Software Solutions to Problems on Heat Transfer

Convection – Part II: Natural (or free) convection

Dr. M. Thirumaleshwar

bookboon.com The eBook company Dr. M. Thirumaleshwar

Software Solutions to Problems on Heat Transfer

Convection – Part-II: Natural (or free) convection

 Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection 1st edition © 2013 Dr. M. Thirumaleshwar & <u>bookboon.com</u> ISBN 978-87-403-0568-5

Contents

2A.2	Natural (Or, Free) Convection:	5
2A2.1	Natural convection from vertical plates and cylinders:	15
2A2.2	Natural convection from horizontal plates, cylinders and spheres:	60
2A2.3	Natural convection from enclosed spaces:	151
2A2.4	Natural convection from rotating cylinders, disks and spheres:	201
2A2.5	Natural convection from finned surfaces:	214
2A2.6	Combined Natural and Forced convection:	232
	References	274

CLIVER WYMAN

Oliver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk usep industry knows by events because expensions and by operations, tak management, organizational transformation, and leadership development. With offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

4

2A.2 Natural (Or, Free) Convection:

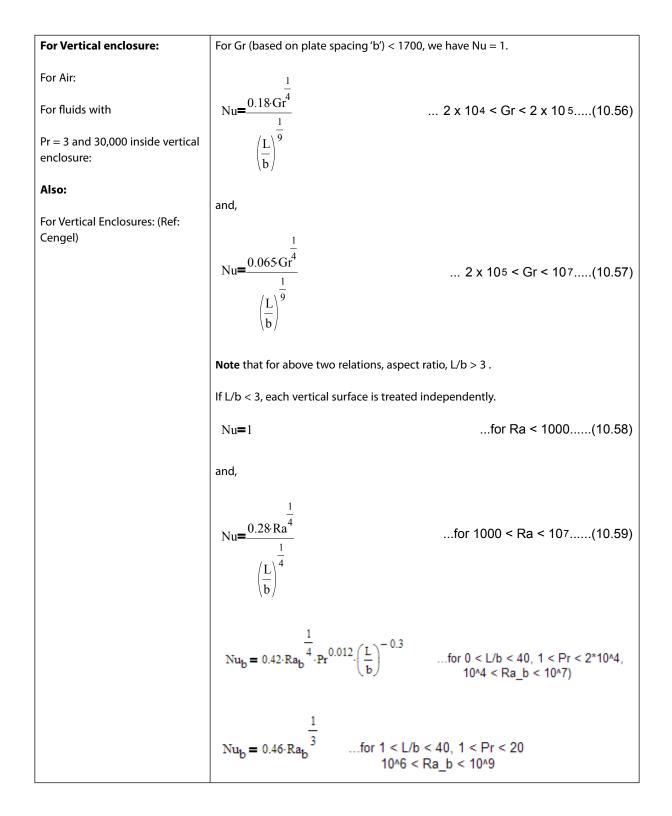
Learning objectives:

- In 'Natural or free convection', fluid movement is caused because of density differences in the fluid due to temperature differences, under the influence of gravity. Density differences cause a 'buoyancy force' which in turn, causes the fluid circulation by 'convection currents'.
- 2. Obviously, fluid velocity in natural convection is low as compared to that in forced convection, and as a result, the heat transfer coefficient is also lower in the case of natural convection.
- 3. Still, natural convection is one of the important modes of heat transfer used in practice since there are no moving parts and as a result, there is an increased reliability?
- 4. Natural convection heat transfer is extensively used in the following areas of engineering:
 - 1) cooling of transformers, transmission lines and rectifiers
 - 2) heating of houses by steam or electrical radiators
 - 3) heat loss from steam pipe lines in power plants and heat gain in refrigerant pipe lines in air-conditioning applications
 - 4) cooling of reactor core in nuclear power plants
 - 5) cooling of electronic devices (chips, transistors etc.) by finned heat sinks
- 5. We shall solve problems of Natural convection involving following geometries: Vertical plates and cylinders, horizontal plates, cylinders and spheres, different types of enclosed spaces, rotating cylinders, disks and spheres. We will also consider important problems of Natural convection from finned surfaces, and cases of combined Natural and Forced convection.
- 6. To give a few examples: Room heaters, Furnace doors etc are modeled as vertical plates in Natural convection. Steam pipes in plant rooms may be modeled as horizontal or vertical cylinders in Natural convection. Natural convection from Spherical storage tanks is quite common. Natural convection in inclined rectangular enclosures containing air has important relevance to Flat plate solar collectors. Natural convection from vertical/ horizontal finned surfaces has important application in Natural convection cooling of Printed Circuit Boards.
- 7. Many problems are solved to illustrate these applications of Natural convection.

Equation Summary: [Ref: 1]

Summary of Basic equations for Natural convection:

Important correlations are summarized below:


Geometry	Correlation	
Heated, vertical plate: Integral method:	Temp. distribution: $T = T = (x - y)^2$	(10.11)
	$\frac{\mathbf{T} - \mathbf{T}_{a}}{\mathbf{T}_{s} - \mathbf{T}_{a}} = \left(1 - \frac{\mathbf{y}}{\delta}\right)^{2}$	(10.11)
	Velocity distribution:	
	$\frac{u}{u_{x}} = \frac{y}{\delta} \cdot \left(1 - \frac{y}{\delta}\right)^{2}$	(10.12)
	Max. velocity:	
	$u_{\max} = \frac{4}{27} \cdot u_x$ at y = $\delta/3$	(10.12, a)
	Mean velocity:	
	$u_{m} = \frac{1}{12} \cdot u_{x} = \frac{27}{48} \cdot u_{max}$	(10.12, a)
	Velocity function:	
	$u_{X} = 5.17 \cdot v \cdot (Pr + 0.952)^{-0.5} \cdot \left[\frac{\beta \cdot g \cdot (T_{S} - T_{a})}{v^{2}} \right]^{0.5} \cdot x^{0.5}$	(10.16, a)
	Boundary layer thickness:	
	$\frac{\delta}{x} = \frac{3.93 \cdot (0.952 + Pr)^{0.25}}{Gr_x^{0.25} \cdot Pr^{0.5}}$	(10.16, b)
	Total mass flow through the boundary:	
	$m_{\text{total}} = 1.7 \cdot \rho \cdot v \cdot \left[\frac{\text{Gr}_{L}}{\text{Pr}^2 \cdot (\text{Pr} + 0.952)} \right]^{0.25}$	(10.18)
	Avg. Nusselt number for laminar flow:	
	Nu avg = $\frac{4}{3}$ Nu L = $\frac{0.667 \operatorname{Pr}^{0.5} \operatorname{Gr}_{L}^{0.25}}{(0.952 + \operatorname{Pr})^{0.25}}$	(10.20, b)
	Avg. Nusselt number for turb. flow:	
	Nu avg = $\frac{h \text{ avg} \cdot L}{k}$ = 0.0246 $\left[\frac{Pr^{1.17} \cdot Gr_L}{\frac{2}{1+0.495 Pr^3}}\right]^{0.4}$	for turb. flow (10.22)

Empirical relations:			
Vertical plate,	Height L is the characteristic length.		
$\mathbf{T}_{s} = \mathbf{const.}$ For air and other gases:	$Nu=0.59 Ra^{\frac{1}{4}}$	104 < Ra < 109(10.23)	
	$Nu=0.13 \cdot Ra^{\frac{1}{3}}$	109 < Ra < 1012(10.24)	
For all Prandl numbers:	1		
0 < Pr < ∞:	Nu=0.68+ $\frac{0.670 \mathrm{Ra}^{\frac{1}{4}}}{\left[1+\left(\frac{0.492}{\mathrm{Pr}}\right)^{\frac{9}{16}}\right]^{\frac{9}{9}}}$	0 < Ra < 109(10.25)	
0.6 < Pr < ∞:	$\begin{bmatrix} 9 \end{bmatrix}^{\overline{9}}$		
0 < Pr < 0.6:	$1+\left(\frac{0.492}{\mathrm{Pr}}\right)^{16}$		
(Entire range of Ra)			
	Nu= $\frac{0.15 \cdot \text{Ra}^{\frac{1}{3}}}{\left[1 + \left(\frac{0.492}{\text{Pr}}\right)^{\frac{16}{16}}\right]^{\frac{16}{27}}}$	Ra > 109(10.26)	
	Nu= $\begin{bmatrix} 0.825 + \frac{0.387 \cdot \text{Ra}^{\frac{1}{6}}}{\left[1 + \left(\frac{0.492}{\text{Pr}}\right)^{\frac{9}{16}}\right]^{\frac{8}{27}}}\end{bmatrix}^{2}$	Ra > 109(10.27)	
Inclined plate, inclined at an	Inclined height L is the characteristic length.		
angle θ to the vertical	Use vertical plate eqns. as a first approximati	ion.	
$T_s = const.$	Replace g by g.cos(θ).		
Vertical cylinder	Height L is the characteristic length.		
	Vertical cylinder can be treated as vertical plate, if the following relation is satisfied:		
	$\frac{\frac{D}{L} \ge \frac{34}{\frac{1}{Ra^4}}}{\frac{1}{Ra^4}}$	(10.28)	

Vertical plate,		Eqns. (10.25) and (10.26) are still valid, with the modification that constant 0.492 is changed to 0.437.	
ې = const. Alternatively:			
	A modified Grashoff no. is defined:	A modified Grashoff no. is defined:	
	$Gr = Gr \cdot Nu_{x} = \frac{g \cdot \beta \cdot q_{s} \cdot x^{4}}{k \cdot v^{2}}$	(10.29)	
	And following two relations for local N	usselt no.:	
	Nu $_{\rm X}$ =0.60 (Gr! Pr) ^{0.2}	105 < Gr' _x < 1011(10.30)	
	Nu $_{\rm X}$ =0.17·(Gr!Pr) ^{0.25}	Gr' _x > 1011(10.31)	
	For Avg. Nu:		
	$h = \frac{5}{4} \cdot h_L$	for laminar(10.32)	
	h=h L	for turb(10.33)	
Horizontal plate,	Characteristic Length: $L_c = A/P$		
$T_s = const.$	Upper surface of hot plate (or lower	surface of cold plate):	
	$Nu=0.54 \operatorname{Ra}^{\frac{1}{4}}$	104 < Ra < 107(10.34)	
	$Nu=0.15 \cdot Ra^{\frac{1}{3}}$	107 < Ra < 1011(10.35)	
	Lower surface of hot plate (or upper su	Lower surface of hot plate (or upper surface of cold plate):	
	$Nu=0.27 \cdot Ra^{\frac{1}{4}}$	105 < Ra < 1011(10.36)	

Horizontal plate,	Characteristic Length: $L_c = A/P$		
q _s = const.	All property values, except β , are evalua	All property values, except $\beta,$ are evaluated at a temperature, $T_{_{e^{\prime}}}$ defined by:	
	$T_e = T_s - 0.25 (T_s - T_a)$	$T_{e} = T_{s} - 0.25 \cdot (T_{s} - T_{a})$ (10.37)	
	and, β is evaluated at $T_{\!_a}.$		
	Upper surface of hot plate (or lower sur	face of cold plate):	
	$Nu=0.13 \cdot Ra^{\frac{1}{3}}$	Ra < 2 x 108(10.39)	
	Nu=0.16 Ra $^{\frac{1}{3}}$	2 x 10 8 < Ra < 1011(10.40)	
	For heated surface facing downward:		
	$Nu=0.58 Ra^{0.2}$	106 < Ra < 1011(10.41)	
Horizontal cylinder,	Dia. D is the characteristic length.		
T _s = const.	For air:		
	$Nu=C \cdot Ra^n$	(10.42)	
	C and n from Table 10.2.		
	For ($0 \le Pr \le \infty$):		
	Nu= $\begin{bmatrix} 0.60+0.387 \cdot \begin{bmatrix} -\frac{Ra}{2} \\ \left[\frac{9}{1+\left(\frac{0.559}{Pr}\right)^{16}} \end{bmatrix} \end{bmatrix}$	$\left[\frac{16}{9}\right]^{\frac{1}{6}} \left[\frac{1}{9}\right]^{\frac{1}{6}} = \frac{1}{10} = \frac{1}{1$	
	And, only for laminar range:		
	Nu=0.36+ $\frac{0.518 \text{ Ra}^{\frac{1}{4}}}{\left[1+\left(\frac{0.559}{\text{Pr}}\right)^{\frac{9}{16}}\right]^{\frac{9}{9}}}$	10-6 < Ra < 109(10.44).	

For thin wires:	1	
(D = 0.2 to 1 mm)	Nu D=1.18 (Ra D) $^{\frac{1}{8}}$	Ra < 500(10.45)
From horizontal cylinders to liquid metals:	Nu D=0.53 $\cdot \left(\operatorname{Gr}_{\mathbf{D}} \cdot \operatorname{Pr}^2 \right)^{\frac{1}{4}}$	(10.46)
Spheres:	Dia. D is the characteristic length.	
	Nu=2+0.43 (Ra) ^{$\frac{1}{4}$}	1 < Ra < 105, Pr = 1(10.47)
	And, for higher range of Ra:	
	Nu=2+0.50 (Ra) ^{$\frac{1}{4}$}	3 x 105 < Ra < 8 x 108(10.48)
Rectangular blocks:	Ch. Length:	
	$L = \frac{L_{H} L_{V}}{L_{H} + L_{V}}$	(10.49, a)
	Nu $_{L}=0.55 (Ra_{L})^{\frac{1}{4}}$	104 < Ra _L < 109(10.49)
Short cylinders	Nu= $0.775(Ra)^{0.208}$	(10.50)
(D = H) Simplified eqns. for air:	Refer to Table 10.3	
Free convection in enclosed spaces:	Space between the plates, 'b' is the cha	aracteristic dimension.
For Horizontal enclosure:	$\operatorname{Gr}_{\mathbf{b}} = \frac{\mathbf{g} \cdot \boldsymbol{\beta} \cdot (\mathrm{T1} - \mathrm{T2}) \cdot \mathbf{b}^{3}}{v^{2}}$	(10.51)
For air:		
For liquids (water, silicone oils and mercury):	Nu=0.195 Gr ^{$\frac{1}{4}$}	104 < Gr < 3.7 x 10 5(10.53)
	and, $\frac{1}{Nu=0.068 \cdot Gr^3}$	3.7 x 105 < Gr < 107(10.54)
	And, for Gr < 1700, we have Nu = 1.	
	Nu=0.069 Ra $^{\frac{1}{3}}$ ·Pr $^{0.074}$	1.5 x 105 < Ra < 109(10.55)

Free convection in inclined	For (L/b > 12) and at tilt angles θ less than 70 deg.:
spaces: Flat plate solar collectors and double glazed windows)	$\operatorname{Nu}_{\mathbf{b}} = 1 + 1.44 \left(1 - \frac{1708}{\operatorname{Ra}_{\mathbf{b}} \cdot \cos(\theta)} \right) \left(1 - \frac{1708 \cdot \sin(1.8 \cdot \theta)^{1.6}}{\operatorname{Ra}_{\mathbf{b}} \cdot \cos(\theta)} \right) + \left[\left(\frac{\operatorname{Ra}_{\mathbf{b}} \cdot \cos(\theta)}{5830} \right)^{\frac{1}{3}} - 1 \right]$
	For L/b => 12, θ <=70 deg.:
	If the quantity in the first bracket and the last bracket is negative, then it must be set equal to zero.
	When θ = 0, above eqn gives $\text{Nu}_{_{b}}$ for a Horizontal enclosure.
	For tilt angles between 70 deg. and 90 deg. Catton recommends that the Nusselt number for a vertical enclosure ($\theta = 90$ deg.) be multiplied by (sin θ) ^{1/4} , i.e.
	$\frac{1}{4}$
	$\operatorname{Nu}_{\mathbf{b}}(\theta) = \operatorname{Nu}_{\mathbf{b}}(\theta = 90) \cdot \sin(\theta)^{\frac{1}{4}}$ for 70 < θ <= 90
	$Nu_b = 1 + (Nu_b(\theta = 90) - 1) \cdot sin\theta$ for $90 < \theta <= 180$
Natural convection inside spherical cavities:	$\frac{D \cdot h_{avg}}{k} = C \cdot \left(Gr_{D} \cdot Pr\right)^{n} \qquad \dots \dots (10.62)$
	For values of C and n, see table in text.
Concentric cylindrical annuli:	'b' is the gap or thickness of the enclosed fluid layer (i.e. b = $[D_0 - D_j]/2$).
	$\frac{Q_{\underline{o}} 2 \cdot \pi \cdot k_{eff} (T_{i} - T_{o})}{L \frac{\ln\left(\frac{D_{o}}{D_{i}}\right)}{\ln\left(\frac{D_{o}}{D_{i}}\right)}} \qquad \frac{Q_{\underline{o}} 2 \cdot \pi \cdot k_{eff} (T_{i} - T_{o})}{L \frac{\ln\left(\frac{D_{o}}{D_{i}}\right)}{\ln\left(\frac{D_{o}}{D_{i}}\right)}} \qquad \dots (10.63)$
	$\frac{k_{eff}}{k} = 0.386 \left(\frac{Pr}{0.861 + Pr}\right)^{\frac{1}{4}} \cdot Ra_{cc}^{\frac{1}{4}} \qquad \dots 100 < Ra_{cc} < 107.\dots(10.64)$
	and,
	$\operatorname{Ra}_{cc} = \frac{\left(\ln\left(\frac{D_{o}}{D_{i}}\right)\right)^{4} \cdot \operatorname{Ra}_{b}}{b^{3} \cdot \left[\frac{1}{D_{i}^{\frac{3}{5}} + \frac{1}{D_{o}^{\frac{3}{5}}}\right]^{5}} \qquad $

