size as the tear progresses at an almost constant speed (e.g. material 
at l = Lv  is subjected longer straining time than that at l = Li  because material at l = Lv  
is strained and plastically deformed more ahead in time before the crack tip arrives at it 
than material at l = Li ). Thus, the zone V is the result of an evolutionary process before 
it saturates. The height (h) of zone V continues to extend as the crack propagates until it 
reaches zone S where the plastic deformation is stabilized and thus the height (h) becomes 
constant. Based on the deformation described above, the following analysis is given. The 
total work of fracture (Wf ) for a pre-cracked test specimen can be generally divided into 
two components:

Wf = We + Wp  (7.43)

where We  is the energy for yielding and tearing of the inner fracture process zone, which 
is referred to as the essential work, and Wp  is the work for the outer plastic deformation 
zone which is geometry dependant, non-essential work. 
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For 0 < li < Li, 

the total work of fracture (Wif ) for a specimen with a ligament length of li  is given for 
zone I as

Wf = Wif = Wie + Wip = wielit + wipAit  (7.44a)

where subscript ‘i’ indicates zone I, wie  is the specific EWF, wip  is the specific non-EWF, t 
is the thickness and Ai  is the outer plastic deformation zone area given by

Ai = lih/2 = 2
il .  (7.44b)

This equation considers the fact that the profile of the initial plastic zone is inclined 
approximately 45° to the tear path. Although different materials might have different angles, 
it appears reasonable for approximation. Thus,

Wif = wielit+ wip
2
il t  (7.44c)

or

wf = wif = iipie
i

if lww
tl

W
 (7.44d)

where wif  is the specific total work of fracture. In practice, it is difficult to use this equation 
for determination of wie  because li  is often too small to be varied in test specimens. The 
total work of fracture (Wvf ) for a specimen with a ligament length of (Li  + lv)  can similarly 
be written for zone V as

Wf = Wvf = Wve + Wvp = wve(Li + lv)t + wvpAvt  (7.45a)

for 0 < lv < Lv  where subscript ‘v’ indicates zone V and the outer plastic zone area (Av) is 
obtained as

22 2 vviiv llLLA  (7.45b)

where a is the taper angle given by

v

is

L
Lh 2

 (7.45c)
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where hs and Li  would be directly measured from specimens after testing or Lv  can be estimated 
from a plot of specific total work of fracture versus ligament length of specimen  if it is difficult 
to be identified under a microscope. The specific total work of fracture (wvf  ) in this case becomes

vi

vviivp
ve

vi

vf
vff

lL
llLLw

w

tlL
W

ww

)2(
)(

22   (7.45d)

where wvp and wve  can be found by the linear regression analysis using a plot of wvf  versus 
( 22 2 vvii llLL )/( vi lL ) . For l = Li or lv = 0, this equation becomes

ivpvevf Lwww .  (7.45e)

http://www.pgs.com/careers


MECHANICS OF SOLIDS AND FRACTURE

177

CraCK growth BaseD on the energy BaLanCe

 
(a) 

  
(b) (c) 

Figure 7.16 PET with a thickness of 2.5 mm for essential work of fracture: (a) load-displacement curves; 

(b) specific total work of fracture as a function of torn ligament length obtained from both experiments 

and predictions based on Equations (7.44d), (7.45e) and (7.46b); and (c) linear plots with the least square 

lines for data shown in ‘(a)’ using L* which is (Li
2+2Lilv+αlv2)/(Li+lv)  for V zone data or 

(Li
2+2LiLv+αLv

2+hsls)/(Li+Lv+ls)  for S zone data. [After Kim and Karger-Kocsis, 2004]

The total work of fracture (Wvf ) for a specimen with a ligament length of (Li + Lv +  ls)  can 
similarly be given for zone S as

As= Li
2 + 2Li Lv + Lv

2  + hs ls  (7.46a)

so that

wf =wsf =
  )t l L( L

W

svi

sf = wse + wsp 

svi

ssvvii

lLL
lhL LLL 22 2

 (7.46b)

where wsp and wve  can be found by linear regression analysis using experimental data 

from specimens with ligament length longer than (Li + Lv)  for a plot of wsf  versus 

svi

ssvvii

lLL
lhL LLL 22 2

 but preferably the data can be combined with those for 0 < lv < Lv  if 

a full range of data is used. The intercepts and slopes can be used for we (=wse = wve)  and 

wp (=wsp = wvp)  respectively in a linear plot (see Figure 7.16). 
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7.11 IMPACT FRACTURE TOUGHNESS

Structural materials used for functioning components are very likely subjected to impact 
loading. Accordingly, impact strength is often the deciding factor in materials selection 
for such an application. The impact test methods in general may fall into two categories 
according to the relative amounts of energy between striker and specimen viz: (a) limiting 
energy methods, in which the striker energy is adjusted until a set damage to specimen is 
found; and (b) excess energy methods, in which the kinetic energy of the striker is always 
greater than the energy required to break the specimens. The falling weight test falls into the 
first category, and the Charpy, Izod and tensile impact tests typically fall into the second. 

The conventional test methods have the advantages of being easily and rapidly performed. 
However, their results are dependent on the notch size. The problem of specimen geometry 
dependence can be approached in different ways based on the fracture mechanics. One of 
the ways is to obtain force (P) – displacement (u) curves from a single specimen test with 
instrumented striker. The other way is to make variations in notch depth with a sharp 
radius for multiple specimens. 

In the Charpy test (Figure 7.17), a bar specimen is placed on horizontal supports attached 
to up right pillars for central striking. The impact energy is an amount lost from the kinetic 
energy of striker for breaking a specimen. The energy measurement in the Izod test is based 
on the same principle as for the Charpy test. The difference between two tests is that the 
lower half of a specimen in the Izod test is clamped for cantilever loading. The clamping, 
though, generates the complex stress field around a notch tip, making it difficult for analysis. 
In this section, a theory and method based on fracture mechanics for the Charpy impact 
test will be introduced.

 

 
(a) (b) 

Pendulum 

Figure 7.17 Impact test type: (a) Charpy test; and (b) Izod test.
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The impact specimen breaks and flies away after being struck by the striker, involving kinetic 
energy of specimen. The impact energy ( E)  measured is hence the sum of elastic strain 
energy ( e) and kinetic energy of specimen (Ks), i.e.

E = e + Ks.� (7.47)

PS
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Figure 7.18 Impact specimen with a crack length a.
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The elastic strain energy ( e) is given by

P
uPPue

22

2

.  (7.48)

On the other hand, from the elementary beam theory with the section modulus (Z) and 
bending moment (M),

6

22
2BW

SP

Z
M

 (7.49a)

We find that
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where Y is a geometry factor. For the three point bend specimen with S=4W:
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80.2511.2553.1407.393.1
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W
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W
a

W
aY . 