Concentric spherical annuli:	$Q = \pi \cdot k_{eff} \left(\frac{D_i \cdot D_o}{b} \right) \cdot \left(T_i - T_o \right)$	(10.66)
	$\frac{\frac{k \text{ eff}}{k}=0.74 \left(\frac{Pr}{0.861+Pr}\right)^{\frac{1}{4}} Ra_{cs}^{\frac{1}{4}}}$	10 < Ra _{cs} < 106(10.67)
	and,	(10.68)
	$Ra_{cs} = \frac{b \cdot Ra_{b}}{D_{0}^{4} \cdot D_{i}^{4} \cdot \left[\frac{1}{D_{i}^{\frac{7}{5}} + \frac{1}{D_{0}^{\frac{7}{5}}}}\right]^{5}}$	
Cooling of turbine blades: (hole dia. D, hole length, L)	$Gr_{L} = \frac{\left(r_{m} \cdot \omega^{2}\right) \cdot \beta \cdot \Delta T \cdot L^{3}}{v^{2}}$	
	Mostly, $Gr_{L} > 10^{12}$, and we use:	
	Nu $_{a} = \frac{h_{a} \cdot L}{k} = 0.0246 \left[\frac{Pr^{1.17} \cdot Gr_{L}}{\frac{2}{1+0.495 \cdot Pr^{3}}} \right]^{0.4}$	(10.69)
	Total heat transferred:	
	$Q=h_{a}\cdot(\pi\cdot d\cdot L)\cdot\left(T_{s}-T_{a}\right)$	(10.70)
Rotating cylinders:	Peripheral-speed Reynolds number:	
	$\operatorname{Re}_{\omega} = \frac{\pi \cdot D^2 \cdot \omega}{v}$	(10.71)
	For (Re $_{_{\odot}}$ > 8000 in air): Avg. Nusselt number:	
	Nu $\mathbf{D} = \frac{\mathbf{h} \cdot \mathbf{C}}{\mathbf{k}} = 0.11 \cdot \left(0.5 \cdot \mathrm{Re}_{\odot}^{2} + \mathrm{Gr}_{\mathbf{D}} \cdot \mathrm{Pr} \right)^{0.32}$	5(10.72)

Rotating disk:	For laminar regime, avg. Nu for a disk rotating in air:	
	Nu $_{D} = \frac{h a \cdot D}{k} = 0.36 \left(\frac{\omega \cdot D^{2}}{v} \right)^{\frac{1}{2}}$ for $\omega \cdot D^{2}/v < 106$ (10.73) For laminar flow between $r = 0$ and $r = r_{c}$ and turbulent flow between $r = r_{c}$ and $r = r_{o'}$ average value of Nusselt number is given by:	
	$\operatorname{Nu}_{\mathbf{r}} = \frac{\operatorname{h}_{\mathbf{c}} \cdot \mathbf{r}_{\mathbf{o}}}{\operatorname{k}} = 0.36 \cdot \left(\frac{\omega \cdot \mathbf{r}_{\mathbf{o}}^{2}}{v}\right)^{\frac{1}{2}} \cdot \left(\frac{\mathbf{r}_{\mathbf{c}}}{\mathbf{r}_{\mathbf{o}}}\right)^{2} + 0.015 \cdot \left(\frac{\omega \cdot \mathbf{r}_{\mathbf{o}}^{2}}{v}\right)^{0.8} \cdot \left[1 - \left(\frac{\mathbf{r}_{\mathbf{c}}}{\mathbf{r}_{\mathbf{o}}}\right)^{2.6}\right]$ for $\mathbf{r}_{\mathbf{c}} < \mathbf{r}_{\mathbf{o}}$ (10.75)	
Rotating sphere:	For Pr > 0.7, in laminar flow regime, (i.e. $\text{Re}_{\omega} = \omega . D^2 / \nu < 5 \times 10^4$), avg. Nusselt number is given by:	
	Nu $_{D}=0.43 \cdot \text{Re}_{\omega}^{0.5} \cdot \text{Pr}^{0.4}$ Re _{ω} < 5 x 104(10.76)	
	and,	
	Nu $_{\rm D}$ =0.066 Re $_{\rm o}^{0.67} \cdot {\rm Pr}^{0.4}$ 5 x 104 < Re $_{\rm o}$ < 7 x 105(10.77)	
Rectangular fins on a vertical surface:	Optimum fin spacing:	
See Fig. 10.6.	$S_{opt} = 2.714 \frac{L}{Ra^{\frac{1}{4}}}$ (10.78)	
	h=1.31 $\frac{k}{S_{opt}}$ (10.79)	
	Rate of heat transfer:	
	$Q=h\cdot(2\cdot n\cdot L\cdot H)\cdot\left(T_{s}-T_{a}\right) \qquad \qquad$	


Rectangular fins on a horizontal surface:	For fins facing upwards for $T_s > T_a$ (or facing downward for $T_s < T_a$):		
See Fig. 10.7	$Nu_{s} = \left[\left(\frac{1500}{Ra_{s}} \right)^{2} + \left(0.081 \cdot Ra_{s}^{0.39} \right)^{-2} \right]^{\frac{-1}{2}} \dots (10.81)$		
	Above eqn. is valid over the range:		
	200 < Ra _s < 6 x 10 ⁵ , Pr = 0.71, 0.026 < H/W < 0.19, and 0.016 < S/W < 0.20, with the following definitions:		
	$Nu_{s} = \frac{q \cdot S}{\left(T_{s} - T_{a}\right) \cdot k}$		
	and,		
	$Ra_{s} = \frac{g \cdot \beta \cdot (T_{s} - T_{a}) \cdot S^{3}}{v \cdot \alpha}$		
Combined Natural and Forced Convection	$Gr_{L}/(Re_{L}^{2}) << 1$ forced convection regime (negligible free convection)		
	$Gr_{L}/(Re_{L}^{2}) >> 1$ free convection regime (negligible forced convection)		
	$Gr_{_L}/(Re_{_L}{}^2)\approx 1$ mixed convection regime (both free and forced convection are important)		
	In the mixed convection regime, following eqn. is used to calculate the Nusselt number:		
	$Nu^{m} = Nu_{forced}^{m} \pm Nu_{free}^{m} \qquad \dots \dots (10.89)$		
	A value of $m = 3$ is generally recommended. Positive or negative sign is taken if the free convection flow occurs in the same or opposite direction to that of forced convection.		

2A2.1 Natural convection from vertical plates and cylinders:

\$UnitSystem SI Pa C J

"**Prob. 2A2.1.1.** Considering the body of a man as a vertical cylinder of 300 mm dia and 170 cm height, calculate the heat generated by the body in one day. Take the body temp as 36 C and atmospheric temp as 14 C. [VTU – June/July 2011:]"

Fig. Prob.2A2.1.1

EES Solution:

2010 EYOM Li

This is the case of Natural convection from a vertical cylinder. This type of problem is often asked in the University exams.

So, let us write a EES PROCEDURE, so that we can call the PROCEDURE from the main program:

Day one. It's the moment you've been waiting for. When you prove your worth, meet new challenges, and go looking for the next one. It's when your dreams take shape. And your expectations can be exceeded. From the day you join us, we're committed to helping you achieve your potential. So, whether your career lies in assurance, tax, transaction, advisory or core business services, shouldn't your day one be at Ernst & Young?

What's next for your future? ey.com/careers

JERNST & YOUNG Quality In Everything We Do

PROCEDURE NC_VertCyl_Air(T_s, T_inf, L, D : Gr_L, Ra_L, Nusselt_L_bar, h_bar, Q)

"Nat. convection (NC) on Vertical Cylinder, with Air" "Inputs: T_s (C), T_inf (C), L (m), D (m)" "Outputs: Gr_L, Ra_L, Nusselt_L_bar, h_bar (W/m^2-C), Q (W)"

```
T_f := (T_s+T_inf)/2
beta := 1/(T_f+273)
g := 9.81[m/s^2]
mu:=Viscosity(Air,T=T_f)
rho:=Density(Air,T=T_f,P=1.01325e05)
nu := mu/rho
cp:=Cp(Air,T=T_f)
Gr_L := g*beta*(T_s-T_inf)*L^3/nu^2
k:=Conductivity(Air,T=T_f)
```

 $Pr := mu^{\star}cp/k$ $Ra_L := Gr_L^{\star}Pr$

"Verify:"

factor := 35*L/Gr_L^0.25 " Now if D > factor, OK to apply vertical plate eqn."

IF (D < factor) THEN Call WARNING ('Solution may not be accurate, since D < factor. factor 35*L/ Gr_L^0.25 = XXXA1', factor)

"Calculate Nu:" A := 0.387*Ra_L^(1/6) B := (0.492/Pr)^(9/16) C := (1+B)^(8/27) Nusselt_L_bar:= (0.825 + A/C)^2 "Finds Nu" h_bar := Nusselt_L_bar*k/L "Finds h" "Therefore:" Q := h_bar * (pi*D*L)*(T_s - T_inf) "W"

END

"_____"

"Data:"

D = 0.3[m] L = 1.7[m] $T_s = 36[C]$ $T_inf = 14[C]$

CALL NC_VertCyl_Air(T_s, T_inf, L, D : Gr_L, Ra_L, Nusselt_L_bar, h_bar, Q)

Qperday = Q * 3600 * 24 "Joules"

Results: Main:		

Main NC_VertCyl_Air		
Unit Settings: SI C Pa J ma	iss deg	
D = 0.3 [m]	GrL = 1.459E+10	h = 3.873 [W/m ² -C]
L=1.7 [m]	Nusselt _{L,bar} = 258.1	Q = 136.5 [W]
Qperday = 1.179E+07 [J]	Ra _L = 1.063E+10	T _{inf} = 14 [C]

Results: PROCEDURE:

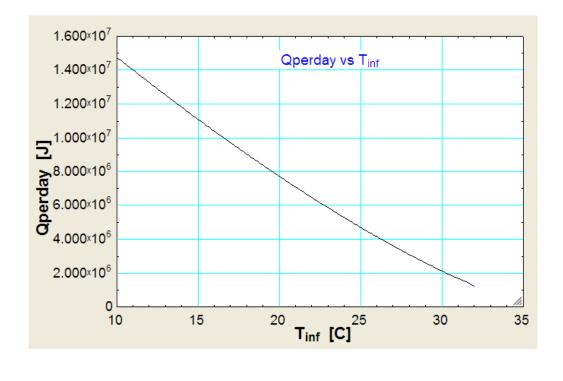
T_s = 36 [C]

Main NC_VertCyl_Air	· · ·	· ·		
Local variables in Procedure NC_VertCyl_Air (1 call, 0.03 sec)				
A =18.15	B =0.8022	<mark>β=</mark> 0.003356 [1/K]		
C =1.191	cp=1005 [J/kg-C]	D =0.3 [m]		
factor=0.1712	g=9.81 [m/s ²]	Gr _L =1.459E+10		
h=3.873 [W/m ^{2_} C]	k=0.02551 [W/m-C]	L=1.7 [m]		
μ=0.00001849 [kg/m-s]	v=0.00001561 [m ² /s]	Nusselt _{L,bar} =258.1		
Pr=0.7281	Q =136.5 [W]	Ra _L =1.063E+10		
ρ=1.184 [kg/m ³]	T _f =25 [C]	T _{inf} =14 [C]		
T _s =36 [C]				

Thus:

Heat generated per day = Qperday = 1.179E07 J Ans.

Click on the ad to read more


Table 1			
▶ 112	¹ T _{inf} [C]	² Qperday 【 [J]	3
Run 1	10	1.476E+07	4.1
Run 2	12	1.325E+07	3.989
Run 3	14	1.179E+07	3.873
Run 4	16	1.038E+07	3.75
Run 5	18	9.021E+06	3.62
Run 6	20	7.711E+06	3.481
Run 7	22	6.456E+06	3.331
Run 8	24	5.262E+06	3.167
Run 9	26	4.133E+06	2.985
Run 10	28	3.077E+06	2.778
Run 11	30	2.105E+06	2.535
Run 12	32	1.235E+06	2.23

Plot Qperday as atmospheric temp varies from 10 C to 32 C:

19

Download free eBooks at bookboon.com

\$UnitSystem SI Pa C J

"**Prob. 2A2.1.2.** A nuclear reactor with its core constructed of parallel vertical plates 2.2 m high and 1.4 m wide has been designed on free convection heating of liquid Bismuth. The max temp of plate surface is limited to 960 C while the lowest allowable temp of bismuth is 340 C. Calculate the max possible heat dissipation from both sides of each plate. Use the following correlation: Nu = 0.13 (Gr. Pr)^0.33. Take the following physical properties for bismuth: [VTU – May/June 2006]"

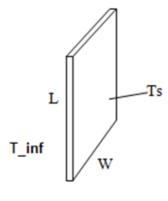


Fig. Prob.2A2.1.2

EES Solution:

"Data:"

W = 1.4[m] L = 2.2[m] T_s = 960[C] T_inf = 340[C] T_f = (T_s+T_inf)/2 g = 9.81[m/s^2]

"Properties of Bismuth at T_f:"

rho=10000[kg/m^3] beta = 1.08e-03[1/K] mu=3.66e-04[kg/m-s] nu = mu/rho "[m^2 / s]" cp=150.7[J/kg-C] k= 13.02[W/m-C]

"Calculations:"

Gr = g * beta * (T_s-T_inf) * L^3 / nu^2 "...Grashoff No." Pr = mu * cp /k "...Prandtl No." Ra = Gr * Pr "...Rayleigh No."

Nusselt = 0.13 * Ra^0.33 "finds Nusselts No." Nusselt = h * L / k "finds h"

Qperplate = 2 * h * (L * W) * (T_s – T_inf) "W heat tr from both sides of one plate"

Results:

Unit Settings: SI C Pa J mass deg

β=0.00108 [1/K]	cp = 150.7 [J/kg-C]	g = 9.81 [m/s ²]
Gr = 5.221E+16	h = 41678 [W/m ² -C]	k = 13.02 [W/m-C]
L = 2.2 [m]	μ=0.000366 [kg/m-s]	v = 3.660E-08 [m ² /s]
Nusselt = 7042	Pr = 0.004236	Qperplate = 1.592E+08 [W]
Ra = 2.212E+14	ρ=10000 [kg/m ³]	T _f = 650 [C]
T _{inf} = 340 [C]	T _s = 960 [C]	W = 1.4 [m]

Thus:

Max heat dissipation from each plate (both sides included) = Qperplate = 1.592E08 W ... Ans.

"**Prob. 2A2.1.3.** A tube of 0.036 m OD and 40 cm length is maintained at a uniform temp of 100 C. It is exposed to air at a temp of 20 C. Determine the rate of heat transfer from the surface of the tube when (a) the tube is vertical (b) the tube is horizontal. [VTU – June/July 2009]"

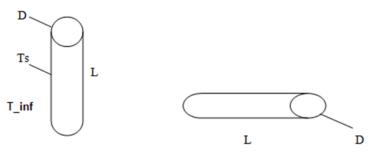
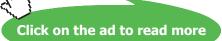


Fig. Prob.2A2.1.3 (a) and (b)



Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Dove

EES Solution:

"Data:"

D = 0.036[m] L = 0.4[m] $T_s = 100[C]$ $T_inf = 20[C]$ $g = 9.81[m/s^2]$

 $T_f = (T_s+T_inf)/2$

"Calculations:"

 $beta = 1/(T_f+273)$

"Properties of Air at T_f:"

mu=Viscosity(Air,T=T_f)"[kg/m-s]"
rho=Density(Air,T=T_f,P=1.01325E05) "[kg/m^3]"
nu = mu/rho "[m^2/s]"
cp=Cp(Air,T=T_f) "[J/kg-C]"
k=Conductivity(Air,T=T_f) "[W/m-C]"

Pr = mu * cp / k "...Prandtl No." Ra_L = Gr_L * Pr "...Rayleigh No."

"Verify:"

factor = 35 * L / Gr_L^0.25 " = 0.0978; Now D > factor, so, OK to apply vertical plate eqn."

"Case 1: cyl is vertical:"

 $Gr_L = g * beta * (T_s-T_inf) * L^3 / nu^2$

"Calculate Nu:"

A = 0.387 * Ra_L^(1/6) B = (0.492 / Pr)^(9/16) C = (1+B)^(8/27) Nusselt_vert = (0.825 + A / C)^2 "Finds Nu" Nusselt_vert = h_vert * L / k "Finds h"

"Therefore:"

Q_vert = h_vert * (pi *D * L) * (T_s - T_inf) "W"

"Case 2: cyl is horizl:"

 $Gr_D = g * beta * (T_s-T_inf) * D^3 / nu^2$ $Ra_D = Gr_D * Pr$

"Calculate Nu:"

 $AA = 0.387 * Ra_D^{(1/6)}$ BB = (0.559 / Pr)^(9/16) CC = (1+BB)^(8/27) Nusselt_horizl = (0.6 + AA / CC)^2 "Finds Nu_horizl" Nusselt_horizl = h_horizl * D/k "Finds h_horizl"

"Therefore:"

 $Q_{horizl} = h_{horizl} * (pi * D * L) * (T_s - T_inf) "W"$

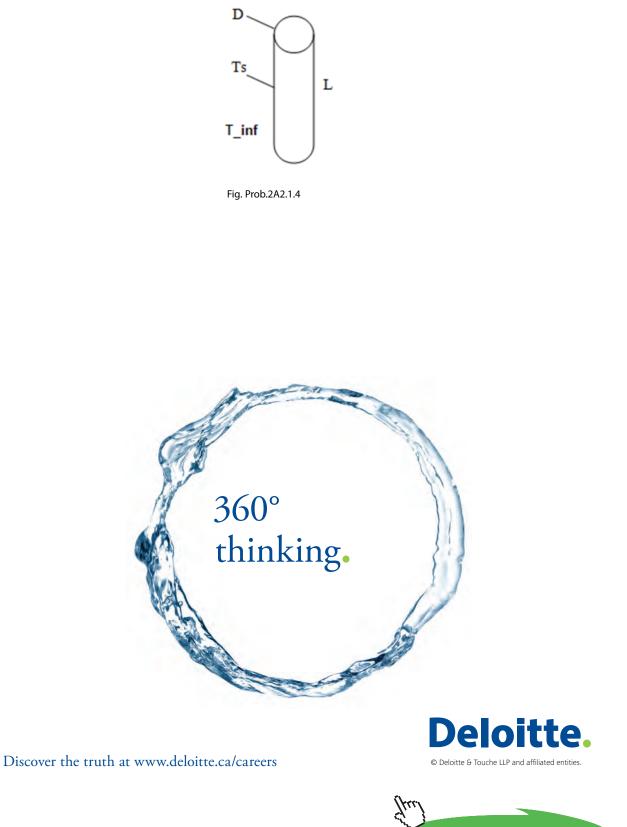
Results:

Unit Settings: SI C Pa J mass rad A = 10.03 AA = 3.008 BB = 0.8674 β = 0.003003 [1/K] CC = 1.203 cp = 1007 [J/kg-C] g = 9.81 [m²/s] factor = 0.0978 [m] GrL = 4.199E+08 h_{horizl} = 7.495 [W/m²-C] k = 0.02808 [W/m-C] L = 0.4 [m] $v = 0.00001895 [m^2/s]$ Nusselt_{horizl} = 9.608 Pr = 0.7199 Q_{horizl} = 27.12 [W] Ra_D = 220384 Ra_L = 3.023E+08 $T_{f} = 60$ [C] $T_{inf} = 20$ [C]

B = 0.8073			
C = 1.192			
D = 0.036 [m]			
Gr _D = 306135			
h _{vert} = 5.992 [W/m ² -C]			
μ = 0.00002008 [kg/m-s]			
Nusselt _{vert} = 85.35			
Q _{vert} = 21.69 [W]			
ρ=1.06 [kg/m ³]			
T _s =100 [C]			

Thus:

When tube is vertical: Q_vert = 21.69 W Ans.


When tube is horizontal: Q_horizl = 27.12 W Ans.

24

Click on the ad to read more

\$UnitSystem SI Pa C J

"**Prob. 2A2.1.4.** A 500 W cylindrical immersion heater (3 cm dia, 20 cm long) is placed vertically in stagnant water at 25 C. Calculate the average surface temp of heater. [VTU – July/Aug. 2004]"

EES Solution:

"Data:"

D = 0.03[m] L = 0.2[m] T_inf = 25[C] {T_s = 100 "[C] ... assumed, will be corrected later"} g = 9.81[m/s^2] Q = 500 [W] T_f = (T_s+T_inf)/2 "[C]... mean film temp."

"Calculations:"

P = 1.01325e05[N/m^2] "....Pressure"

"Properties of Water at T_f:"

beta=VolExpCoef(Water,T=T_f,P=P) "[1/K]"
mu=Viscosity(Water,T=T_f,P=P) "[kg/m-s]"
rho=Density(Water,T=T_f,P=P) "[kg/m^3]"
nu = mu/rho "[m^2/s]"
cp=Cp(Water,T=T_f,P=P) "[J/kg-C]"
k=Conductivity(Water,T=T_f,P=P)
Pr = mu * cp / k "...Prandtl No."
Ra_L = Gr_L * Pr "...Rayleigh No."

"Verify:"

factor = 35 * L / Gr_L^0.25 " = 0.033; Now (D > factor) is almost satisfied. So, OK to apply vertical plate eqn."

"Cyl. is vertical:"

 $Gr_L = g * beta * (T_s-T_inf) * L^3 / nu^2$

"Calculate Nu:"

A = 0.387 * Ra_L^(1/6) B = (0.492 / Pr)^(9/16) C = (1+B)^(8/27) Nusselt_vert = (0.825 + A / C)^2 "Finds Nu" Nusselt_vert = h_vert * L / k "Finds h"

"Therefore:"

Q_vert = h_vert * (pi *D * L) * (T_s - T_inf) "W"

 $Q = Q_vert$

Results:

Unit Settings: SI C Pa J mass rad

- A = 17.61 C = 1.078 factor = 0.03313 [m] h_{vert} = 908.9 [W/m²-C] μ = 0.0006583 [kg/m-s] P = 101325 [N/m²] Q_{vert} = 500 [W] T_f = 39.59 [C]
- B = 0.2894 cp = 4182 [J/kg-C] g = 9.81 [m/s²] k = 0.6173 [W/m-C] v = 6.634E-07 [m²/s] Pr = 4.46 Ra_L = 8.888E+09 T_{inf} = 25 [C]
- $\beta = 0.0003828 [1/K]$ D = 0.03 [m] GrL = 1.993E+09 L = 0.2 [m] Nusselt_{vert} = 294.5 Q = 500 [W] ρ = 992.4 [kg/m³] T_s = 54.18 [C]

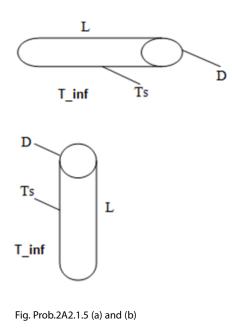
Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd


Thus:

The average surface temp of heater = $T_s = 54.18 \text{ C} \dots \text{ Ans.}$

\$UnitSystem SI Pa C J

"**Prob. 2A2.1.5.** A tank contains water at 15 C. The water is heated by passing steam through a pipe placed in water. The pipe is 60 cm long and 4 cm dia and its surface is maintained at 85 C. Find the heat loss per hour from the pipe if (a) the pipe is kept horizontal (b) the pipe is kept vertical.

Following relation may be used: Nu = C. (Gr . Pr)^m where C = 0.53, m = 0.25 when $10^6 < (Gr. Pr) < 10^9$ and C = 0.13, m = 1/3 when (Gr. Pr) > 10^9 . Properties of water at average temp of 50 C are given. [M.U. 1998]"

EES Solution:

"Data:"

D = 0.04[m] L = 0.6[m] $T_inf = 15[C]$ $T_s = 85 [C]$ $g = 9.81[m/s^2]$ $T_f = (T_s+T_inf)/2 "[C]... mean temp."$

"Calculations:"

P = 1.01325e05[N/m^2] "....Pressure"

"Properties of Water at T_f:"

beta=VolExpCoef(Water,T=T_f,P=P) "[1/K]"
mu=Viscosity(Water,T=T_f,P=P) "[kg/m-s]"
rho=Density(Water,T=T_f,P=P) "[kg/m^3]"
nu = mu/rho "[m^2/s]"
cp=Cp(Water,T=T_f,P=P) "[J/kg-C]"
k=Conductivity(Water,T=T_f,P=P)
Pr = mu * cp / k "...Prandtl No."

" Case 1: Cyl. is vertical: Therefore, L is the characteristic dimension:"

 $Gr_L = g * beta * (T_s-T_inf) * L^3 / nu^2 "... Grashoff No." Ra_L = Gr_L * Pr "... Rayleigh No."$

"Verify:"

factor = 35 * L / Gr_L^0.25 " = 0.03062 which is less than D; so, OK to apply vertical plate eqn."

"Calculate Nusselt_vert when cyl is vertical:"

"Note that Ra_L = 8.026E11 > 10^9"

"Therefore:"

Nusselt_vert = 0.13 * Ra_L^(1/3) "Finds Nu" Nusselt_vert = h_vert * L / k "Finds h"

"Therefore:"

 $Q_vert = h_vert * (pi *D * L) * (T_s - T_inf) "W"$

Q_vert_perhour = Q_vert * 3600 "[Joules/h]"

"Case 2: Cyl. is horizontal: Therefore, D is the characteristic dimension:"

 $Gr_D = g * beta * (T_s-T_inf) * D^3 / nu^2$ $Ra_D = Gr_D * Pr "...Rayleigh No."$ "Calculate Nusselt_horizl when cyl is horizontal:"

"Note that Ra_D = 2.378E08 < 10^9"

"Therefore:"

Nusselt_horizl = 0.53 * Ra_D^0.25 "Finds Nu"

Nusselt_horizl = h_horizl * D / k "Finds h"

"Therefore:"

 $Q_{horizl} = h_{horizl} * (pi *D * L) * (T_s - T_inf) "W"$

Q_horizl_perhour = Q_horizl * 3600 "[Joules/h]"

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**

Download free eBooks at bookboon.com

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

Results:

Unit Settings: SI C Pa J mass rad

β=0.0004572 [1/K] cp	= 4181 [J/kg-C]	D = 0.04 [m]
factor = 0.03062 [m] g =	• 9.81 [m/s ²]	Gr _D = 6.554E+07
Gr _L = 2.212E+11	orizi = 1037 [W/m ² -C]	h _{vert} = 1269 [W/m ² -C]
k = 0.6305 [W/m-C]	= 0.6 [m]	μ=0.0005471 [kg/m-s]
v = 5.537E-07 [m ² /s]	usselt _{horizl} = 65.82	Nusselt _{vert} = 1208
P = 101325 [N/m ²] Pr	= 3.628	Q _{horizl} = 5475 [W]
Q _{horizl,perhour} = 1.971E+07 [J]	vert = 6700 [W]	Q _{vert,perhour} = 2.412E+07 [J]
Ra _D = 2.378E+08	aL = 8.026E+11	ρ=988 [kg/m ³]
T _f = 50 [C] T _{ir}	_{nf} = 15 [C]	T _s =85 [C]

Thus:

Q_horizl per hour = 1.971E07 J /h Ans. Q_vert per hour = 2.412E07 J /h Ans.

Prob. 2A2.1.6. In a heat exchanger, vertical pipes of 10 cm OD are used. The surface temp of these pipes is 100 C in a room where the air is at 20 C. The pipes are 3 m long. What is the rate of heat loss per metre length of the pipe? Properties of Air at 60 C are given. [M.U. May 1999]

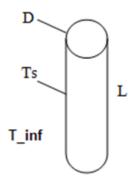


Fig. Prob.2A2.1.6

Mathcad Solution:

First, write a function for Nusselts No. in free convection over a vertical cylinder / vertical plate for different ranges of Rayleigh Numbers. Use Churchill and Chu's equation:

Nusselt_vertical_plate_cyl(Ra, Pr) := $\begin{vmatrix} \text{return "Rayleigh No. should be >10000 " if Ra<10^4} \\ \text{return } \begin{bmatrix} 0.68 + \frac{0.067 \cdot \text{Ra}^{0.25}}{\left[1 + \left(\frac{0.492}{\text{Pr}}\right)^{\frac{9}{16}}\right]^{\frac{9}{16}}} \end{vmatrix} \text{ if } \text{Ra} \le 10^9 \\ \text{return "Ra should be less than } 10^{\circ}12^{\circ} \text{ if } \text{Ra} > 10^{12} \\ \begin{bmatrix} 0.825 + \frac{0.387 \cdot \text{Ra}^{\frac{1}{6}}}{\left[1 + \left(\frac{0.492}{\text{Pr}}\right)^{\frac{9}{16}}\right]^{\frac{9}{27}}} \end{vmatrix} \text{ if } \text{Ra} \le 10^{12} \\ \end{vmatrix}$

Data:

L := 3.0 m D := 0.1 m $T_s := 100 \text{ C}$ $T_{inf} := 20 \text{ C}$ $g := 9.81 \text{ m/s}^2$

Then, mean film temp:

$$T_{f} := \frac{T_{s} + T_{inf}}{2} \quad i.e. \qquad T_{f} = 60 \quad C$$

Properties of Air at T_f: Use the Mathcad Functions already written. See Prob. 2A1.2.5.

$$\begin{split} \rho &:= rho_Air \left(T_{f} + 273 \right) & i.e. \quad \rho = 1.06 \quad kg/m^{3} \\ k &:= k_Air \left(T_{f} + 273 \right) & i.e. \quad k = 0.028 \quad W/m.K \\ \mu &:= mu_Air \left(T_{f} + 273 \right) & i.e. \quad \mu = 2 \cdot 10^{-5} \quad kg/m.s \\ Pr &:= Pr_Air \left(T_{f} + 273 \right) & i.e. \quad Pr = 0.702 \quad ... Prandtl No. \\ \nu &:= \frac{\mu}{\rho} & i.e. \quad \nu = 1.886 \cdot 10^{-5} \quad m^{2}/s \, ... \, kinematic viscosity \end{split}$$

Calculations:

 $A := \pi \cdot D \cdot L$ i.e. A = 0.942 m^A2... area for heat transfer

$$\Delta T := T_s - T_{inf} \qquad \Delta T = 80 \quad C$$

$$\beta := \frac{1}{T_f + 273} \qquad \beta = 3.003 \cdot 10^{-3} \qquad 1/K....coeff of vol. expansivity$$

Download free eBooks at bookboon.com

Grashoff No and Rayleigh No.:

$$\operatorname{Gr}_{L} := \frac{L^{3} \cdot g \cdot \beta \cdot \Delta T}{v^{2}}$$
 i.e. $\operatorname{Gr}_{L} = 6.623 \cdot 10^{9}$ Grashoff No.
 $\operatorname{Ra}_{L} := \operatorname{Gr}_{L} \cdot \operatorname{Pr}$ i.e. $\operatorname{Ra}_{L} = 4.652 \cdot 10^{9}$ Rayleigh No.

Verify that Vertical plate relation is applicable i.e. $D > (35 * L) / Gr_L^0.25$:

Now, factor:: $\frac{35 \cdot L}{Gr_L^{0.25}} = 0.123$ and, D = 0.1 ...approxly equal to the factor.

Therefore:

Nusselts No....Use the function for Nu written above:

Nu L := Nusselt_vertical_plate_cyl(Ra L, Pr)

i.e. Nu_L = 197.947Nusselts No.

Heat transfer coeff:

$$h := \frac{k \cdot Nu_L}{L}$$
 i.e. $h = 5.616$ W/m^2.K heat transfer coeff.

X KBS Group

CAREERKICKSTART

An app to keep you in the know

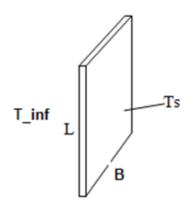
Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

33


Rate of heat transfer per metre length:

$$Q := \frac{h \cdot A \cdot \Delta T}{L}$$
 i.e. $Q = 141.143$ W/m, ...heat tr. per metre length

Prob. 2A2.1.7. A hot plate of 100 cm height and 25 cm width is exposed to atmospheric air at 25 C. The surface temp of plate is 95 C. Find the heat loss from both surfaces of the plate.

(b) If the height of the plate is reduced to 50 cm and width is increased to 40 cm, what will be the change in heat loss?