In instrumented tests, the peak force Pc  is measured and GIc  is found directly from Equation 
(7.49c). Otherwise, for non-instrumented tests with varying notch depth (Figure 7.18), 
we obtain from
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 (bis 7.21b)
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To determine the integration constant, we use the deflection formula of a simply supported 
beam for a = 0,

3

3

4
1

EBW
S

P
uC .  (7.49f )

Substituting Equations (7.49b) and (7.49e) into Equation (7.48), we find a practical formula 
for an impact test:

sICE KGBW  (7.50a)

where the factor f can be obtained experimentally or can be calculated from

aWY

adaYSW

2

2

18 .  (7.50b)

The specific energy release rate (GIc ) is obtained from the slope for a linear regression line 
as shown in Figure 7.19.
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Figure 7.19 Measured energy versus BW . [After Marshall et al,1973] 25
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8 FATIGUE
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Figure 8.1 Cyclic loading and definitions of terms for applied stress. 

   Technical training on 
WHAT you need, WHEN you need it

 At IDC Technologies we can tailor our technical and engineering 
training workshops to suit your needs. We have extensive 

experience in training technical and engineering staff and 
have trained people in organisations such as General 
Motors, Shell, Siemens, BHP and Honeywell to name a few.
Our onsite training is cost effective, convenient and completely 
customisable to the technical and engineering areas you want 
covered. Our workshops are all comprehensive hands-on learning 
experiences with ample time given to practical sessions and 
demonstrations. We communicate well to ensure that workshop content 
and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on 
your premises or a venue of your choice for your convenience.

Phone: +61 8 9321 1702
Email: training@idc-online.com       
Website: www.idc-online.com

INDUSTRIAL
DATA COMMS

AUTOMATION & 
PROCESS CONTROL

ELECTRONICS

ELECTRICAL 
POWER

MECHANICAL 
ENGINEERING

OIL & GAS
ENGINEERING

For a no obligation proposal, contact us today 
  at training@idc-online.com or visit our website 
    for more information: www.idc-online.com/onsite/  

http://www.idc-online.com/onsite/


MECHANICS OF SOLIDS AND FRACTURE

183

fatIgUe

Fatigue is the most common cause of service failure in mechanical components and 
structures. It is a type of damage caused by cracking and deformation. The fatigue failure 
takes place when subjected to cyclic loading. The stress at the failure is much lower than 
the static strength. The theories with fatigue have largely been founded on the empiricism 
with phenomenological analysis since Wohler curve26 was introduced in 1870. There are two 
approaches for the fatigue problems viz the stress-life (S-N) curve approach to treat multiple 
cracks collectively and the stress intensity factor approach to treat cracking individually. 

 

S

Log N 0

Fatigue limit 

Figure 8.2 Schematic S-N curve.

8.1  STRESS-LIFE (S-N) CURVE APPROACH FOR 
UN-NOTCHED SPECIMEN

The fatigue life is measured in a laboratory using parameters such as stress range (∆s), mean 
stress (σmean), minimum stress ((σmin)), and maximum stress ((σmax)) as shown in Figure 8.1. The 
test results on unnotched specimens consist of a series of data points obtained from multiple 
specimens at different stresses. The data points represent a range of different values of (σmax) 
or ∆s corresponding to respective numbers of loading cycles to failure (N) forming a curve 
known as the S-N curve (Figure 8.2). If the S-N curve has a plateau value at a low stress, 
the stress is called the fatigue limit or endurance limit. Below the fatigue limit if exists, it 
is considered that the material would last for an infinite number of cycles without failure.

The S-N curve can be affected by various factors such as material surface roughness, applied 
mean stress, residual stresses, specimen size, loading method (e.g. bending, tension-tension), 
and temperature. If a S-N curve is used for the life prediction or design of notched 
components, the notch sensitivity should be taken into account. 
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Figure 8.3 Schematic S-N curves for un-notched and notched specimens. 

The stress concentration factor (Kt)  is defined as

stressAverage
stressMaximum

tK >1  (8.1)

and can be theoretically obtained. The difference between un-notched specimens and notched 
specimens for the fatigue limit is schematically shown in Figure 8.3. Note that the average 
stress is used for the S-N curve for notched specimens. Now, the fatigue limit reduction factor 
(Kf)  due to a notch is defined as

 specimens notchedfor limit Fatigue
specimens unnotchedfor limit Fatigue

fK >1  (8.2)

for the effect of the notch in decreasing the fatigue limit. It is generally observed that Kt is 
always greater than Kf  and therefore the ratio of Kf/Kt  is in a range between zero and one i.e.

Kt >Kf  (8.3a)

10
t

f

K
K

.  (8.3b)

The ratio 1/ tf KK  or notch root radius (r) =∞ represents a limiting case where no 
difference between two factors is found allowing us to theoretically obtain the fatigue limit 
using the stress concentration factor (Kt). The ratio 0/ tf KK  or the notch root radius  
(r) = 0 represents another limiting case where the stress concentration factor (Kt) is irrelevant 
but taken over by the stress intensity factor. However, the two values from the two limiting 
cases do not necessarily reflect a material property. Therefore, it may be convenient that the 
notch sensitivity of a material in fatigue is expressed by 

1
1

t

f

K
K

q  (8.4)
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and is called the notch-sensitivity factor (q) to have a range of values between zero and one. 
When a material experiences no change at all in fatigue limit due to the presence of a notch, 
Kf =1 and q = 0  (insensitive, which is good) for any different values of Kt. On the other 
hand, when a material has its full theoretical effect, Kf = Kt  and q = 1  (sensitive). It should 
be noted, however, that q is not a material constant but is dependant on the geometry of 
specimen and notch, and the loading type.
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Figure 8.4 Fatigue modulus.
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8.2 FATIGUE DAMAGE AND LIFE PREDICTION

Mechanical properties of materials such as fibre reinforced plastics are susceptible to fatigue 
damage so that their resultant stiffness decreases under cyclic loading. In this situation, the 
fatigue modulus may be useful to quantify such damage. The fatigue modulus27 is defined as

)(
max

N
E fa   (8.5)

where max  is the maximum applied stress and (N) is the resultant fatigue strain at Nth 
cycle (see Figure 8.4). 

Figure 8.5 shows examples of fatigue moduli measured for a glass reinforced composite in 
comparison with stiffness. Figure 8.5 (a) shows one at a maximum stress of 436 MPa and 
failed at 926 cycles; and Figure 8.5 (b) at a stress of 266 MPa and failed at 5.66 × 105 
cycles to failure. It is seen that low applied stress tends to produce more variation in the 
fatigue modulus than high stress does.
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Figure 8.5 Normalised stiffness and fatigue modulus measured as a function of life for glass fibre 

reinforced vinyl ester: (a) maximum applied stress = 436 MPa and N = 926 cycles; and (b) 

maximum applied stress = 266 MPa and N = 566377 cycles.[After Kim and Zhang 2001] 28

Fatigue damage may be defined as any permanent change due to fatigue loading. The damage 
(D) is a function of a number of parameters at least, N, Ds, R and f :

D = f (N, , R, f)  (8.6a)

where N is the number of loading cycles, Ds is the applied stress range, R is the stress ratio 
and f is the loading frequency.
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The damage may be quantified by a normalized fatigue modulus:

)1(
0E

E
D fa   (8.6b)

where Efa  is the fatigue modulus at Nth fatigue cycle and E0  is the initial modulus before 
fatigue loading. There is a boundary condition in Equation (8.6b) for an undamaged coupon 
i.e. D=D0=0  when Efa = E0. The initial modulus can be determined in a monotonic tensile 
test using

E u

u

0  (8.6c)

where u  is the ultimate stress and u  is the ultimate strain. As cycling progresses, E0  reduces 
to Efa. It is assumed that failure occurs when the fatigue resultant strain reaches the static 
ultimate strain, (N)  = u . Then, Efa at failure (Ef

fa)  is

u

f
faE max  (8.6d)

To predict a S-N curve, damage D is required to be a function of applied stress. Substituting 
Equations (8.5) and (8.6c) into Equation (8.6b) yields

)
)(

1( max

u

u

N
D  (8.7)

and the damage accumulated to failure [ (N)  = u]  becomes

)1( max

u
fD .  (8.8)

It is important to understand the difference between damage evolution in a single specimen 
and damage variation at failure obtainable from multiple specimens i.e.

f

f

dN
dD

dN
dD

  (8.9)

where N = Nf  at failure, but always

fi

fi

f

f

N
D

dN
dD

 (8.10)
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where the subscript i = 1, 2, 3 … which indicate different applied stress ranges, Dfi  (= |D0   -
Df| )  is the damage to failure and Nfi  is the number of cycles to failure at a given stress 
range. The right hand side of the equation is associated with the experimental S-N curve 
while the left hand side is associated with a theoretical S-N curve. We can determine Nfi  
experimentally by measuring the number of cycles to failure. If we want to determine it 
theoretically using the stiffness change, the following relation needs to be established:

)( faEf
dN
dD

.  (8.11a)

Further from Equation (8.6b)

fadE
E

dD
0

1
.  (8.11b)

From these two equations,
f
fa

f
fa E

E
fa

fa

E

E fa
fi dE

EfEEf
dDN

00
)(

11
)( 0

.  (8.12)

The potential of this equation lies in its capacity to predict residual fatigue life at a given 
stress by choosing appropriate integration limits.

http://s.bookboon.com/EOT
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Now, for an S-N curve prediction it is required to establish the damage rate as a function 
of applied stress range (Ds) for a given set of conditions:

)(f
dN
dD

f

f

.
  (8.13)

-8

-7

-6

-5

-4

-3

-2

2.3 2.4 2.5 2.6 2.7

Log max  (MPa)

Lo
g 

dD
/d

N
f (

cy
cl

es
-1
)

        

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9
Log Nf (cycles)

m
ax

(M
Pa

)

(a)        (b) 

Figure 8.6 (a) Log damage rate obtained as a function of applied maximum stress. Correlation 

coefficient = 0.96. Stress ratio =0. (b) Experimental results for maximum applied stress versus log 

number of cycles obtained at 1.5 Hz and a stress ratio of zero. The curve represents prediction based 

on Equation (8.15). Square symbols represent run-outs. [After Kim and Zhang 2001]

If the damage rate follows a power law:

max
f

f

dN
dD

 (8.14a)

where constants a and b are found from the least square line for damage data as shown in 
Figure 8.6(a). Then, we find

maxmax

maxuu

f
ff

dD
dNN

 
 (8.14b)

for a stress ratio (R = σmin/σmax)  of zero. From Equation (8.8), 
u

f
d

dD max . Therefore the 
fatigue life (Nf)  or a S-N curve can be calculated as:

1
max1

)1( u

u
fN

. 
 (8.15)

The prediction based on Equation (8.15) is shown in comparison with experimental data 
in Figure 8.6(b). A good agreement between the prediction and experimental data is seen. 
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8.3 EFFECT OF MEAN STRESS ON FATIGUE

The fatigue life (N) generally increases as the mean stress (σmean) or stress ratio (R) increases 
at a constant stress amplitude ((σa)). Also, we know that a material breaks when the maximum 
stress (σmax)  reaches the ultimate strength (σu). (Assume σu  is equal to yield stress.) It is 
useful to use a σa - σmean  plane for a relation between the variables. On the σa - σmean  plane 
(Figure 8.7), it is easily found that there are two limiting cases in which two breaking 
points A and B are at σa =0  for σmean= σu  and at σmean= 0  for σa = σu . If we connect the two 
points, a straight line (which is a locus of breaking points at the 1st cycle) is found for a 
constant life at the same maximum stress but at different stress ratios. The same principle 
for a constant life may be applied to different stress amplitudes at R=-1. Then, another point 
C at a lower stress may be found from an experiment for another constant fatigue life line 
CB but for a longer fatigue life. The point B is used for all other stress levels because it 
is a known condition for any stress ratios. If a fatigue limit is available from a S-N curve 
for R=-1, the fatigue limit line DB may be found. As a result, it is possible from a single 
S-N curve to predict a series of different values of σmean and (σa) for different stress ratios for 
each constant fatigue life. On the other hand, the dash-dot line in Figure 8.7 represents 
a constant stress ratio for different fatigue lives for a given stress ratio (R), and its slope is

R
R

mean

a

1
1   (8.16a)

and the stress ratio (R) is given by

amean

ameanR
max

min  .  (8.16b)

 (8.16a

In this way, series of constant fatigue life lines and constant stress ratio lines can be drawn 
for predicting various parameters. If the constant fatigue life lines are not linear, they may 
be generalized by

x

u

mean
Raa 11  (8.17a)

where x = 1 for linearity (Goodman model29). For a fatigue limit (σa)o  at R=-1 the constant 
fatigue life line is given by

 
x

u

mean
oaa 1  .  (8.17b)
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Figure 8.7 Stress amplitude (σa)) versus mean stress ((σmean)).

If compressive mean stresses are considered, horizontal lines from points A, C, and E are 
for the expected constant fatigue lives, given that that the portions of compressive stresses 
do not affect the cracking damage.
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If the ultimate strength (σu) is not equal to the yield stress (σys), another straight line CD 
(which is a locus of yield points at the 1st cycle) is found in addition to the line of breaking 
points AB as shown in Figure 8.8. As a result, two parallel lines can be drawn. Accordingly, 
the intersects on line CD with other possible constant fatigue life lines provide the yield 
limits as the stress ratio (R) increases on a constant fatigue life line.
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Figure 8.8 Stress amplitude (σa)) versus mean stress ((σmean)) for σu ≠ σys.

8.4 CUMULATIVE DAMAGE

When a structural component is subjected to a series of different stress amplitudes, It may 
be assumed that the total fatigue life is the sum of each fraction of life (Ni/Nfi)  consumed 
at a particular applied stress:

k

i fi

i

N
N

1
1 or 1

2

2

1

1

fk

k

ff N
N

N
N

N
N   (8.18)

where Ni  is the number of cycles of operation at a stress and Nfi  is the fatigue life at 
each corresponding stress. Equation (8.18) has been known as the cumulative damage rule 
or Palmgren30-Miner31 rule, which may be used for the calculation of the total fatigue 
life. However, deviations from the rule are possible for some materials in the absence of 
fundamental theoretical framework. The fatigue life estimation for random cyclic loading 
due to variation of mean stress ((σmean)) and stress range (∆s) may be attempted using the 
rule in conjunction with Goodman model.

Example) Figure 8.9 represents the stress fluctuation pattern taking place every 15 seconds 
on an alloy component. A S-N curve with a fatigue limit of 120 MPa obtained experimentally 
at R=-1 is given in Figure 8.10. The alloy component has an ultimate strength (σu) of 500 
MPa. Estimate the fatigue life using the cumulative damage rule and Goodman’s model. 
Assume that ultimate strength is equal to yield strength. Ignore the notch sensitivity. 
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Solution) The fatigue life estimation may be conducted according to the following procedure: 

a) locate the ultimate strength ((σu)) of 500 MPa on σmean  axis in Figure 8.11;
b) find values of stress amplitude (σa) and mean stress (σmean ) individually from 

Figure 8.9 as listed in Table 8.1;
c) plot data points on σmean – σa  plane to find stress amplitude at R=-1 as shown 

in Figure 8.11 and then to use the S-N curve (Figure 8.10) for finding 
corresponding number of cycles (Nfi ) and

d) use the cumulative damage rule 
k

i fi

i

N
N

1
1 for the life estimation as follows. The 

values of Nfi are found from the S-N curve.
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A fraction of fatigue life spent by the pattern (15 seconds) shown: 
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 =910.56 ×10-6 <1. 

Therefore, the total fatigue life estimate =
.10× 910.56

sec15
6- =16,473  cycles.
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Figure 8.9 A stress fluctuation pattern taking place every 15 seconds. 
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Figure 8.10 A S-N curve obtained experimentally at R = -1. 

Designation
smax

(MPa)

smean 

(MPa)

sa 

(MPa)

Number of 

loads (n)
Comment

a 50 0 50 2 Lower than fatigue limit

b 100 0 100 1 Lower than fatigue limit

c 150 (150-50)/2=50 100 4 Lower than fatigue limit

d 200 (200-50)/2=75 125 2 Counted

e 300 (300-50)/2=125 175 4 Counted

f 400 (400-300)/2=50 350 1 Counted

Table 8.1 Data collected.
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Figure 8.11 Stress amplitude (σa ) versus mean stress (σmean ).

8.5 SINGLE CRACK APPROACH FOR FATIGUE

The S-N curve approach in fatigue does not account for the details of a crack although it is 
useful to deal with a case where the failure is caused by the multiple cracks. A single crack 
approach provides another aspect of fundamental understanding of the fatigue phenomenon 
by modelling the fatigue crack initiation and propagation processes. The fatigue initiation 
may be analysed at a smaller scale while the fatigue crack propagation at a larger scale. When 
a component is subjected to cyclic loading, energy is consumed in the neighbourhood of 
inherent small defects, which grow and coalesce, for forming a crack to be large enough to 
be analysed by the principles of continuum mechanics. The crack propagation leading to 
the catastrophic failure is more predictable than the initiation of a fatigue crack.
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Figure 8.12 Typical form of crack size versus number of cycles curve for constant 

amplitude loading.
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EXPERIENCE THE POWER OF 
FULL ENGAGEMENT…

     RUN FASTER.
          RUN LONGER..
                RUN EASIER…

READ MORE & PRE-ORDER TODAY 
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd   1 22-08-2014   12:56:57

http://s.bookboon.com/Gaiteye


MECHANICS OF SOLIDS AND FRACTURE

198

fatIgUe

Figure 8.12 illustrates some characteristic crack lengths (a ) dependant on number of 
loading cycles (N ). There are relative four different crack lengths. The smallest crack length 
(ai)) represents the one that is big enough for fracture mechanics to apply but too small to 
be detected by the non-destructive inspection technology until it grows to al. The crack 
length further grows to reach the limit of useful life ((au)) before the catastrophic failure 
takes place (af). 

Fatigue crack propagation data at a stress ratio (R= Kmin/Kmax = σmin/σmax)  are obtained from 
experiments on pre-cracked specimens subjected to cyclic loading, and the change in crack 
length (a ) is recorded as a function of loading cycles (N ). The crack growth rates (da/dN ) 
are then numerically calculated for corresponding stress intensity factor ranges (∆K ) from 
the raw data. The experimental results are usually plotted in a log (DK ) versus log (da/dN ) 
diagram. The load is usually sinusoidal with constant amplitude and frequency (Figure 8.13). 

A typical plot of a log (DK ) – log (da/dN ) curve is shown in Figure 8.14. Three characteristic 
Stages may be identified. In Stage I, da/dN diminishes rapidly to a vanishingly small level, 
and for some materials there might be a threshold of the stress intensity factor range ( Kth), 
below which no crack propagation takes place. In Stage II, a linear log (DK ) – log (da/dN) 
relation is usually found. As da/dN further increases, it reaches Stage III in which the crack 
growth rate (da/dN ) curve rapidly rises and the maximum stress intensity factor (Kmax) in the 
fatigue cycle becomes equal to the critical stress intensity factor (Kc) leading to catastrophic 
failure. Experimental results indicate that the fatigue crack growth rate curve depends on the 
stress ratio (R ), and is shifted towards higher da/dN values as R increases. The Stage I has 
been known to be sensitive to variations of mean stress, microstructure and environment 
as expected at low stress intensity factor values and extremely slow crack growths. Stage II 
is not as sensitive as Stage III to mean stress and specimen thickness because of relatively 
small plastic zone sizes at low stress intensity factors compared to those in Stage III. Also, 
it represents a wide range of DK. 
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Figure 8.14 Typical form of the fatigue crack growth rate curve.

One of the most widely used fatigue crack propagation empirical models for Stage II is 
proposed by Paris and Erdogan32 and will be referred to as the Paris equation. It has the form

da
dN

C K m (8.19)

where minmax KKK , and C and m are constants for materials. Equation (8.19) represents a 
linear relationship between log (DK ) and log (da/dN ) and is used to determine the constants 
C and m for the effects of mean stress, frequency, and temperature variation. Equation 
(8.19) does not, however, describe the crack growth rates in Stages I and III. At high DK 
values in Stage III, as Kmax  approaches the critical level Kc, the crack growth rate approaches 
infinity. Stages II and III can be represented by a modification of the Paris Equation, i.e.

n

c

n

n
c

n

RK
K

KC
KK

KC
dN
da

1
1

)(
)/(1

)(
max

 
 (8.20)

where R K Kmin max  and C and n are material constants. The fatigue crack growth rate (da/dN ) 
in Equation (8.20) approaches infinity if cKKmax , satisfying the requirement of the curve.
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8.6  TEMPERATURE AND FREQUENCY EFFECTS ON FATIGUE 
CRACK GROWTH

Materials such as polymers are readily influenced by temperature variation. The fatigue 
crack growth rate (da/dN ) generally increases with increasing temperature although some 
materials display a different response. Arrhenius33 proposed an expression to account for 
the influence of temperature on the rate (k ) of inversion of sucrose:

RT
HAk exp1   (8.21a)

where A1  is a quantity independent of, or varies relatively little, with temperature, ∆H is 
the activation energy (kJ/mol), R(= 8.31J/mol K) is the universal gas constant and T is the 
absolute temperature (K ).