Following empirical relation may be used: $Nu = C * (Gr \cdot Pr)^m$ where: C = 0.59 and m = 0.25 if (Gr. $Pr) < 10^{9}$, and C = 0.1, m = 1/3 if (Gr. $Pr) > 10^{9}$. Properties of Air are given. [M.U. – Dec. 1998]

Mathcad Solution:

First, write a function for Nusselts No. in free convection over a vertical cylinder / vertical plate for different ranges of Rayleigh Numbers:

$$\begin{split} \text{Nusselt_vertical_plate_cyl}(\text{Ra}) &\coloneqq & \text{return "Rayleigh No. should be >10000 "} \quad \text{if } \text{Ra < 10}^4 \\ & \text{return } \left(0.59 \cdot \text{Ra}^{0.25} \right) \quad \text{if } \text{Ra \le 10}^9 \\ & \text{return "Ra should be less than } 10^{\circ}12^{\circ} \quad \text{if } \text{Ra > 10}^{12} \\ & \left(\begin{array}{c} 1\\ 0.1 \cdot \text{Ra}^{\frac{1}{3}} \end{array} \right) \quad \text{if } \text{Ra \le 10}^{12} \end{split}$$

Data:
L := 1 m B := 0.25 m T_s := 95 C T_{inf} := 25 C
T_f :=
$$\frac{T_s + T_{inf}}{2}$$
 i.e. T_f = 60 C g := 9.81 m/s^2
 $\beta := \frac{1}{T_f + 273}$ i.e. $\beta = 3.003 \cdot 10^{-3}$ 1/K... coeff of vol. expansivity

Properties of Air:

Use the Mathcad functions for air, already written. See Prob. 2A1.2.5.

$$\begin{split} \rho &:= rho_Air \left(T_{f} + 273 \right) & i.e. \quad \rho = 1.06 \quad kg/m^{3} \\ k &:= k_Air \left(T_{f} + 273 \right) & i.e. \quad k = 0.028 \quad W/m.K \\ \mu &:= mu_Air \left(T_{f} + 273 \right) & i.e. \quad \mu = 2 \cdot 10^{-5} \quad kg/m.s \\ Pr &:= Pr_Air \left(T_{f} + 273 \right) & i.e. \quad Pr = 0.702 \quad ... Prandtl No. \\ \nu &:= \frac{\mu}{\rho} & i.e. \quad \nu = 1.886 \cdot 10^{-5} \quad m^{2}/s \; ... \; kinematic viscosity \end{split}$$

Case 1: Plate held vertical: L is the characteristic dimension:

Nusselts No.: Use the function written above:

Nu := Nusselt_vertical_plate_cyl(Ra)

i.e. Nu = 159.668Nusselts No.

Therefore, heat transfer coeff:

 $Q := h \cdot A \cdot \Delta T \cdot 2$ i.e. Q = 158.546 W, ...heat tr. from both surfaces... Ans.

Heat transfer Q (from both surfaces):

 $Q := h \cdot A \cdot \Delta T \cdot 2$ i.e. Q = 158.546 W, ...heat tr. from both surfaces... Ans.

Case 2: Plate held vertical, but L = 0.5 m and B = 0.4 m:

L := 0.5 m B := 0.4 m A := L ·B i.e. A = 0.2 m^2 ... area

$$\Delta T := T_s - T_{inf}$$
 i.e. $\Delta T = 70$ C

Then:

 $\operatorname{Gr} := \frac{L^3 \cdot g \cdot \beta \cdot \Delta T}{v^2}$ i.e. $\operatorname{Gr} = 7.244 \cdot 10^8$

.

....Grashoff No.

and, Ra := Gr·Pr i.e. Ra = 5.088•10⁸Rayleigh No.

Nu := Nusselt_vertical_plate_cyl(Ra)

i.e. Nu = 88.612 ...Nusselts No.

ORACLE

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

36

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

Heat transfer coeff:

 $h := \frac{k \cdot Nu}{L}$ i.e. h = 5.028 W/m².C

Heat transfer Q:

 $Q := h \cdot A \cdot \Delta T \cdot 2$ i.e. Q = 140.783 W, ...heat tr. from both surfaces Ans.

Prob. 2A2.1.8. An electric heating blanket is to dissipate 400 W on the high setting when hanging in air at 20 C. If the blanket is 1.3 m wide, (a) what is the length required if its average temp at the high setting is to be 40 C? (b) if the average temp at the low setting is to be 30 C, what is the rate of heat dissipation possible? [Ref. 5]

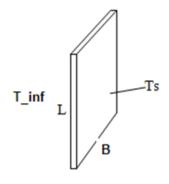


Fig. Prob.2A2.1.8

Mathcad Solution:

First write a function for Nusselts No. in free convection over a vertical cylinder / vertical plate for different ranges of Rayleigh Numbers. Use Churchill and Chu's equation: Ref.[3]

Nusselt_vertical_plate_cyl(Ra,Pr) := return "Rayleigh No. should be >10000 " if Ra<10⁴
return
$$\left[0.68 + \frac{0.067 \cdot Ra^{0.25}}{\left[1 + \left(\frac{0.492}{Pr} \right)^{\frac{9}{16}} \right]^{\frac{9}{9}}} \right]$$
 if Ra≤10⁹
return "Ra should be less than 10^12" if Ra>10¹²
 $\left[0.825 + \frac{0.387 \cdot Ra^{\frac{1}{6}}}{\left[1 + \left(\frac{0.492}{Pr} \right)^{\frac{9}{16}} \right]^{\frac{9}{27}}} \right]^{2}$ if Ra≤10¹²

Data:

B := 1.3 m T_s := 40 C T_{inf} := 20 C Q1 := 400 W
T_f :=
$$\frac{T_s + T_{inf}}{2}$$
 i.e. T_f = 30 C g := 9.81 m/s²
 $\beta := \frac{1}{T_f + 273}$ i.e. $\beta = 3.3 \cdot 10^{-3}$ 1/K... coeff of vol. expansivity

Properties of Air: Use the Mathcad functions for air, already written. See Prob. 2A1.2.5.

$$\begin{split} \rho &:= rho_Air \left(T_{f} + 273 \right) & i.e. \quad \rho = 1.165 \quad kg/m^{3} \\ k &:= k_Air \left(T_{f} + 273 \right) & i.e. \quad k = 0.026 \quad W/m.K \\ \mu &:= mu_Air \left(T_{f} + 273 \right) & i.e. \quad \mu = 1.857 \cdot 10^{-5} \quad kg/m.s \\ Pr &:= Pr_Air \left(T_{f} + 273 \right) & i.e. \quad Pr = 0.707 \quad ... Prandtl No. \\ v &:= \frac{\mu}{\rho} & i.e. \quad v = 1.594 \cdot 10^{-5} \quad m^{2}/s \ ... \ kinematic viscosity \end{split}$$

Let the length of blanket be L m.

Then:

$$\begin{split} A(L) &:= L \cdot B \quad \text{ i.e. } m^{A}2 \dots \text{ area} \\ \Delta T &:= T_{s} - T_{inf} \quad \text{ i.e. } \Delta T = 20 \quad C \\ Gr(L) &:= \frac{L^{3} \cdot g \cdot \beta \cdot \Delta T}{v^{2}} \qquad \dots \text{ Grashoff No. as a function of L} \\ Ra(L) &:= Gr(L) \cdot Pr \qquad \dots \text{ Rayleigh No. as a function of L} \end{split}$$

Nusselts No.: Use the function written above:

Nu(L) := Nusselt_vertical_plate_cyl(Ra(L),Pr)

Therefore, heat transfer coeff:

$$h(L) := \frac{k \cdot Nu(L)}{L} \qquad W/m^{2}.C$$

Heat transfer Q (from both surfaces):

 $Q(L) := h(L) \cdot A(L) \cdot \Delta T \cdot 2$ W, ...heat tr. from both surfaces

This should be equal to Q1 = 400 W.

Apply the Solve Block of Mathcad to find L to meet this condition.

Start with a guess value for L:

L := 2 m guess value

Given

Q(L)=Q1

L := Find(L)

i.e. L = 2.083 m Length of blanket.... Ans.

Click on the ad to read more

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

Then:

$Gr(L) = 2.303 \cdot 10^{10}$	Grashoff No Ans.
$Ra(L) = 1.627 \cdot 10^{10}$	Rayleigh No Ans.
Nu(L) = 294.142	Nusselts No Ans.
h(L) = 3.693	W/m^2.C Ans.
Q(L) = 400	W heat dissipated from both sides of blanket.

(b) For this blanket, now, if Ts = 30 C, what is the value of Q?

T_s := 30 C Therefore:

 $T_{f} := \frac{T_{s} + T_{inf}}{2}$ i.e. $T_{f} = 25$ C g := 9.81 m/s² $\beta := \frac{1}{T_{f} + 273}$ i.e. $\beta = 3.356 \cdot 10^{-3}$ 1/K... coeff of vol. expansivity $\Delta T := T_{s} - T_{inf}$ i.e. $\Delta T = 10$ C

Properties of Air: Use the Mathcad functions for air, already written. See Prob. 2A1.2.5.

$$\begin{split} \rho &:= rho_Air \left(T_{f} + 273 \right) & \text{i.e.} \quad \rho = 1.185 \quad kg/m^{3} \\ k &:= k_Air \left(T_{f} + 273 \right) & \text{i.e.} \quad k = 0.026 \quad W/m.K \\ \mu &:= mu_Air \left(T_{f} + 273 \right) & \text{i.e.} \quad \mu = 1.833 \cdot 10^{-5} \quad kg/m.s \\ Pr &:= Pr_Air \left(T_{f} + 273 \right) & \text{i.e.} \quad Pr = 0.708 \quad ... Prandtl No. \\ v &:= \frac{\mu}{\rho} & \text{i.e.} \quad v = 1.547 \cdot 10^{-5} \quad m^{2}/s \; ... \; kinematic viscosity \end{split}$$

And:

$$Gr(L) := \frac{L^3 \cdot g \cdot \beta \cdot \Delta T}{v^2} \qquad \dots Grashoff No. as a function of L$$
$$Ra(L) := Gr(L) \cdot Pr \qquad \dots Rayleigh No. as a function of L$$

Nusselts No.: Use the function written above:

Nu(L) := Nusselt_vertical_plate_cyl(Ra(L), Pr)

Therefore, heat transfer coeff:

$$h(L) := \frac{k \cdot Nu(L)}{L}$$
 W/m².C

Heat transfer Q (from both surfaces):

 $Q(L) := h(L) \cdot A(L) \cdot \Delta T \cdot 2$ W, ...heat tr. from both surfaces....

We get:

$Gr(L) = 1.243 \cdot 10^{10}$	Grashoff No Ans.
$Ra(L) = 8.794 \cdot 10^9$	Rayleigh No Ans.
Nu(L) = 242.123	Nusselts No Ans.
h(L) = 2.996	W/m^2.C Ans.
Q(L) = 162.269	W heat dissipated from both sides of blanket Ans.

Plot the variation of Q with ambient temp T_{inf} , when the dimensions of the blanket remain the same and surface temp T_{c} remains at 40 C:

Use vectorize operator of Mathcad to calculate in parallel for various values of T_{inf}: Data:

T_{inf} := (0 5 10 15 20 25) C.....variation of ambient temp.... written as a vector

B:=1.3 m T_s:=40 C Q1:=400 W L:=2.083 m g:=9.81 m/s^2

Then:

$$T_{f} := \frac{T_{s} + T_{inf}}{2} \quad \text{i.e.} \quad T_{f} = \begin{bmatrix} 20 & 22.5 & 25 & 27.5 & 30 & 32.5 \end{bmatrix} \quad C$$

$$\beta := \overrightarrow{\frac{1}{T_{f} + 273}} \quad \text{i.e.} \quad \beta = \begin{bmatrix} 3.413 \cdot 10^{-3} & 3.384 \cdot 10^{-3} & 3.356 \cdot 10^{-3} & 3.328 \cdot 10^{-3} & 3.3210^{-3} & 3.273 \cdot 10^{-3} \end{bmatrix}$$

$$\frac{1}{K... \text{ coeff of vol. expansivity}}$$

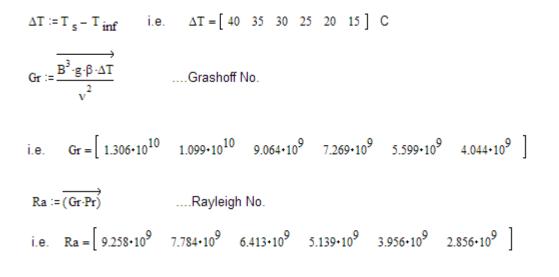
Properties of Air: Use the Mathcad functions for air, already written. See Prob. 2A1.2.5.

$\rho := \overline{\text{rho}_{Air}(T_{f} + 273)} \text{i.}$	e. $\rho = [1.205 \ 1.195 \ 1.185]$	1.175 1.165 1.156] kg/m^3	
$\mathbf{k} := \overline{\mathbf{k}_{Air} \langle T_{f} + 273 \rangle}$ i.	e. $\mathbf{k} = \begin{bmatrix} 0.025 & 0.026 & 0.026 \end{bmatrix}$	0.026 0.026 0.026] W/m.K	
$\mu := \overline{mu}_{Air} \langle T_f + 273 \rangle$ i.e.	$\mu = \begin{bmatrix} 1.808 \cdot 10^{-5} & 1.821 \cdot 10^{-5} & 1.8 \end{bmatrix}$	833+10 ⁻⁵ 1.845+10 ⁻⁵ 1.857+10 ⁻⁵ kg/m.s	1.869+10 ⁻⁵]
$\Pr := \overline{\Pr_Air(T_f + 273)} i.e.$	Pr = [0.709 0.708 0.708	0.707 0.707 0.706]Prandtl N	lo.
$v := \frac{r}{\rho}$ i.e. $v = \begin{bmatrix} r \\ r \end{bmatrix}$	1.501•10 ⁻⁵ 1.524•10 ⁻⁵ 1.547•1	10 ⁻⁵ 1.571•10 ⁻⁵ 1.594•10 ⁻⁵ 1. m^2/s kinematic viscosity	

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

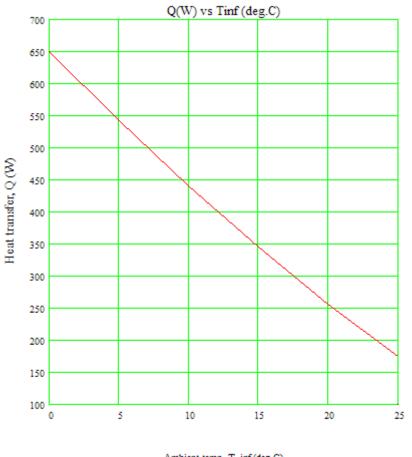


As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on **+44 (0)20 7000 7573**.

* Figures taken from London Business School's Masters in Management 2010 employment report

Nusselts No.: Use the function written above:


Therefore, heat transfer coeff:

$$h := \frac{\overline{k \cdot Nu}}{L}$$
 W/m^2.C

Heat transfer Q (from both surfaces):

Q := $(h \cdot L \cdot B \cdot \Delta T \cdot 2)$ W, ...heat tr. from both surfaces... i.e. Q = $\begin{bmatrix} 650.232 & 542.572 & 440.685 & 344.988 & 256.061 & 174.667 \end{bmatrix}$

Now, plot Q against T_{inf} : i := 0, 1.. 5

Ambient temp, T_inf(deg.C)

Plot the variation of T_s with possible heat transfer Q1, when ambient temp Ti_{nf} and the dimensions of the blanket remain the same:

Now, write the various quantities as functions of T_c:

Data:

Properties of Air: Use the Mathcad functions for air, already written. See Prob. 2A1.2.5.

$$\begin{split} \rho\left(T_{s}\right) &\coloneqq rho_Air\left(T_{f}\left(T_{s}\right)+273\right) & \text{i.e.} \quad \rho\left(T_{s}\right)=1.165 \quad kg/m^{A}3\\ k\left(T_{s}\right) &\coloneqq k_Air\left(T_{f}\left(T_{s}\right)+273\right) & \text{i.e.} \quad k\left(T_{s}\right)=0.026 \quad W/m.K\\ \mu\left(T_{s}\right) &\coloneqq mu_Air\left(T_{f}\left(T_{s}\right)+273\right) & \text{i.e.} \quad \mu\left(T_{s}\right)=1.857\cdot10^{-5} \quad kg/m.s\\ Pr\left(T_{s}\right) &\coloneqq Pr_Air\left(T_{f}\left(T_{s}\right)+273\right) & \text{i.e.} \quad Pr\left(T_{s}\right)=0.707 \quad ...Prandtl No.\\ v\left(T_{s}\right) &\coloneqq \frac{\mu\left(T_{s}\right)}{\rho\left(T_{s}\right)} & \text{i.e.} \quad v\left(T_{s}\right)=1.594\cdot10^{-5} \quad m^{A}2/s \; \; kinematic viscosity \end{split}$$

Then:

$$\begin{split} A &:= L \cdot B & \text{i.e.} \quad A = 2.708 \quad \text{m}^2 \dots \text{ area} \\ \Delta T \left\langle T_s \right\rangle &:= T_s - T_{inf} & \text{i.e.} \quad \Delta T \left\langle T_s \right\rangle = 20 \quad C \\ Gr \left\langle T_s \right\rangle &:= \frac{L^3 \cdot g \cdot \beta \left\langle T_s \right\rangle \cdot \Delta T \left\langle T_s \right\rangle}{v \left\langle T_s \right\rangle^2} & \dots \text{ Grashoff No. as a function of Ts} \\ Ra \left\langle T_s \right\rangle &:= Gr \left\langle T_s \right\rangle \cdot Pr \left\langle T_s \right\rangle & \dots \text{ Rayleigh No. as a function of Ts} \end{split}$$

Nusselts No.: Use the function written above:

$$\operatorname{Nu}(T_s) := \operatorname{Nusselt_vertical_plate_cyl}(\operatorname{Ra}(T_s), \operatorname{Pr}(T_s))$$

Therefore, heat transfer coeff:

$$\mathbf{h}(\mathbf{T}_{s}) := \frac{\mathbf{k}(\mathbf{T}_{s}) \cdot \mathbf{N}\mathbf{u}(\mathbf{T}_{s})}{\mathbf{L}}$$
 W/m^2.C

Heat transfer Q (from both surfaces):

$$Q(T_s) := h(T_s) \cdot A \cdot \Delta T(T_s) \cdot 2$$
 W, ...heat tr. from both surfaces....