Krausz and Krausz34 related the rate constant (k ) to a crack velocity based on an atomistic 
model as

kA
dt
da

2  (8.21b)

GET THERE FASTER

Oliver Wyman is a leading global management consulting firm that combines 

deep industry knowledge with specialized expertise in strategy, operations, risk 

management, organizational transformation, and leadership development. With 

offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and 

executive teams of Global 1000 companies.  

An equal opportunity employer.

Some people know precisely where they want to go. Others seek the adventure of 
discovering uncharted territory. Whatever you want your professional journey to be, 
you’ll find what you’re looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers 

DISCOVER
OUR WORLD

http://www.oliverwyman.de/careers/index.html


MECHANICS OF SOLIDS AND FRACTURE

201

fatIgUe

allowing us to relate this to k 

RT
HA

dt
da exp2  (8.21c)

and

fdt
da

dN
dt

dt
da

dN
da 1  (8.21d)

where f is the cyclic load frequency. The fatigue crack process is affected not only by 
temperature but also by the stress intensity in the vicinity of a crack. We see that the higher 
activation energy (∆H ) the slower crack growth – ∆H is an energy barrier – but the higher 
stress intensity factor the faster crack growth is expected. Accordingly, an apparent activation 
energy (∆Ha)  may be used to account for this and we find a term Klog  satisfying the 
Paris equation for the energy barrier reduction:

KHHa log  (8.21e)

where g is a constant and ∆K is the stress intensity factor range. Then, the fatigue crack 
growth rate (da/dN )35 takes the final form for the temperature effect,

RT
KHB

RT
HB

dN
da a logexpexp   (8.22)

where B is an approximate constant.

The time t  dependence for polymers may be expressed as

E E t k
0  (8.23a)

where E is the tensile modulus, E0  is the unit time modulus (at time t 1), and 
td
Edk

ln
ln . Although 

Marshall et al36 indicated that k  decreases at extremes of rate or temperature, the constant 
(k ) is assumed to be approximately constant in a certain range for any visco-elastic process. 
Williams37 related da/dN to frequency (f  ) based on the line zone model by the following 
relationship

kmf
dN
da  (8.23b)

where m is the Paris equation exponent which is insensitive to temperature and frequency 
for many polymers so that km may be an approximately constant.
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To accommodate both temperature and frequency in one equation, the following procedure 
is conducted38. Taking log in Equation (8.23b), we have

fkm
dN
da loglog .  (8.23c)

Accordingly, a series of straight lines with a slope of -km for a given DK, one line for each 
temperature, can be obtained in a plot of log (da/dN ) against log f.

Since the fatigue crack growth rate as influenced by temperature at a given frequency can 
be described by Equation (8.22), it allows us to relate frequency to temperature by

km
a
a

T

f

log
log  (8.23d)

where aT

rr

T

RT
KHB

RT
KHB

dN
da
dN
da

a
logexp

logexp
 

and a f
ff

r
. The subscript, r, denotes an arbitrarily chosen reference point in the coordinate 

system. Therefore, we obtain fatigue crack growth rate (da/dN) as

r

km

r RT
KHB

f
f

dN
da logexp  (8.24)

Since Equation (8.24) has been developed for the Stage II governed by the Paris equation it 
can be equated to the Paris equation. Taking logs on both equations, the following relations 
are obtained

m
RT

r

2 303.
  (8.25a)

and

RT
HCfA km

303.2
logloglog   (8.25b)
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where C is B fr r
km . It should be noted that the constant B is dependent on frequency. 

However, the constant C here is independent of frequency and temperature. Also, Equation 
(8.25a) indicates r , is independent of frequency and temperature. Hence, Equation (8.24) 
can be simplified to

RT
KHCf

dN
da km logexp   (8.26)

This equation expresses the combined effects of frequency and temperature on the fatigue 
crack growth rate. Equations (8.23d) and (8.25) can be used to plot experimental data and 
determine the constants in Equation (8.26). Equation (8.22) is recovered from Equation 
(8.26) for a constant frequency, B f Ckm .

8.7 FATIGUE CRACK LIFE CALCULATIONS

The fatigue crack life or a number of load cycles (N ) required for a crack to grow one-
dimensionally from a certain initial crack size ao  to the maximum permissible crack length 
ac  is easily calculated using the Paris equation.

http://www.ey.com/careers
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Consider a fatigue crack of length ((a0)) in a plate subjected to a uniform stress s perpendicular 
to the plane of the crack (Figure 8.15). The stress intensity factor (KI) is given by

aYKI
 (5.15 bis)

where Y is a geometry factor and a function of a/W.

Integrating dN of the Paris equation, we find

c

o

c

o

a

a
m

a

a
m

aYC
da

KC
daN .  (8.27)

Usually Y varies with the crack length a  and the integration cannot be performed directly but 
by a numerical method. However, we may assume for estimation that Y is an approximately 
constant if the initial and final crack lengths are very small compared to the width (W ). 
The crack length ac  is calculated from KIc.

 

Crack length a 

W

Figure 8.15 Fatigue specimen geometry.
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8.8 OVERLOAD RETARDATION AND CRACK CLOSURE

The fatigue crack propagation discussed so far has been concerned with constant amplitude 
loads. It is one of types. Another type is of variable amplitude loads. In the case of constant 
amplitude loads, the crack growth is more predictable. In other words, a higher fatigue 
crack growth rate is expected when subjected to higher amplitude of stress intensity factor. 
However, when a single overload is applied as shown in Figure 8.16, the crack length 
does not increase as same rate as expected. Surprisingly, its rate is, in fact, lower than it 
would have been under constant amplitude loading. This effect is shown schematically in 
Figure 8.16. The crack retardation takes place when a tensile overload follows a constant 
amplitude cyclic load. An explanation of the crack retardation phenomenon may be obtained 
by examining the stress distribution in the wake of the plastic zone formation ahead of the 
crack tip. The plastic deformation creates a compressive residual stress field reducing mode 
I stress intensity factor for any subsequent lower load. The compressive residual stress tends 
to close the crack. The overload leaves a larger plastic zone size than the subsequent regular 
constant amplitude load. The reduction of mode I stress intensity factor depends on the 
difference between the overload and the regular constant amplitude load. Accordingly, the 
crack propagates after overloading at a decreased rate into the zone of residual compressive 
stresses. Once it passes through the plastic zone created by the overload, its expected growth 
rate is recovered as the residual stress diminishes.
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Figure 8.16 Typical form of crack length versus number of cycles curve for constant amplitude 

loading and constant amplitude plus overloading.
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The crack closure and plastic zone formation can be detected on the force-displacement 
(P-u) diagram as Elber39 suggested. Since the non-linearity of a linear elastic material on 
a force-displacement diagram can only be caused by two reasons – change of geometric 
configuration, and material plasticity, as illustrated in Figure 8.17. When an elastic body 
with a closed crack is under loading, it displays a linear behaviour until the closed-crack 
starts to open at point A. As the crack opens, the crack length increases, causing the change 
in geometrical configuration. Accordingly, non-linearity continues from point A until point 
B at which the crack is fully open. The linearity remains from point B to point C at which 
the plastic deformation sufficiently large to change the linear behaviour again. 