This should be equal to Q1 = 400 W.

Apply the Solve Block of Mathcad to find $\mathrm{T}_{\!_{\mathrm{S}}}$ to meet this condition.

Start with a guess value for T_s:

T s := 30 C guess value

Given

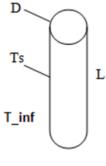
$$Q(T_s)=Q1$$

 $T_s(Q1) := Find(T_s)$
i.e $T_s(Q1) = 40$ C

Note: T_s is written as a function of Q1 , to draw graphs with various options of Q1:

Values of T_s for different values of Q1:

Q1 := 300, 320.. 500variation of Q1


Table:

Q1	T _s (Q1)
300	36.027	
320	36.842	
340	37. 6 47	
360	38.441	
380	39.225	
400	40	
420	40.76 7	
440	41.526	
460	42.278	
480	43.022	
500	43.76	

Plot:

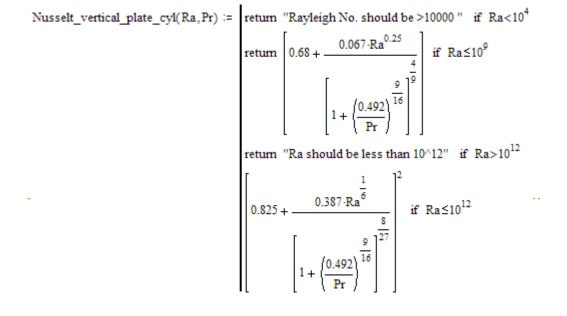

Prob. 2A2.1.9. A vertical pipe, 5 cm in dia carrying hot water is exposed to ambient air at 15 C. If the outer surface of the pipe is at 65 C, find the heat loss from 1 m length of pipe per hour. [VTU – July/ Aug. 2003]

Fig. Prob.2A2.1.9

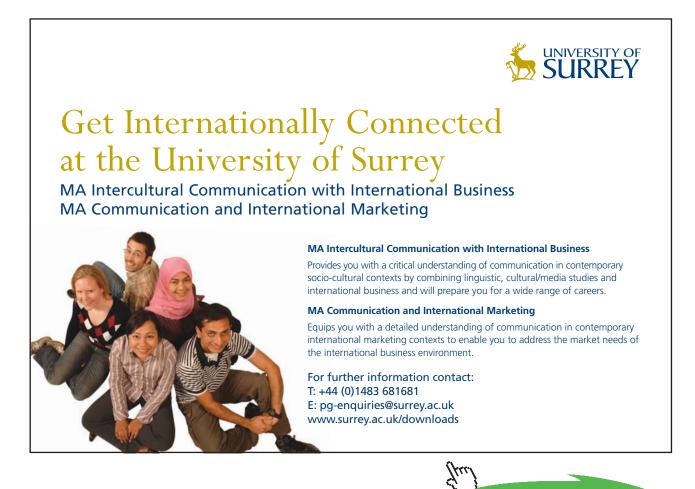
Mathcad Solution:

First write a function for Nusselts No. in free convection over a vertical cylinder / vertical plate for different ranges of Rayleigh Numbers. Use Churchill and Chu's equation: Ref.[3]

Data:

D := 0.05 m T_s := 65 C T_{inf} := 15 C L := 1 m
T_f :=
$$\frac{T_s + T_{inf}}{2}$$
 i.e. T_f = 40 C g := 9.81 m/s²
 $\beta := \frac{1}{T_f + 273}$ i.e. $\beta = 3.195 \cdot 10^{-3}$ 1/K... coeff of vol. expansivity

Properties of Air: Use the Mathcad functions for air, already written. See Prob. 2A1.2.5.


$$\begin{split} \rho &:= rho_Air \left(T_{f} + 273 \right) & \text{i.e.} \quad \rho = 1.128 \quad kg/m^{3} \\ k &:= k_Air \left(T_{f} + 273 \right) & \text{i.e.} \quad k = 0.027 \quad W/m.K \\ \mu &:= mu_Air \left(T_{f} + 273 \right) & \text{i.e.} \quad \mu = 1.906 \cdot 10^{-5} \quad kg/m.s \\ Pr &:= Pr_Air \left(T_{f} + 273 \right) & \text{i.e.} \quad Pr = 0.705 \quad ... Prandtl No. \\ v &:= \frac{\mu}{\rho} & \text{i.e.} \quad v = 1.689 \cdot 10^{-5} \quad m^{2}/s \, ... \text{ kinematic viscosity} \end{split}$$

Then:

$$\begin{split} \mathbf{A} &:= \mathbf{L} \cdot \mathbf{\pi} \cdot \mathbf{D} & \text{i.e.} \quad \mathbf{A} = 0.157 \quad \text{m}^{\text{A}} 2 \ ... \text{ area} \\ \Delta T &:= \mathbf{T}_{\text{s}} - \mathbf{T}_{\text{inf}} & \text{i.e.} \quad \Delta T = 50 \quad \text{C} \\ \mathbf{Gr}_{\text{L}} &:= \frac{\mathbf{L}^{3} \cdot \mathbf{g} \cdot \beta \cdot \Delta T}{v^{2}} \qquad \text{Grashoff No.} \\ \text{i.e.} \quad \mathbf{Gr}_{\text{L}} &= 5.491 \cdot 10^{9} \\ \text{Ra}_{\text{L}} &:= \mathbf{Gr}_{\text{L}} \cdot \mathbf{Pr} \qquad \text{Rayleigh No.} \end{split}$$

Nusselts No.: Use the function written above:

Nu L := Nusselt_vertical_plate_cyl(Ra L, Pr)

Click on the ad to read more

T

Therefore, heat transfer coeff:

 $\mathbf{h} := \frac{\mathbf{k} \cdot \mathbf{N} \mathbf{u}_{\mathbf{L}}}{\mathbf{L}}$

i.e. h = 5.029 W/m^2.C

Heat transfer Q:

 $Q := h \cdot A \cdot \Delta T$ W, ...heat tr.

i.e. Q = 39.501 W....Ans.

- and: Qperhour := Q-3600 J per metre length
- i.e. Qperhour = 1.422+10⁵ J/h ... per metre length.....Ans

If the ambient temp varies from 0 to 25 deg.C, with the surface temp remaining at 65 deg.C, plot the variation of Q with T_{inf} :

Use the vectorize operator of Mathcad:

D:=0.05 m T_s:=65 C L:=1 m g:=9.81 m/s²

T inf := (0 5 10 15 20 25) C range of values for Tinf.

$$T_{f} := \frac{T_{s} + T_{inf}}{2} \quad i.e. \quad T_{f} = \begin{bmatrix} 32.5 & 35 & 37.5 & 40 & 42.5 & 45 \end{bmatrix} \quad C$$

$$\beta := \overrightarrow{\frac{1}{T_{f} + 273}} \quad i.e. \quad \beta = \begin{bmatrix} 3.273 \cdot 10^{-3} & 3.247 \cdot 10^{-3} & 3.221 \cdot 10^{-3} & 3.195 \cdot 10^{-3} & 3.17 \cdot 10^{-3} \\ 1/K... \text{ coeff of vol. expansivity} \end{bmatrix} \quad 3.145 \cdot 10^{-3} \quad B_{f} = \begin{bmatrix} 3.273 \cdot 10^{-3} & 3.247 \cdot 10^{-3} & 3.221 \cdot 10^{-3} & 3.195 \cdot 10^{-3} \\ 1/K... \text{ coeff of vol. expansivity} \end{bmatrix}$$

Properties of Air: Use the Mathcad functions for air, already written. See Prob. 2A1.2.5.

$$\rho := \overline{\text{rho}_\text{Air}\left(\text{T}_{\mathbf{f}} + 273\right)} \quad \text{i.e.} \quad \rho = \begin{bmatrix} 1.156 & 1.146 & 1.137 & 1.128 & 1.119 & 1.11 \end{bmatrix} \quad \text{kg/m^3}$$

$$\mathbf{k} := \overline{\mathbf{k}_\text{Air}\left(\text{T}_{\mathbf{f}} + 273\right)} \quad \text{i.e.} \quad \mathbf{k} = \begin{bmatrix} 0.026 & 0.027 & 0.027 & 0.027 & 0.027 & 0.027 \end{bmatrix} \quad \text{W/m.K}$$

$$\mu := \overline{\text{mu}_\text{Air}\left(\text{T}_{\mathbf{f}} + 273\right)} \quad \text{i.e.} \quad \mu = \begin{bmatrix} 1.869 \cdot 10^{-5} & 1.882 \cdot 10^{-5} & 1.906 \cdot 10^{-5} & 1.917 \cdot 10^{-5} & 1.929 \cdot 10^{-5} \end{bmatrix}$$

$$Pr := \overline{\text{Pr}_\text{Air}\left(\text{T}_{\mathbf{f}} + 273\right)} \quad \text{i.e.} \quad Pr = \begin{bmatrix} 0.706 & 0.706 & 0.706 & 0.705 & 0.704 \end{bmatrix} \dots \text{Pr}$$

$$Pr := \overline{\text{Pr}_\text{Air}\left(\text{T}_{\mathbf{f}} + 273\right)} \quad \text{i.e.} \quad Pr = \begin{bmatrix} 0.706 & 0.706 & 0.706 & 0.705 & 0.704 \end{bmatrix} \dots \text{Pr}$$

$$Pr := \overline{\text{Pr}_\text{Air}\left(\text{T}_{\mathbf{f}} + 273\right)} \quad \text{i.e.} \quad V = \begin{bmatrix} 1.618 \cdot 10^{-5} & 1.641 \cdot 10^{-5} & 1.665 \cdot 10^{-5} & 1.689 \cdot 10^{-5} & 1.714 \cdot 10^{-5} & 1.738 \cdot 10^{-5} \\ m^2/s \dots \text{ kinematic viscosity} \end{bmatrix}$$

Then:

A := L
$$\cdot \pi \cdot D$$
 i.e. A = 0.157 m² ... area
 ΔT := T $_{s}$ - T $_{inf}$ i.e. ΔT = [65 60 55 50 45 40] C

$$Gr_{L} := \frac{\overrightarrow{L^{3} \cdot g \cdot \beta \cdot \Delta T}}{v^{2}} \qquad \dots Grashoff No.$$

i.e.
$$Gr_{L} = \begin{bmatrix} 7.976 \cdot 10^{9} & 7.093 \cdot 10^{9} & 6.266 \cdot 10^{9} & 5.491 \cdot 10^{9} & 4.765 \cdot 10^{9} & 4.086 \cdot 10^{9} \end{bmatrix}$$
$$Ra_{L} := \overline{\langle Gr_{L} \cdot Pr \rangle} \qquad \dots Rayleigh No.$$

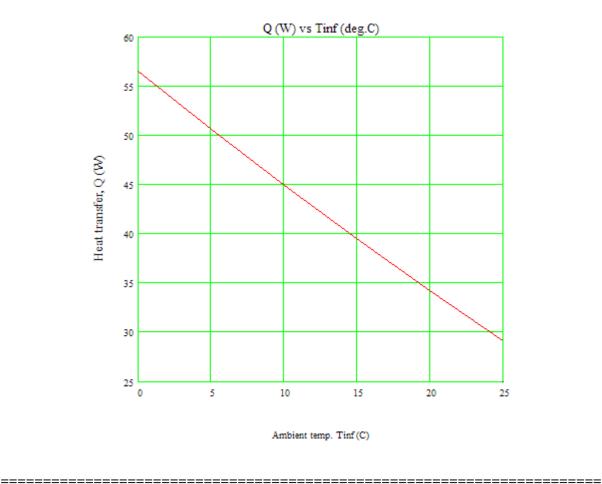
i.e.
$$Ra_{L} = \begin{bmatrix} 5.633 \cdot 10^{9} & 5.007 \cdot 10^{9} & 4.421 \cdot 10^{9} & 3.872 \cdot 10^{9} & 3.359 \cdot 10^{9} & 2.878 \cdot 10^{9} \end{bmatrix}$$

Nusselts No.: Use the function written above:

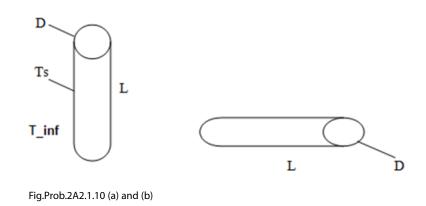
Therefore, heat transfer coeff:

 $h := \frac{\overrightarrow{k \cdot Nu}}{L}$ i.e. $h = [5.541 \ 5.377 \ 5.207 \ 5.029 \ 4.843 \ 4.646] W/m^2.C$

Heat transfer Q:


Q := $\overrightarrow{(\mathbf{h} \cdot \mathbf{A} \cdot \Delta \mathbf{T})}$ W, ...heat tr. i.e. Q = [56.573 50.676 44.983 39.501 34.235 29.194] W....Ans.

Now, plot Q against T_{inf}:


i:=0,1..5

Prob. 2A2.1.10. A tube of 0.036 m OD and 40 cm length is maintained at a uniform temp of 100 C. It is exposed to air at a temp of 20 C. Determine the rate of heat transfer from the surface of the tube when (a) the tube is vertical (b) the tube is horizontal. [VTU – June/July 2009]

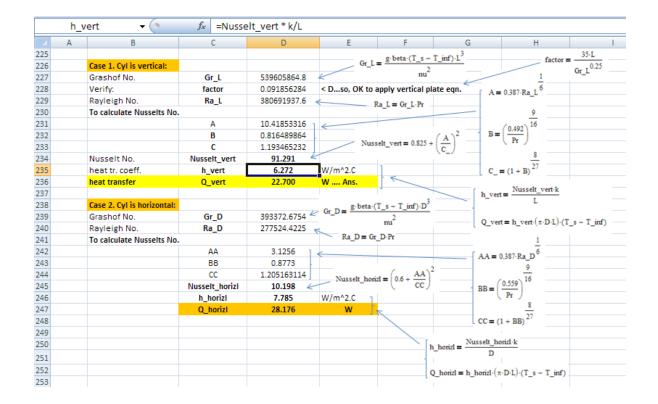
EXCEL Solution:

Note that this problem is the same as Prob.2A1.1.3 But, now we shall solve it with EXCEL.

We need properties of Air as a function of Temp.

VBA Functions for properties of Air were written while solving Prob.2A1.2.13. We will use those Functions.

Following are the steps in EXCEL Solution:

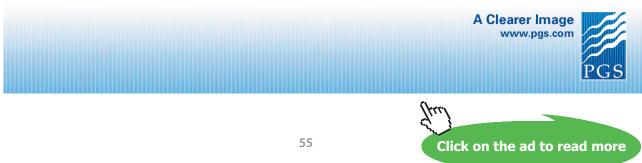

1. Set up the EXCEL worksheet, enter data and name the cells:

	beta	a - (•	<i>f</i> _x =1/(T_f+273)				
	А	В	С	D	E	F	
209							
210		Data:	Fluid =	Air			
211			T_s	100	С		
212			T_inf	20.0000	С		
213			T_f	42.0000	С <	T_s + T	inf
214			D	0.036	m	$T_f = \frac{1-3+1}{2}$	
215			L	0.4000	m	2	
216			g	9.8100	m/s^2		
217			beta	0.0032	1/K		

2. Do the calculations, use VBA Functions to get properties of Air:

	ср	-	=air_cp_T((T_f+27	3))			
	А	В	С	D	E	F	G
218							i diana fan Ain
219		Calculations:				Using VBA FU	inctions for Air
220		density	rho	1.1215	kg/m^3	K	
221		th. conductivity	k	0.0274825	W/m.C		
222		Prandtl No.	Pr	0.7055		-	
223		kinematic visc.	nu	0.00001719	m^2/s		
224		sp.heat	ср	1007.75	J/kg.K]	51

And, further calculations:



As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

Download free eBooks at bookboon.com

Note that in the above worksheet, formulas used are also shown, for clarity.

Thus:

Q_vert = 22.7 W, and Q_horizl = 28.176 W Ans.