A retardation factor40 may be defined using plastic zones in the wake of overloading. Let 
us consider a crack-tip plastic zone of length (rpo) (Figure 8.18) at a crack length (a0)  by 
an overload of stress (σo)  given by

2
0

2
0

2

2

0 2 ysys

I
p

aCKr   (8.28a)

 

 

rpo (Plastic zone due to overload) 

rpi (Plastic zone due to constant 
load after overload) 

ai 

λ 

ao 

Figure 8.18 Plastic zones: small one produced by constant amplitude and large one by overload.

and another plastic zone size (rpi)  when the crack has propagated to a length ai  at a stress 
((σi)) is calculated as

2

2

ys

ii
pi

a
Cr  (8.28b)
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where C is a constant. The plastic zone (rpi)  due to the stress ((σi)) is within the overload 
plastic zone (rpo). The retardation is due to the difference (=λ - rpi)  and a retardation factor 

 is given by
m

pir
 (8.28c)

where a r apo i0  and m is an empirical parameter. Then, the retarded crack growth 

rate 
RdN

da  for a r a ri pi po0  is given by

dN
da

dN
da

R

 (8.28d)

where da/dN is the constant amplitude crack growth rate unaffected by the overload. We 
see that, when the crack has propagated through the overload plastic zone, the crack length 

pii ra  becomes greater than pora0  and the retardation factor also becomes f = 1.

Elber introduced a model based on the crack closure for stress ratio (R ) effect on fatigue 
crack growth.

   

Number of cycles 

K

Kop

 R=0  R>0 

Kmax

Keff

Kmin

Kmin

Figure 8.19 Stress intensity factor at crack opening at different stress ratio (R) values.

It is based on the fact that the faces of a fatigue crack subjected to zero-tension loading 
close during unloading, and compressive residual stresses act on the crack faces at zero load 
at R=0. An effective stress intensity factor range is defined by

K K Keff opmax   (8.29a)
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where Kop  corresponds to the point at which the crack is fully open (Figure 8.19). Using 
the Paris equation we can find for Stage II,

mKUC
dN
da

 (8.29b)

where

minmax

max

KK
KK

U op   (8.29c)

It was experimentally found that

U R0 5 0. .4  (8.29d)

where

R
K
K

Rmin

max

. .for 0 1 0 7 .  (8.29e)
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Figure 8.20 Crack growth rate and stress intensity factor range for different stress ratios, R= 0, 0.33, 

0.5, and 0.7: (a) crack closure included [After Hudson, 1969] 41; and (b) crack closure excluded for 

∆Keff .  [After Elber 1971] 

Figure 8.20(a) shows crack growth rate (da/dN ) as a function of stress intensity factor range 
(∆K ) for different stress ratios, R= 0, 0.33, 0.5, and 0.7, displaying the stress ratio effect. 
The crack growth rate (da/dN ) is re-plotted as a function of effective stress intensity factor 
range (∆Keff ) in Figure 8.20(b) according to Equation (8.29b). It appears that a single 
curve fits the data from a wide range of stress ratios.

8.9 VARIABLE AMPLITUDE LOADING

The prediction of the fatigue crack growth under a variable amplitude loading by simply 
summing up the individual fatigue lives from respective constant amplitude loads in the 
loading history may lead to conservative values due to the overload effect. However, the 
Paris equation may be applicable if we find an appropriate distribution function of ∆K for 
a small block of loads. Barsom42 demonstrated that the root-mean-square value of the stress 
intensity factor Krms is useful, which is given by

f

i

n

i
rms n

K
K

f
2

1  
 (8.30a)
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where nf  is the number of loading amplitudes for each block or random cycles with a stress 
intensity factor range of Ki  for various variable loading types as given in Figure 8.21. 
Accordingly, the Paris equation becomes

m
rmsKC

dN
da

.  (8.30b)

(a) 

(b) 

(c) 

(d) 

Load 

2 blocks (1000cycles) 

Figure 8.21 Variable amplitude loading: (a) random sequence, (b) descending sequence, 

(c) ascending sequence, and (d) combined ascending-descending sequence.

It has been found that the average fatigue crack growth rate (da/dN ) under random sequence 
or ordered-sequence loading fluctuation spectra is approximately equal to the rate of fatigue 
crack growth obtained under constant amplitude cyclic loading.
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8.10 FATIGUE NEAR THRESHOLD AND MEASUREMENT METHODS

The fatigue threshold stress intensity factor range (∆Kth)  is the one that corresponds to zero 
crack growth although it can be defined by an arbitrary crack growth rate for practicality. 
Most fatigue data do not show a clear ∆Kth. In designing structural components subjected to 
cyclic loading it is important to determine the fatigue threshold stress intensity factor (∆Kth) , 
below which a crack does not grow. However, important as it is, a ‘true’ ∆Kth is difficult 
to measure since this requires very long testing times. Usually, near-threshold fatigue crack 
growth rates of less than 10-10 m/cycle are determined and then used to estimate ∆Kth. Even 
so, obtaining the near-threshold crack, growth data is a tedious time-consuming procedure. 
Also, the threshold data vary depending on the experimental technique so that a thorough 
understanding of various techniques is important for all users of threshold data.
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The method desired should be able to reduce DK as quickly as possible without load history 
effects to reach a very low crack growth rate (da/dN ), but if DK is reduced abruptly it causes 
the retardation in fatigue crack growth resulting in a higher value than true near-∆Kth. Load 
shedding can be conducted either manually or continuously by computerised automated 
control. The automated technique is preferred to avoid the intensive manual labour for 
processing raw data from measurements of crack length positions with corresponding loads. 
Also, a load-shedding schedule is required to efficiently minimise the load retardation effects. 
In this section, various methods employing load-shedding schedule will be introduced.

8.10.1 CONTINUOUS K-DECREASING METHODS

A continuous K-decreasing method was proposed by Saxena et al43 and recommended by 
ASTM E24 Committee with

ii aaCKK exp   (8.31a)

Here K ai i,  and ( K a, )  are initial and instantaneous values respectively of applied stress 
intensities and crack lengths. The constant C has a physical dimension of length given by

108.01 mm
da

Kd
K

C   (8.31b)

A limit on C assumes that there is a gradual decrease in DK so that the rate of the fractional 
change of the estimated plastic zone size rp  remains constant with increase in a and 
that there is no overload effect on crack growth if the decrease is sufficiently gradual. The 
acceptable values of C depend on test conditions. If K-increasing and K-decreasing fatigue 
data agree with each other, then the chosen value of C is permitted. This means that C can 
only be selected from separate experiments if it is not already established for the particular 
material to be tested. Accordingly, this method requires very long testing times.

8.10.2 LOAD SHEDDING USING A DAMPING COEFFICIENT

A load shedding method proposed by Bailon et al44 employs

QNPP i exp   (8.32a)

where DP and Pi  are the instantaneous and initial load, N is the number of elapsed cycles 
and Q  is a damping coefficient given by

Q
r

dr
dNp

p1
 (8.32b)
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Figure 8.22 Load shedding using a damping coefficient. [After Bailon et al, 1981]

The basic principle of this method is to approach ∆Kth  by steps of load shedding according 
to Equation (8.32a) until crack arrests at ∆Ka  (subscript a  denotes arrest) which is larger 
than ∆Kth  due to overloading effects (Figure 8.22). The test is resumed with a new set of 
values for Q (half the previous magnitude) and ∆Pi  (and hence ∆Ki, which is half the sum 
of the original ∆Ki and the associate ∆Ka ). Values of ∆Ka , which are similar for the last two 
or three iterative steps indicate that ∆Kth  has been reached. As opposed to the ASTM method 
for which dK/da is maintained constant, this method uses decreasing dK/da gradients in 
the load shedding program. It was claimed that this method provides 50% better efficiency 
than the ASTM method. However, it also requires some preliminary tests to determine the 
best damping coefficient Q. 

8.10.3 CONDITIONAL LOADING BY ITERATION

The principle of the method, proposed by Kim et al45 is to search DK corresponding to a 
given da/dN by an iteration scheme conditionally. The condition is imposed on the crack 
growth rate. If the current crack growth rate (da/dN)c  is higher or lower than the initially 
set (da/dN)i, Kmax  is either decreased according to

n
i

nn

K
KK

2
)max(

1maxmax   (8.33a)
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Figure 8.23 Illustration of conditional loading.
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or increased according to

n
i

nn

K
KK

2
)max(

1maxmax   (8.33b)

where n is the number of iterations and Kmax(i)  is an initially set relatively high stress 
intensity factor range. The procedure follows as illustrated in Figure 8.23. Point A is at the 
first allocated Kmax (1)  and hence at the largest plastic zone size at a stress ratio (R ) so that 
(da/dN)c  is higher than (da/dN)i. Accordingly, Equation (8.33a) applies to get to point B with 
n=2 at which overloading effect is high due to the large drop of Kmax (1)  to Kmax (2)  and as a 
result, the condition (da/dN)c<(da/dN)i  is found at point C and Equation (8.33b) with n=3 
applies to get to point D for Kmax (3). If (da/dN)c>(da/dN)I  at point E and crack grows out of 
calculated plastic zone due to overload, Equation (8.33a) with n=4 applies to decrease the 
loading. Further, decrease in loading follows since (da/dN)c>(da/dN)I  with the same n=4 to 
reach point G. The same conditional loading continues for the subsequent points H, I, J 
and so on. The iteration is terminated when the following convergence criterion is satisfied,

1max

max1maxTolerance
n

nn

K
KK

.  (8.33c)

At the end of the iterative procedure the current and previous plastic zone sizes become 
essentially the same, being defined by a low tolerance (say 2%) set in the computer 
program. Also, to avoid overloading effects, the crack growth may be allowed to advance 
twice as long as the plastic zone created by the previous DK only when (da/dN)c>(da/dN)i. 
The crack tip plastic zone size is calculated according to the Dugdale’s plastic zone model 
i.e. 2

max8 ysp Kr . The procedure is summarised in Figure 8.24 and comparisons of the 
efficiency of ASTM and the present methods for near-threshold crack growth measurement 
at R=0.1 and 5Hz are given in Table 8.2.

The threshold fatigue data points at low da/dN values measured with the present method 
for a uPVC pipe material is shown in Figure 8.25.
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da/dN (m/

cycle)

∆Ki

(MPa m1/2)
Tolerancea (%)

Duration of test

ASTM Current method

4.3×10-9 0.7 6.67 53.10 17.34

1.49×10-9 0.7 2.17 160.80 22.45

10×10-9 0.2 1.8 -b 225.66

Table 8.2 Comparison of the efficiency of ASTM and the present methods for near-threshold crack growth 

measurement at R=0.1 and 5Hz. [After Kim and Mai, 1988]
a Tolerance limit set for the present test method only but ASTM method with C= 0.08 mm-1 in Equation (8.31a).
b Not available because of unnecessary long times.
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Figure 8.24 Flowchart of the conditional loading by iteration: Resolution is for a travelling microscope 

for crack length measurement; R is the stress ratio; and σys  is yield stress. [After Kim and Mai, 1988]
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Figure 8.25 Fatigue crack growth of uPVC pipe material. [After Kim and Mai, 1988]

A variation of the method can be made if we keep Kmax  constant for measuring a ∆K 
corresponding to a da/dN. The same algorithm can be used by replacing Kmax  with ∆K in 
Equation (8.33a) and (8.33b). Since there is no overloading effect when Kmax  is constant, 
near- Kth  can be obtained more quickly than any other method. However, it is difficult 
to obtain near- Kth  for low stress ratios because it is not possible to obtain near- Kth  at 
a particular stress ratio nominated. 
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8.11  INTERPRETATION OF FATIGUE CRACK GROWTH IN P – U AND 
R – A DIAGRAMS

The incorporation of the threshold Kth  on a force (P)- displacement (u) diagram may be 

useful for understanding from a different perspective. As shown in Figure 8.26 (a) and (b) 

for stress ratios, R =0 and R > 0 respectively, three different Stages are indicated. Stage I is 

the area of near-threshold fatigue growth. The crack growth in Stage II is governed under 

the Paris equation, and Stage III includes near- and catastrophic failure, as also described 

in Figure 8.14. On loading from point 0 to B, fatigue crack starts to grow, which is well 

below the static fracture point C. As the fatigue crack further grows, stiffness decreases and 

reaches point D at which catastrophic fracture takes place. When the loading is not high 

enough, however, for crack growth, the threshold at point A and along the line AE can 

be identified for specimens with different crack lengths. Threshold-Kmax  can be converted 

into G (energy release rate) and a Gth  locus of magnitude )
2

)(max

E
K th  for plane stress or 

)1( 2
2

)(max

E
K th  plane strain is found, the shape of which of course depends the geometry 

of the test specimen. 