3. Now, let us plot the variation of Q_vert and Q_horizl as the ambient temp varies from 0 to 40 deg.C.

Since T_b and the properties of Air also change as T_inf varies, it is convenient to write a VBA program to do this calculation. First, set up a Table as shown:

	C2	62 🗸 🗧	f_{x}			
	А	В	С	D	E	F
255						
256						
257						
258		Plot Q_vert and Q_h	orizl against T_i	nf, other condit	ions remainin	g the same:
259						
260						
261		T_in (deg.C)	h_vert (W/m^2.C)	Q_vert (W)	h_horizl (W/m^	Q_horizl (W)
262		0				
263		5				
264		10				
265		15				
266		20				
267		25				
268		30				
269		35				
270		40				

4. Now, we will write a VBA program to read the values of T_inf, one by one, from this Table and put in cell D212.; then, all other calculations in remaining cells get up-dated. The program selects the required quantity (i.e. h_vert, Q_vert, h_horizl and Q_horizl, from cells D235, D236, D246 and D247 respectively) and copies them to their respective places in the Table. And, we will have a Command Button to do this:


Go to Developer – Insert-Active X controls:

<u> </u>	Но	me Ir	nsert	Page	Layout	Fo	ormula	IS	Data
	ual Macr		ecord Mac se Relative acro Secu	e Refe	rences	Inse	rt De	sign ode	Prop View
	Code						rm Co	ntrol	s
	C26	52	(f_{x}	-	i v	\$	■ 0
	А		В				Aa 불	ab	
255						Ac	tiveX (Cont	rols
256							1	4	abi 🛢
257						٢	ο A	~	= 🛞
258		Plot Q N	vert and	Qh	orizl ag	amor	- 11	,	ici cont

Click on the first, left button. And, draw the Command Button in the worksheet to the required size, at the required place:

A	В	С	D	E	F	G	H	
258	Plot Q_vert and Q_	horizl against T	_inf, other cond	litions remaining	the same:			
258 259 260 261 262 263 264 265 266 267 268 269 270								
260								
261	T_in (deg.C)	h_vert (W/m^2.C)	Q_vert (W)	h_horizl (W/m^2.C)	Q_horizl (W)		CommandButto	on1
262	0							
263	5							
264	10							
265	15							
266	20							
267	25							
268	30							
269	35							
270	40							

Click on Developer-View Code:

And, we get the code already written for the Command button:

C	commandButton1	- Click
	Private Sub CommandButton1_Click()	

Now, complete the code to do the desired jobs as mentioned under point 4 above:

```
CommandButton1 Click()
Private Sub CommandButton1_Click()
Dim i As Integer
For i = 0 To 8
Range("D212") = Cells(262 + i, 2)
Cells(262 + i, 3) = Range("D235")
Cells(262 + i, 4) = Range("D236")
Cells(262 + i, 5) = Range("D246")
Cells(262 + i, 6) = Range("D247")
Next i
End Sub
```

In the above code:

Line 1: defines the Sub

Line 2: dimension statement for I, the counter in For....Next construct

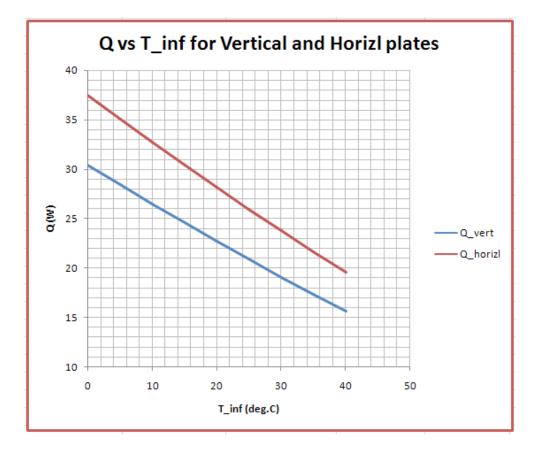
Line 3 to 9: For ... Next slab

Line 4: Takes the first value of T_inf from the Table and copies it to cell D212 (i.e. T_inf in the original program)

Immediately, all other calculations in other cells are up-dated; and the rest of the program copies them to the respective places in the Table. i.e.

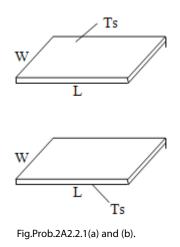
Line 5, 6, 7 and 8: copy values of h_vert, Q_vert, h_horizl and Q_horizl to respective cells in the Table.

Line 9: this is repeated for the next value of T_inf in the Table.


Line 10: End statement of Subroutine

5. Now, click on the Command Button 1 and the Table gets filled up immediately:

	H278	▼ (
	А	В	С	D	E	F	G	Н	
258		Plot Q_vert and Q_	horizl against T	_inf, other cond	litions remaining	the same:			
259									
260									
261		T_in (deg.C)	h_vert (W/m^2.C)	Q_vert (W)	h_horizl (W/m^2.C)	Q_horizl (W)		CommandBut	ton1
262		0	6.714	30.374	8.272	37.421			
263		5	6.610	28.407	8.157	35.057			
264		10	6.502	26.471	8.038	32.727			
265		15	6.389	24.569	7.914	30.433			
266		20	6.272	22.700	7.785	28.176			
267		25	6.150	20.867	7.651	25.958			
268		30	6.023	19.072	7.510	23.781			
269		35	5.888	17.315	7.361	21.646			
270		40	5.747	15.600	7.205	19.556			



6. Plot the results in EXCEL:

2A2.2 Natural convection from horizontal plates, cylinders and spheres:

"**Prob. 2A2.2.1**. A horizontal plate, $1 \text{ m} \times 0.8 \text{ m}$ is kept in a water tank, with the top surface at 60 C providing heat to warm stagnant water at 20 C. Determine the value of convection coeff. Repeat the problem for heating on the bottom surface. [VTU – May–June 2010]"

EES Solution:

"Data:"

L = 1.0[m] W = 0.8[m] L_c = (L* W) / (2*(L+W)) "L_c for horizl plate" T_s = 60[C] T_inf = 20[C]

 $T_f = (T_s+T_inf)/2 "...film temp."$ beta=VolExpCoef(Water,T=T_f, P=1e05) $g = 9.81[m/s^2]$

"Properties of Water:"

mu=Viscosity(Water,T=T_f, P = 1e05) "[kg/m-s]" rho=Density(Water,T=T_f, P=1e05) "[kg/m^3]" nu = mu/rho "[m^2/s]" cp=Cp(Water,T=T_f, P = 1e05) "[J/kg-C]" Gr = g*beta*(T_s-T_inf)*L_c^3/nu^2 k=Conductivity(Water,T=T_f, P = 1e05) "[W/m-C]"

Pr = mu * cp / k "...Prandtl No." Ra = Gr * Pr "...Grashoff No."

"We get: Ra = 1.695E10"

"Case 1: Upper surface heated:"

"Nu = 0.54 * Ra^(1/4) for 10^4 < Ra < 10^7; Nu = 0.15 * Ra^(1/3) for 10^7 < Ra < 10^11"

"Therefore:"

Nusselt_upper = 0.15* Ra^(1/3) "For Ra > 10^7; here Ra = 1.695 * 10^10"

Nusselt_upper = h_upper*L_c/k "finds h_upper"

"Case 2: Lower surface heated:"

Nusselt_lower = $0.27^* \text{ Ra}^{(1/4)}$ "For $10^5 < \text{Ra} < 10^{11}$; here Ra = $1.695^* 10^{10}$ "

Nusselt_lower = h_lower*L_c/k "finds h_lower"

Results:

Unit Settings: SI C Pa J mass deg

β = 0.0003859 [1/K]	cp = 4182 [J/kg-C]	g = 9.81 [m/s ²]
Gr = 3.834E+09	h _{lower} = 270.9 [W/m ² -C]	h _{upper} = 1071 [W/m ² -C]
k = 0.6178 [W/m-C]	L = 1 [m]	L _c = 0.2222 [m]
µ=0.0006533 [kg/m-s]	v = 6.584E-07 [m ² /s]	Nusselt _{lower} = 97.43
Nusselt _{upper} = 385.3	Pr = 4.422	Ra = 1.695E+10
ρ = 992.2 [kg/m ³]	T _f = 40 [C]	T _{inf} = 20 [C]
T _s = 60 [C]	W = 0.8 [m]	

Thus:

h_upper = 1071 W/m^2.C Convection coeff. when upper surface is heated....Ans.

h_lower = 270.9 W/m^2.C Convection coeff. when lower surface is heated....Ans.

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/

> Phone: +61 8 9321 1702 Email: training@idc-online.com Website: www.idc-online.com

ELECTRONICS

AUTOMATION & PROCESS CONTROL

> MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS

ELECTRICAL POWER

Click on the ad to read more

Download free eBooks at bookboon.com

"**Prob. 2A2.2.2.** A square plate $(0.5 \text{ m} \times 0.5 \text{ m})$ with one surface insulated and the other surface maintained at a temp of 385 K is placed in ambient air at 315 K. Calculate the average heat transfer coeff for free convection for the following orientations of the hot surface: (a) The plate is horizontal and hot surface faces up (b) The plate is horizontal and the hot surface faces down. [VTU – Dec. 09–Jan. 2010]

(c) In addition, find h when plate is held vertical"

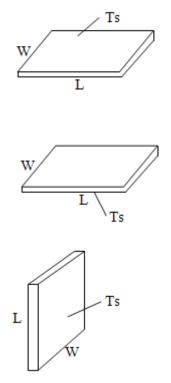


Fig.Prob.2A2.2.2(a),(b) and (c).

EES Solution:

For the horizontal plate, let us use an EES PROCEDURE. This PROCEDURE is suitable for either Air or Water as the fluid. Then, in the main program, we will call the PROCEDURE and get the desired parameters.

\$UnitSystem SI Pa C J

PROCEDURE NC_HPlate(Fluid\$, T_s, T_inf, L, W: Gr, Ra, Nusselt_upper, h_upper, Nusselt_lower, h_lower)

"Nat. convection (NC) on Horizl plate(HPlare), with Fluid\$: Water or Air" "Inputs: T_s (C), T_inf (C), L (m), W (m)" "Outputs: Gr, Ra, Nusselt_bar, h_bar (W/m^2-C), Q (W)"

```
Lc := (L^*W)/(2^*(L+W)) "Lc for horizl plate"
T_f = (T_s + T_inf)/2
g := 9.81 [m/s^2]
IF (Fluid$ = 'Water') Then
   beta:=VolExpCoef(Water,T=T_f, P=1.01325e05)
   mu:=Viscosity(Water,T=T_f, P = 1.01325e05)
   rho:=Density(Water,T=T_f, P=1.01325e05)
   nu := mu/rho
   cp:=Cp(Water,T=T_f, P = 1.01325e05)
   k:=Conductivity(Water,T=T_f, P = 1.01325e05)
ELSE
   IF (Fluid$ = 'Air') Then
   beta := 1/(T_f + 273)
   mu:=Viscosity(Air,T=T_f)
   rho:=Density(Air,T=T_f,P=1.01325e05)
   nu := mu/rho
```

```
cp:=Cp(Air,T=T_f)
k:=Conductivity(Air,T=T_f)
EndIF
```

EndIf

 $Gr := g^{tota^{T_s-T_inf}}Lc^{3/nu^2}$ $Pr := mu^{*}cp/k$ $Ra := Gr^*Pr$

```
"Case 1: Upper surface heated:"
```

```
IF (Ra \leq 10^7) Then
   Nusselt_upper = 0.54 \times \text{Ra}(1/4)
ENDIF
IF (Ra > 10^7) Then
Nusselt_upper = 0.15 \times \text{Ra}(1/3)
ENDIF
```

h_upper := Nusselt_upper * k/Lc "finds h_upper"

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

"Case 2: Lower surface heated:"

Nusselt_lower := 0.27* Ra^(1/4) "For 10^5 <Ra < 10^11" h_lower := Nusselt_lower * k/Lc "finds h_lower"

END

```
"_____"
```

\$UnitSystem SI Pa C J

"Data:"

Fluid\$='Air'

L = 0.5[m]W = 0.5[m] T_s = 385-273[C] T_inf = 315-273[C]

CALL NC_HPlate(Fluid\$, T_s, T_inf, L, W : Gr, Ra, Nusselt_upper, h_upper, Nusselt_lower, h_lower)

"When the plate is held vertical:"

"Now characteristic dimension is the vertical height = L"

"Then:"

 $T_f = (T_s+T_inf)/2$ "...film temp." beta = 1/(T_f+273) "[1/K] ... coeff. of vol. expn" $g = 9.81[m/s^2]$ k=Conductivity(Air,T=T_f) "[W/m-C]" mu=Viscosity(Air,T=T_f) "[kg/m-s]" rho=Density(Air,T=T_f,P=1.01325E05) "[kg/m^3]" $nu = mu/rho "[m^2/s]"$ $Pr=Prandtl(Air,T=T_f)$ $Gr_vert = g * beta * (T_s-T_inf) * L^3 / nu^2 "... Grashoff No."$

Ra_vert = Gr_vert * Pr "...Rayleigh No."

"Calculate Nusselt_vert: Use eqn of Churchill and Chu for entire range of Ra_L"

 $AA = 0.387 Ra_vert^{1/6}$ $BB = (0.492/Pr)^{(9/16)}$ $CC = (1+BB)^{(8/27)}$ Nusselt_vert = $(0.825 + AA/CC)^2$ "Finds Nu" h_vert = Nusselt_vert * k / L "Finds h"

Now, press F2 and get the Results:

Results: Main:

Main NC_HPlate					
Unit Settings: SI C Pa J mass deg					
AA = 10.56	BB = 0.8095	β=0.002857 [1/K]			
CC = 1.192	Fluid\$ = 'Air'	g = 9.81 [m/s ²]			
Gr = 8.979E+06	Gr _{vert} = 5.747E+08	h _{lower} = 3.188 [W/m ² -C]			
h _{upper} = 6.377 [W/m ² -C]	h _{vert} = 5.492 [W/m ² -C]	k = 0.02931 [W/m-C]			
L = 0.5 [m]	μ= 0.00002083 [kg/m-s]	v = 0.00002066 [m ² /s]			
Nusselt _{lower} = 13.6	Nusselt _{upper} = 27.19	Nusselt _{vert} = 93.68			
Pr = 0.7163	Ra = 6.432E+06	Ra _{vert} = 4.116E+08			
ρ=1.008 [kg/m ³]	T _f = 77 [C]	T _{inf} = 42 [C]			
T _s =112 [C]	W = 0.5 [m]				

Results: PROCEDURE:

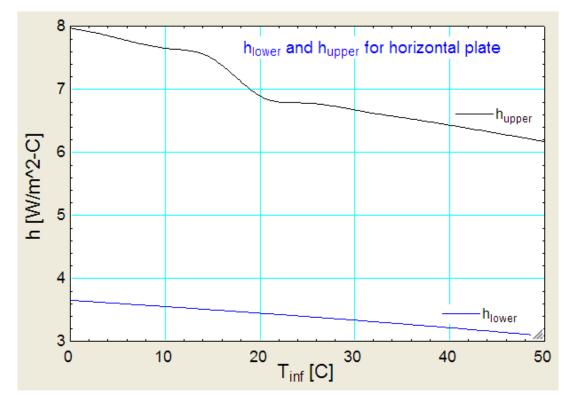
Main NC_HPlate	· · · ·	1				
Local variables in Procedure NC_HPlate (1 call, 0.02 sec)						
β=0.002857 [1/K]	cp=1008 [J/kg-C]	Fluid\$='Air'				
g=9.81 [m/s ²]	Gr=8.979E+06	h _{lower} =3.188 [W/m ^{2_} C]				
h _{upper} =6.377 [W/m ² -C]	k=0.02931 [W/m-C]	L=0.5 [m]				
Lc=0.125 [m]	μ=0.00002083 [kg/m-s]	v=0.00002066 [m ² /s]				
Nusselt _{lower} =13.6	Nusselt _{upper} =27.19	Pr=0.7163				
Ra =6.432E+06	ρ=1.008 [kg/m ³]	T _f =77 [C]				
T _{inf} =42 [C]	T _s =112 [C]	W=0.5 [m]				

Thus:

h_upper = 6.377 W/m^2 .K Heat tr. coeff. when plate is horizontal and hot surface faces up....Ans.

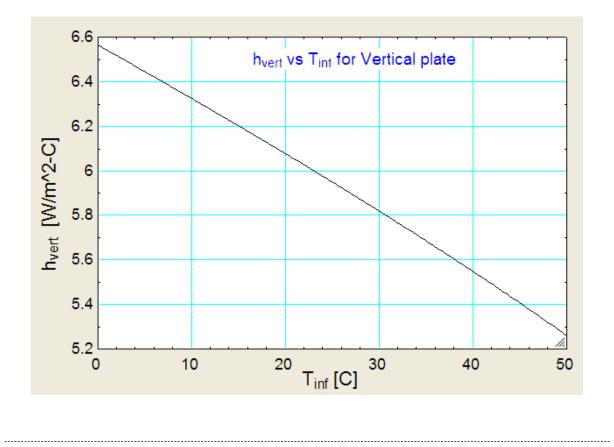
 $h_lower = 3.188 W/m^2.K...$ Heat tr. coeff. when plate is horizontal and hot surface faces down....Ans.

h_vert = 5.492 W/m^2.K Heat tr. coeff. when plate is held vertical....Ans.