��������	
�����������
��������
���������
�����������
��������
����������������������������������

������������
������������������������������ �����	�����
	�
�����	������!���"�
	������������

�
	�

�����#$%����&'())%�*+������
	�
���,���������
�-

.�
��������������������
��������������

��������	
������


��	��������	
������


������������


����������


����������
�������


���������

 The Wake
the only emission we want to leave behind

http://www.mandieselturbo.com


MECHANICS OF SOLIDS AND FRACTURE

220

fatIgUe

 

 
 

(a) 
 

 
 

              (b) 

Catastrophic failure 
after fatigue 

Static cracking begins 
Stress ratio=0 

Pmax for fatigue 
crack growth

u (Displacement) 

Pmax

Gc- locus 

P

Stage I 

Gth locus 
Stage II 

0 

A 

B 

D 

C 

E 

Stage III 

Pmin=0 

Catastrophic failure 
after fatigue 

Static cracking begins 
Stress ratio>0 

u (Displacement) 

Pmax

Pmin
Gc - 

P

Gth locus 
Stage I 

Stage II 

0 

A 

B D 

C 

E 

Stage III 

Pmax for fatigue 
crack growth

Figure 8.26 Interpretation of constant load range fatigue crack growth in  

P-u diagram when there is a fatigue threshold Gth.
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Figure 8.27 Interpretation of constant load range fatigue crack growth in  

G-a diagram when there is a fatigue threshold Gth.
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The same information (with the same symbols) can be shown on a G-a (or R-a) diagram 
(Figure 8.27). For both stress ratios, R = 0 and R > 0, radial lines are drawn for constant 
loads, Pmax  and Pmin,, and varying crack length (a) according to EaG /2 . The fatigue 
crack growth start at point A and grows until point B at which G becomes the critical 
value Gc (or R) and catastrophic failure takes place. As the crack length decreases for a 
given loading condition, Stage I area is found, at which near-threshold fatigue crack growth 
takes place. Again, the crack growth in Stage II is governed under the Paris equation, and 
Stage III includes near- and catastrophic failure, as also described in Figure 8.14.
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8.12 SHORT CRACK BEHAVIOUR IN NEAR-THRESHOLD FATIGUE

The short crack is referred to as the one that is comparable with microscopic features such 
as grain size and small defects. An example of short surface crack behaviour is given in 
Figure 8.28. Its crack growth rate does not vary monotonically but fluctuate, displaying 
peaks and valleys, which is sensitive to grain boundaries. The short cracks are also sensitive 
to the orientation of the grain. Thus, the crack growth would smoothly increase if all grains 
are favourably oriented, or zigzag otherwise, with partial or complete arrest in some cases. 
Such behaviour is illustrated in comparison with a long crack in Figure 8.29. Also, it is 
obvious that the crack growth rates of short cracks are higher than that of the long crack. 
The anomalous behaviour of the small cracks does not obey the same propagation laws 
which we apply to the long cracks. The stress intensity factor range (DK) is not as much 
useful for the fail-safe design if the crack is smaller than some critical length, typically 1 
mm in metallic or polymeric materials.
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Figure 8.28 Growth behaviour of short cracks in Al 2024-T3 during cyclic  

loading at R=-1 and 20 kHz. [Blom et al, 1986] 46

Another aspect of short crack is associated with the crack closure. According to one-
dimensional plastic zone size ( pr ) equation 

2

2

2

2

22 ysys

I
p

aKr ,  (bis 6.1a)
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pr  is proportional to the crack length (a ). In other words, as the crack length decreases, the 
compressive residual stress created by the plastic deformation decreases and hence the crack 
closure diminishes. Some supporting evidence is given in Figure 8.30. Near-threshold stress 
intensity for small and large cracks are shown in the figure for difference between effective 

Kth  and apparent Kth  due to diminished crack closure effect. 
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Figure 8.29 Crack growth behaviour of short and long cracks  

in aluminium alloy. [After Chan and Lankford, 1983] 47
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Scatter is an essential feature of short-crack data because individual small cracks behave 
differently. The analysis based on continuum mechanics for long cracks is hardly applicable 
to the anomalous behaviour of the short cracks. Then, an important question arises as to 
how we conduct the fail-safe design against small cracks. The important steps may be to 

a) define the difference between short and long cracks, 
b) find common variables between short and long cracks, and 
c) apply the relevant theories for short and/or long cracks. 

We know that the behaviour of small cracks is reflected in a S-N curve with scattered 
data points and the long crack is still validly treated within the framework of continuum 
mechanics. We also know that the common variables are applied stress and crack length 
(a), allowing us to display two different equations based on the two different approaches 
together on a s-a  plane. The stress intensity factor for threshold ( Kth ) with a corresponding 
applied stress range ( Kths�Kth ) is given by

aK thth  (8.34a)

http://campus.oracle.com
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so that

a
Kth

th log
2
1loglog .  (8.34b)

This equation is plotted on logarithmic scales in Figure 8.31 with the fatigue limit (∆σ0). 
The fatigue limit is independent of the crack length.

∆σ
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Crack length, a (log scale) 

Fatigue limit (∆σ0) 

Equation (8.34b)

∆σ0 

Figure 8.31 Kitagawa plot48 of threshold stress range ∆σ0  as a function of crack length and 

fatigue limit (∆σ0).

The limitations of the stress intensity factor approach are clear in the figure. As the crack 
length approaches zero, ∆σth  approaches ∞ with a slope of 0.5 according to Equation (8.34b). 
However, we know that if the crack length is zero, for a perfectly polished specimen, the 
threshold stress for fatigue is not infinity, but is equal to the fatigue limit (∆σ0 ). Therefore, 
the crack length at which two lines intersect with each other becomes the demarcation point 
between short and long cracks. The representation shown in Figure 8.31 is often called a 
‘Kitagawa’ plot after one of its originators. The plot also explains that the small cracks grow 
at applied DK values lower than Kth  measured for long cracks.

In practice, the experimental data for near-threshold takes the form shown in Figure 8.32. 
The measured threshold data points deviate from Equation (8.34) for the long crack and 
eventually merge with the fatigue limit. The curved region on the figure is lower than the 
fatigue limit or the long crack threshold stress. It may be useful to describe the characteristics 
of two different crack lengths in addition to the demarcation point ((a0)) although those are 
not explicitly definitive due to the smooth transition:
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a) a1  is the length at which the fatigue behaviour deviates from the fatigue limit. 
As such, it is the longest crack length at which the fatigue limit is still a material 
property. Therefore, if inherent crack lengths of a material are longer than a1 , 
its fatigue limit may be lowered and hence is no longer the material property. 
Accordingly, it is possible that some materials would not have a fatigue limit if 
they contain relatively long cracks produced during manufacturing.

b) a2  is the length at which its behaviour deviates from that of long-crack for the 
transitional behaviour.

Such a transitional behaviour can be described by adding a constant length ((a0)) to the 
crack length (a), i.e.

K a ath th 0 .  (8.35)49 

As the crack length decreases, according to this equation, the constant length ((a0)) constitutes 
an increasing fraction of (a0 +a)  until at very short lengths. An example is given in 
Figure 8.33(a) for (a0) =2 and ∆Kth = 20. The curve and fatigue limit are dependent on the 
choice of (a0) value. If we choose a shorter length (a0) =1, the curve displays a higher fatigue 
limit as shown in Figure 8.33(b). Equation (8.35) may be useful for an initial estimation 
using only near threshold-Kmax . The value of (a0), however, does not a physical basis for 
understanding the transitional behaviour.
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Figure 8.32 Typical experimental behaviour of short cracks, plotted on the Kitagawa 

diagram. [After Kitakawa and Takahashi, 1976] 
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Equation (8.34) 

Equation (8.35) 

a0=2 

a0=1 

(a) 

(b) 

Equation (8.35) 

Equation (8.34) 

Figure 8.33 Comparison of Equations (8.34) and (8.35) for different crack lengths  

((a0)) = 1 and 2 with ∆σth  =31.5 (or log (∆σth ) =1.5).
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