Plot h_upper, h_lower and h_vert as T_inf varies from 0 deg. C to 45 deg.C:

Parametric Table:


Table 1				
111	¹ T _{inf} [C]	² ► h _{upper} [W/m²-C]	³ h _{lower} [W/m²-C]	₄ ✓ h _{vert} [W/m²-C]
Run 1	0	7.97	3.649	6.564
Run 2	5	7.811	3.6	6.445
Run 3	10	7.649	3.549	6.324
Run 4	15	7.485	3.498	6.201
Run 5	20	6.889	3.445	6.076
Run 6	25	6.78	3.39	5.949
Run 7	30	6.666	3.333	5.819
Run 8	35	6.549	3.274	5.685
Run 9	40	6.427	3.213	5.548
Run 10	42	6.377	3.188	5.492
Run 11	50	6.166	3.083	5.26

And, the Plots:

Click on the ad to read more

"**Prob. 2A2.2.3**. A steam pipe, 100 mm in diameter, maintained at 170 C is exposed to air at 30 C. Length of the pipe is 2 m and is kept horizontal. Determine the heat lost by the pipe per hour. [VTU – May–2007]

Also calculate the heat lost by radiation if emissivity of surface is 0.9. Plot Q_total for ambient temperatures varying from 10 C to 30 C."

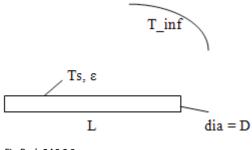


Fig.Prob.2A2.2.3

EES Solution:

"Data:"

L = 2[m]D= 0.1[m] T_s = 170[C] T_inf = 30[C] T_f = (T_s+T_inf)/2 "...film temp." beta = 1/(T_f + 273) "[1/K] ... coeff. of vol. expn" g = 9.81[m/s^2]

"Properties of Air at Tf:"

mu=Viscosity(Air,T=T_f) "[kg/m-s]"
rho=Density(Air,T=T_f,P=1E05) "[kg/m^3]"
nu = mu/rho "[m^2/s]"
cp=Cp(Air,T=T_f) "[J/kg-C]"
k=Conductivity(Air,T=T_f) "[W/m-C]"

"Calculations:"

"Calculate Nusselts No.:"

"Characteristic dimension for horizontal pipe is the diameter, D"

"Therefore:"

Gr_D = g * beta * (T_s-T_inf) * D^3 / nu^2 "...Grashoff No." Pr = mu * cp / k "Prandtl No." Ra_D = Gr_D * Pr "...Rayleigh No."

"We get Ra_D = 4.804E06 i.e. < 10^12

Then, for Nusselts No. we use Churchill and Chu's relation:"

Nusselt = $(0.6 + (0.387 * \text{Ra}_D^{(1/6)}) / (1 + (0.559 / \text{Pr})^{(9/16)})^{(8/27)}^2$ "...Finds Nusselts No."

Nusselt = h * D / k "....finds h"

Q_conv = h * (pi * D * L) * (T_s – T_inf) "[W] ... heat lost by convection from the pipe surface"

Qperhour = Q_conv * 3600 "[Joules / h]"

"Heat loss by radiation:"

epsilon = 0.9 "emissivity"

sigma = 5.67E-08 "W/m^2-K^4 Stefan Boltzmann constant"

 $Q_rad = epsilon * sigma * (pi * D * L) * ((T_s + 273)^4 - (T_inf + 273)^4)$

Q_tot = Q_conv + Q_rad "[W] ... total heat loss"

Results:

Unit Settings: SI C Pa J mass deg

- $\beta = 0.002681 [1/K]$ $\epsilon = 0.9$ h = 7.054 [W/m²-c] $\mu = 0.00002181 [kg/m-s]$ Pr = 0.7118 $\boxed{Q_{rad} = 964.6 [W]}$ $\rho = 0.9337 [kg/m³]$ $T_{inf} = 30 [C]$
- cp = 1010 [J/kg-C] g = 9.81 [m/s²] k = 0.03095 [W/m-C] v = 0.00002336 [m²/s] Qperhour = 2.234E+06 [J] Q_{tot} = 1585 [W] σ = 5.670E-08 [W/m²-K⁴] T_s = 170 [C]
- D = 0.1 [m] Gr_D = 6.748E+06 L = 2 [m] Nusselt = 22.79 $Q_{conv} = 620.5$ [W] Ra_D = 4.804E+06 T_f = 100 [C]

Study at one of Europe's leading universities

DTU

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

71

Download free eBooks at bookboon.com

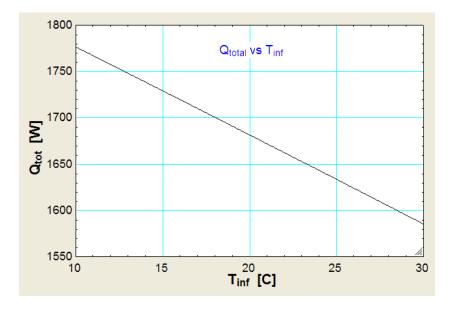
Thus:

Q_conv = 620.5 W Heat loss by convection

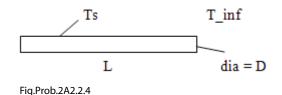
Qperhour = 2.234E06 Joules.... Heat transfer by convection only, from the pipe surface per hour

Note that this is the heat loss only by convection.

Q_rad = 964.6 W.


Compare this to Q = 620.5 W by convection.

Then, total heat loss becomes: Q_tot = (964.6 + 620.5) W = 1585.1 W



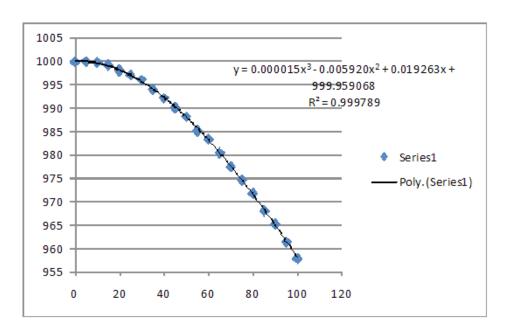
Plot Q_total against T_inf:

Table 1				
▶ 121	1 Tinf [C]	2 Q _{conv} [W]	³ Q _{rad} [W]	4 Q _{tot} [W]
Run 1	10	747.2	1029	1776
Run 2	11	740.6	1026	1767
Run 3	12	734.1	1023	1757
Run 4	13	727.6	1020	1748
Run 5	14	721.2	1017	1739
Run 6	15	714.7	1014	1729
Run 7	16	708.3	1011	1720
Run 8	17	701.9	1008	1710
Run 9	18	695.5	1005	1700
Run 10	19	689.1	1002	1691
Run 11	20	682.8	998.6	1681
Run 12	21	676.5	995.3	1672
Run 13	22	670.2	992	1662
Run 14	23	663.9	988.7	1653
Run 15	24	657.6	985.4	1643
Run 16	25	651.4	982	1633
Run 17	26	645.2	978.6	1624
Run 18	27	639	975.2	1614
Run 19	28	632.8	971.7	1604
Run 20	29	626.7	968.2	1595
Run 21	30	620.5	964.6	1585

Prob. 2A2.2.4. A horizontal rod 5 mm in dia is immersed in water maintained at 18 C. If the rod surface temp is 56 C, estimate the free convection heat transfer rate per unit length of the rod. [Ref: 3]

Mathcad Solution:

Let us solve this problem in Mathcad.

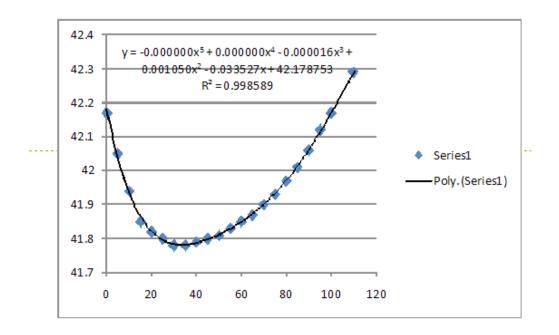

Mathcad does not have built in functions for properties of sat. water.

So, let us write our own functions in Mathcad for properties of water.

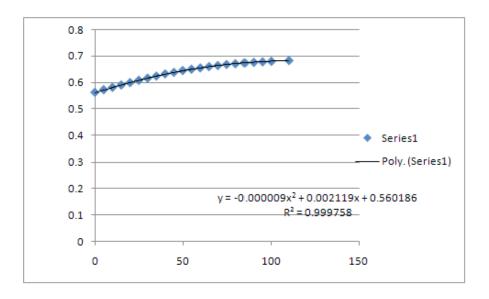
For this, we first find out curve fit equations and then write Mathcad functions:

Properties of Sat. water (Ref: HMT by Cengel, 3rd Ed.

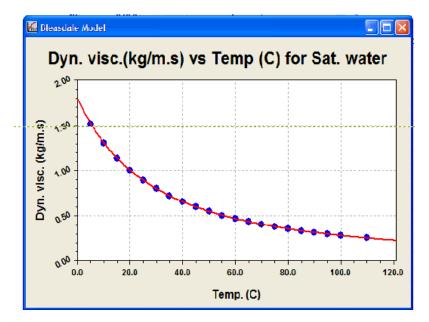
Curve fit eqns (Using Excel and curveExpert softwares):


1. Density in Range:0.01 to 100 deg.C:

the globally networked management school


Click on the ad to read more

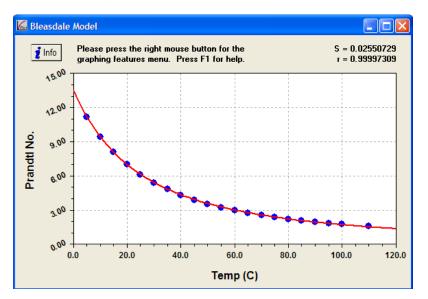
2. Sp. heat in range:0.01 to 100 deg.C:



In the above graph, multiply the y-values by 100 to get values of sp.heats.

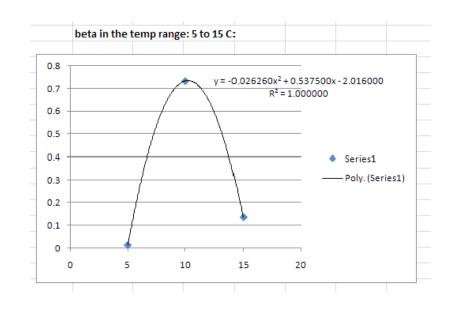
3. Th.cond. in range:0.01 to 100 deg.C:

4. Dyn. visc. in range:0.01 to 100 deg.C:



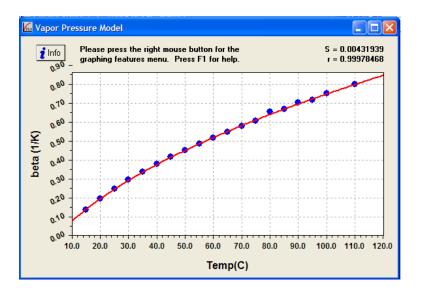
In the above graph, divide the y-values by 1000 to get values of Dyn. Visc.

Bleasdale Model: y=(a+bx)^(-1/c)					
Coefficient	Data:				
a =	0.692354				
b =	0.015338				
c =					



5. Prandtl No. in the range: 0.01 C to 100 C:

Bleasdale Model: y=(a+bx)^(-1/c)				
Coefficient Data:				
a = 0.21549637				
b = 0.00512374				
c = 0.58913204				


6. coeff of vol. expn. in range:0.01 to 100 deg.C:

In the above graph, divide the y-values by 1000 to get values of beta.

Click on the ad to read more

In the range: 15 C to 100 C:

In the above graph, divide the y-values by 1000 to get values of beta.

78 Download free eBooks at bookboon.com

Vapor Pressure Model: y=exp(a+b/x+cln(x))					
Coefficient Data:					
a =	-2.89679				
b =	-9.96542				
c =	0.587896				

Mathcad functions:

1. Density of Water:

T in deg. C, rho in kg/m³:

Ex: rho_water(50) = 988.015

2. Sp. Heat of Water:

T in deg. C, cp in J/kg.K:

Ex: cp_water(50) = 4.192 • 10³

3. Th. cond. of Water:

T in deg. C, k in W/m.K:

Ex: k_water(10) = 0.58

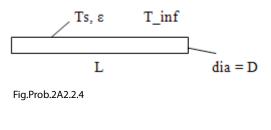
4. Dyn. Visc. Of Water:

T in deg. C, mu in kg/m.s:

 $\begin{array}{rcl} mu_water(T) &\coloneqq & return "T must be between 0.01 and 100 C !!" & \mbox{if } T < 0.01 \\ return "T must be between 0.01 C and 100 C !!" & \mbox{if } T > 100 \\ & \mbox{otherwise} \\ & \mbox{a} \leftarrow 0.692354 \\ & \mbox{b} \leftarrow 0.015338 \\ & \mbox{c} \leftarrow 0.628922 \\ & \mbox{mu} \leftarrow (a + b \cdot T)^{-\frac{1}{c}} \cdot 10^{-3} \end{array}$ Ex: mu_water(100) = 2.801 \cdot 10^{-4} 5. Prandtl No. of Water:

T in deg. C, Prandtl No.:

```
Ex: Pr_water(65) = 2.771
```


6. Coeff. of vol. expn for Water:

T in deg. C, beta in 1/K:

```
beta_water(T) := return "T must be between 5 and 100 C !!" if T<5
return "T must be between 5 and 100 C !!" if T>100
return \langle -0.02626 \cdot T^2 + 0.5375 \cdot T - 2.016 \rangle \cdot 10^{-3} if T≤15
otherwise
a \leftarrow -2.8967935
b \leftarrow -9.9654212
c \leftarrow 0.58789598
b eta \leftarrow \left( exp \left( a + \frac{b}{T} + c \cdot ln(T) \right) \right) \cdot 10^{-3}
Ex: beta_water(65) = 5.51 \cdot 10^{-4}
```

Now, solve the problem:

Prob. 2A2.2.4. A horizontal rod 5 mm in dia is immersed in water maintained at 18 C. If the rod surface temp is 56 C, estimate the free convection heat transfer rate per unit length of the rod.

Download free eBooks at bookboon.com

Mathcad Solution:

Data:

D := 0.005 m L := 1 m $T_{inf} := 18 \text{ C}$ $T_s := 56 \text{ C}$

$$T_{f} := \frac{T_{inf} + T_{s}}{2}$$
 i.e. $T_{f} = 37$ C g := 9.81 m/s^2

Calculations:

Properties of water at T_f:

tho := tho_water
$$\langle T_f \rangle$$
i.e.tho = 993.34kg/m^3cp := cp_water $\langle T_f \rangle$ i.e.cp = 4.181 \cdot 10^3 K/kg.Kmu := mu_water $\langle T_f \rangle$ i.e.mu = 6.926 \cdot 10^{-4} kg/m.sk := k_water $\langle T_f \rangle$ i.e.k = 0.626 W/m.KPr := Pr_water $\langle T_f \rangle$ i.e.Pr = 4.636 β := beta_water $\langle T_f \rangle$ i.e. β = 3.523 \cdot 10^{-4} 1/Kv := $\frac{mu}{rho}$ i.e.v = 6.972 \cdot 10^{-7} m^2/s

Nusselts no. in free convection: We use Churchill and Chu's relation:

$$\Delta T := T_{s} - T_{inf} \qquad \text{i.e.} \qquad \Delta T = 38 \qquad \text{C}$$

$$Gr_{D} := \frac{g \cdot \beta \cdot \Delta T \cdot D^{3}}{v^{2}} \qquad \text{i.e.} \qquad Gr_{D} = 3.377 \cdot 10^{4} \qquad \dots Grashoff \text{ No.}$$

$$Ra_{D} := Gr_{D} \cdot Pr \qquad \text{i.e.} \qquad Ra_{D} = 1.566 \cdot 10^{5} \qquad \dots Rayleigh \text{ No.}$$

Churchill and Chu's relation:

$$\operatorname{Nu}_{\mathbf{D}} := \left[\begin{array}{c} 0.6 + \frac{0.387 \cdot \operatorname{Ra}_{\mathbf{D}}^{\frac{1}{6}}}{\left[1 + \left(\frac{0.559}{\operatorname{Pr}} \right)^{\frac{9}{16}} \right]^{\frac{9}{27}}} \right]^{2}$$

... for wide range of Ra, Ra<=10^12

i.e. Nu D = 10.408Nusselts No.

Therefore: heat transfer coeff. h:

 $h := \frac{Nu D'k}{D}$ i.e. h = 1.304+10³ W/m^2.K.... Ans.

Heat transfer rate, Q:

W Ans. $Q := \mathbf{h} \cdot \pi \cdot \mathbf{D} \cdot \mathbf{L} \cdot \Delta T$ i.e. Q = 778.123

MAN OLIVER WYMAN

ver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk usep industry knows by events and the preclarace explorates in a data by persons, take management, organizational transformation, and leadership development. With offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

If the surface temp varies from 40 C to 70 C, plot the variation of Q with Ts:

Write all quantities as functions of T_s and T_{inf} , so that we can vary T_{inf} also, if required:

$$T_{f}(T_{s}, T_{inf}) \coloneqq \frac{T_{inf} + T_{s}}{2}$$

Calculations:

Properties of water at T_f:

$$k \langle T_{s}, T_{inf} \rangle \coloneqq k_water \langle T_{f} \langle T_{s}, T_{inf} \rangle \rangle$$

$$Pr \langle T_{s}, T_{inf} \rangle \coloneqq Pr_water \langle T_{f} \langle T_{s}, T_{inf} \rangle \rangle$$

$$\beta \langle T_{s}, T_{inf} \rangle \coloneqq beta_water \langle T_{f} \langle T_{s}, T_{inf} \rangle \rangle$$

$$v \langle T_{s}, T_{inf} \rangle \coloneqq \frac{mu \langle T_{s}, T_{inf} \rangle}{rho \langle T_{s}, T_{inf} \rangle}$$

Nusselts no. in free convection: We use Churchill and Chu's relation:

$$\Delta T \langle T_{s}, T_{inf} \rangle := T_{s} - T_{inf}$$

$$Gr_{D} \langle T_{s}, T_{inf} \rangle := \frac{g \cdot \beta \langle T_{s}, T_{inf} \rangle \cdot \Delta T \langle T_{s}, T_{inf} \rangle \cdot D^{3}}{v \langle T_{s}, T_{inf} \rangle^{2}}$$

$$Ra_{D} \langle T_{s}, T_{inf} \rangle := Gr_{D} \langle T_{s}, T_{inf} \rangle \cdot Pr \langle T_{s}, T_{inf} \rangle$$

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

Churchill and Chu's relation:

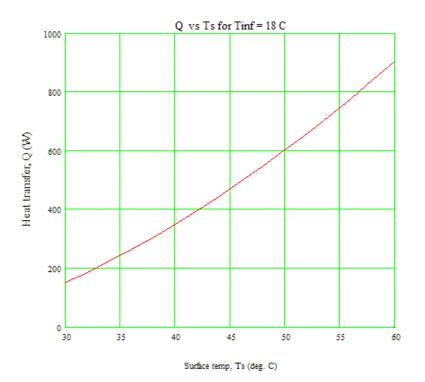
-

$$\operatorname{Nu}_{D}\left\langle T_{s}, T_{inf} \right\rangle \coloneqq \left[\begin{array}{c} 0.387 \cdot \operatorname{Ra}_{D}\left\langle T_{s}, T_{inf} \right\rangle^{\frac{1}{6}} \\ \left[\begin{array}{c} 0.387 \cdot \operatorname{Ra}_{D}\left\langle T_{s}, T_{inf} \right\rangle^{\frac{1}{6}} \\ \left[\begin{array}{c} 0.559 \\ 1 + \left(\frac{0.559}{\operatorname{Pr}\left\langle T_{s}, T_{inf} \right\rangle} \right)^{\frac{9}{16}} \right]^{\frac{27}{17}} \end{array} \right]^{2} \end{array}$$

...for wide range of Ra, Ra<=10^12

Therefore: heat transfer coeff. h:

$$h\left\langle T_{s}, T_{inf}\right\rangle := \frac{Nu_{D}\left\langle T_{s}, T_{inf}\right\rangle \cdot k\left\langle T_{s}, T_{inf}\right\rangle}{D}$$


Heat transfer rate, Q:

$$Q\left\langle T_{s}, T_{inf}\right\rangle \coloneqq h\left\langle T_{s}, T_{inf}\right\rangle \cdot \pi \cdot D \cdot L \cdot \Delta T \left\langle T_{s}, T_{inf}\right\rangle$$

Now, plot the results for different values of Ts:

T_s := 30, 32.. 60 C Let: T inf := 18 C

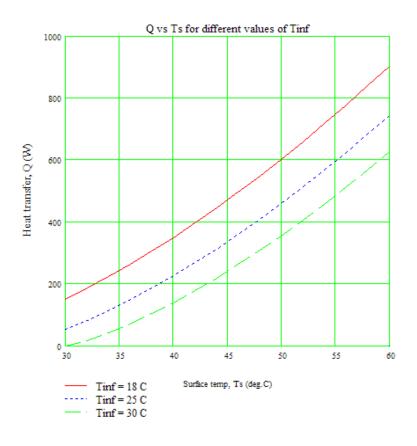
T s	$Q(T_s, T$	$ _{inf}\rangle$
30	150.981	
32	186.372	
34	224.104	
36	264.098	
38	306.29	
40	350.626	
42	397.061	
44	445.558	
46	496.081	
48	548.6	
50	603.087	
52	659.519	
54	717.871	
56	778.123	
58	840.255	
60	904.248	

Day one and you're ready

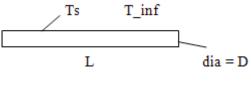
Day one. It's the moment you've been waiting for. When you prove your worth, meet new challenges, and go looking for the next one. It's when your dreams take shape. And your expectations can be exceeded. From the day you join us, we're committed to helping you achieve your potential. So, whether your career lies in assurance, tax, transaction, advisory or core business services, shouldn't your day one be at Ernst & Young?

What's next for your future? ey.com/careers

JERNST & YOUNG Quality In Everything We Do


© 2010 EYGM Lim

d. All F


Plot Q vs Ts for different values of T_{inf} :

T s	$Q(T_s, 18)$	$Q(T_s, 25)$	$Q(T_s, 30)$
30	150.981	53.33	0
32	186.372	82.41	17.884
34	224.104	114.545	42.903
36	264.098	149.443	72.131
38	306.29	186.914	104.758
40	350.626	226.82	140.368
42	397.061	269.059	178.704
44	445.558	313.551	219.589
46	496.081	360.228	262.893
48	548.6	409.037	308.516
50	603.087	459.931	356.378
52	659.519	512.869	406.414
54	717.871	567.816	458.569
56	778.123	624.74	512.795
58	840.255	683.612	569.051
60	904.248	744.405	627.3

Prob. 2A2.2.5.: A 300 W cylindrical resistance heater is 0.75 m long and 0.5 cm in diameter. The resistance wire is placed horizontally in water at 20 C. Determine the outer surface temp of the heater wire. [Ref:2]

Mathcad Solution:

We use the functions for properties of water, written earlier in Prob. 2A2.2.4.

Data:

D := 0.005 m L := 0.75 m $T_{inf} := 20 \text{ C}$ $g := 9.81 \text{ m/s}^2$ $Q_{heater} := 300 \text{ W}$

Let the surface temp be T_s.

Then, we write all quantities as functions of T_s and T_{inf} , so that plots can be drawn conveniently, later:

$$T_{f}(T_{s}, T_{inf}) \coloneqq \frac{T_{inf} + T_{s}}{2}$$
 ...,film temp.

Calculations:

Properties of water at T_f:

$$\begin{split} & \operatorname{rho}\left\langle T_{s}, T_{inf} \right\rangle \coloneqq \operatorname{rho}_water\left\langle T_{f} \left\langle T_{s}, T_{inf} \right\rangle \right\rangle \\ & \operatorname{cp}\left\langle T_{s}, T_{inf} \right\rangle \coloneqq \operatorname{cp}_water\left\langle T_{f} \left\langle T_{s}, T_{inf} \right\rangle \right\rangle \\ & \operatorname{mu}\left\langle T_{s}, T_{inf} \right\rangle \coloneqq \operatorname{mu}_water\left\langle T_{f} \left\langle T_{s}, T_{inf} \right\rangle \right\rangle \\ & k\left\langle T_{s}, T_{inf} \right\rangle \coloneqq \operatorname{mu}_water\left\langle T_{f} \left\langle T_{s}, T_{inf} \right\rangle \right\rangle \\ & \operatorname{Pr}\left\langle T_{s}, T_{inf} \right\rangle \coloneqq \operatorname{Pr}_water\left\langle T_{f} \left\langle T_{s}, T_{inf} \right\rangle \right\rangle \\ & \beta\left\langle T_{s}, T_{inf} \right\rangle \coloneqq \operatorname{Deta}_water\left\langle T_{f} \left\langle T_{s}, T_{inf} \right\rangle \right\rangle \\ & \nu\left\langle T_{s}, T_{inf} \right\rangle \coloneqq \operatorname{mu}\left\langle T_{s}, T_{inf} \right\rangle \\ & = \frac{\operatorname{mu}\left\langle T_{s}, T_{inf} \right\rangle \\ & = \frac{\operatorname{mu}\left\langle T_{s}, T_{inf} \right\rangle \\ & \end{array}$$

Now:

Churchill and Chu's relation for Nusselts No.:

$$\operatorname{Nu}_{\mathbf{D}}\langle \mathbf{T}_{s}, \mathbf{T}_{inf} \rangle \coloneqq \left[\begin{array}{c} 0.387 \cdot \operatorname{Ra}_{\mathbf{D}} \langle \mathbf{T}_{s}, \mathbf{T}_{inf} \rangle^{\frac{1}{6}} \\ 0.6 + \frac{0.387 \cdot \operatorname{Ra}_{\mathbf{D}} \langle \mathbf{T}_{s}, \mathbf{T}_{inf} \rangle^{\frac{1}{6}} \\ \left[1 + \left(\frac{0.559}{\operatorname{Pr}(\mathbf{T}_{s}, \mathbf{T}_{inf})} \right)^{\frac{9}{16}} \right]^{\frac{2}{77}} \right]^{2} \quad \dots \text{for wide range of Ra, Ra<=10^{12}}$$

$$h(T_s, T_{inf}) := \frac{Nu_D(T_s, T_{inf}) \cdot k(T_s, T_{inf})}{D}$$

In the past four years we have drilled <u>81,000 km</u> That's more than twice around the world. Who are we? We are the world's leading oilfield services company. Working globally-often in remote and challenging locations-we invent, design, engineer, manufacture, apply, and maintain technology to help customers find and produce oil and gas safely. Who are we looking for? We offer countless opportunities in the following domains: Geoscience and Petrotechnical Commercial and Business If you are a self-motivated graduate looking for a dynamic career, What will you be? apply to join our team. Schlumberger careers.slb.com 89 Click on the ad to read more Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

Heat transfer rate, Q:

$$Q\left(T_{s}, T_{inf}\right) := h\left(T_{s}, T_{inf}\right) \cdot \pi \cdot D \cdot L \cdot \Delta T\left(T_{s}, T_{inf}\right)$$

This should be equal to Q = 300 W, from data.

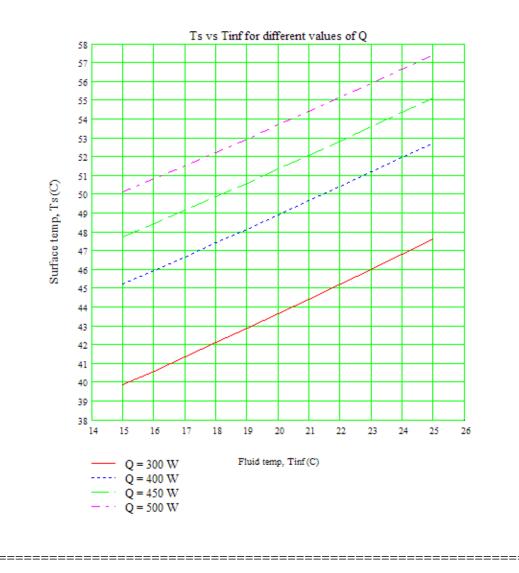
Use Solve block of Mathcad to determine T_s. Start with a guess value for T_s:

Let: T_s := 30 C guess value

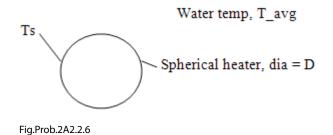
Given

$$Q(T_s, T_{inf}) = Q_{heater}$$

 $T_s(T_{inf}, Q_{heater}) := Find(T_s)$


i.e. $T_s(T_{inf}, Q_{heater}) = 43.664$ C.... temp of outer surface of heater Ans.

Now, note that since Ts is obtained as a function of Tinf and Q_{heater} , it is easy to plot the graphs at different Tinf and Qheater values:


Plot T_s for T_{inf} varying from 15 to 25 deg.C:

T inf := 15, 16.. 25 C....variation of T inf

Тi	nf I	Γ _s (Τ _i	nf ^{, 300})	T _s (T _i	nf ^{, 400})	T _s (T _i	nf ^{,450}	T _s (T _i	nf ^{, 500}
15] 3	39.874		45.256		47.75		50.138	
16	4	40.615		45.971		48.454		50.833	
17	4	41.365		46.694		49.167		51.537	
18	4	42.124		47.426		49.889		52.249	
19		42.89		48.166		50.618		52.968	
20	4	43.664		48.914		51.354		53.695	
21	4	44.446		49.669		52.098		54.429	
22	4	45.234		50.43		52.849		55.17	
23	4	46.029		51.198		53.606		55 .91 7	
24	4	46.829		51.973		54.37		56.671	
25	4	47.636		52.753		55.139		57.431	

Prob. 2A2.2.6: Water in a 40 litre tank is heated from 15 C to 45 C by a spherical heater of 6 cm dia and the surface temp of heater is 85 C. Determine how long the heater should be kept on. [Ref: 2]

Mathcad Solution:

We use the functions for properties of water, written earlier in Prob. 2A2.2.4.

Data:

D := 0.06 m
$$T_{ini} := 15$$
 C $T_{final} := 45$ C $T_s := 85$ C
 $T_{avg} := \frac{T_{ini} + T_{final}}{2}$ i.e. $T_{avg} = 30$ C g := 9.81 m/s² Vol := 40.10⁻³ m³
 $T_f := \frac{T_{avg} + T_s}{2}$ i.e. $T_f = 57.5$ C film temp.

Calculations:

Properties of water at T_f:

$rho := rho_water \langle T_f \rangle$	i.e.	rho = 984.366 kg	g/m^3
$cp := cp_water \langle T_f \rangle$	i.e.	$cp = 4.205 \cdot 10^3$	K/kg.K
$mu := mu_water \langle T_f \rangle$	i.e.	$mu = 4.86 \cdot 10^{-4}$	kg/m.s
$\mathbf{k} := \mathbf{k}_{water} \langle \mathbf{T}_{\mathbf{f}} \rangle$	i.e.	k = 0.652	W/m.K

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Dove

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

Now:

$$\Delta T := T_s - T_{avg}$$
 i.e. $\Delta T = 55$ C

$$\begin{aligned} &\operatorname{Gr}_{D} \coloneqq \frac{g \cdot \beta \cdot \Delta T \cdot D^{3}}{v^{2}} & \text{ i.e. } &\operatorname{Gr}_{D} = 2.403 \cdot 10^{8} & \dots &\operatorname{Grashoff No.} \\ &\operatorname{Ra}_{D} \coloneqq &\operatorname{Gr}_{D} \cdot \operatorname{Pr} & \text{ i.e. } &\operatorname{Ra}_{D} = 7.532 \cdot 10^{8} & \dots &\operatorname{Rayleigh No.} \end{aligned}$$

Relation for Nusselts No. for a sphere in free convection from Ref. [2]:

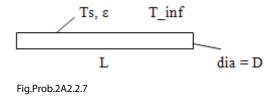
$$Nu_{D} := 2 + \frac{0.589 \cdot Ra_{D}^{\frac{1}{4}}}{\left[1 + \left(\frac{0.469}{Pr}\right)^{\frac{9}{16}}\right]^{\frac{9}{9}}} \qquad \dots \text{for wide range of } Ra, Ra <= 10^{\circ}12, Pr > = 0.7$$

Therefore: heat transfer coeff. h:

$$h := \frac{Nu D^{k}}{D}$$
 i.e. $h = 952.057$ W/m².K.... Ans.

Heat transfer rate, Q: $Q := \mathbf{h} \cdot \pi \cdot \mathbf{D}^2 \cdot \Delta T$ i.e. Q = 592.213 W Ans.

Heat transfer to water to raise the temp from T_{ini} to T_{final} :


$$Q_{water} := rho \cdot Vol \cdot cp \cdot (T_{final} - T_{ini}) J$$

Therefore: time required to heat this water:

Prob. 2A2.2.7.: A horizontal hot water pipe, 6 cm in dia and 10 m long passes through a room whose temp is 27 C. Surface temp and emissivity of the pipe are 73 C and 0.8. Determine the heat loss from the pipe by free convection and radiation.

Also plot the total heat transfer for different ambient temperatures and different emissivity values.

Mathcad Solution:

Use the Mathcad functions, already written, (see Prob. 2A1.2.5) to get properties of Air:

Data:

D := 0.06 m L := 10 m T_s := 73 C T_{inf} := 27 C g := 9.81 m/s² ϵ := 0.8 ...emissivity σ := 5.67 · 10⁻⁸ W/m².K⁴..... Stefan-Boltzmann const.

Calculations:

Write all quantities as functions of T_s, T_{inf} and e, so that we cal plot the results later by varying any of them:

$$T_{f}(T_{s}, T_{inf}) := \frac{T_{s} + T_{inf}}{2}$$
mean film temp in C
i.e. $T_{f}(T_{s}, T_{inf}) = 50$ C

Properties of Air at T_f:

$$\begin{split} \rho \left\langle T_{s}, T_{inf} \right\rangle &:= rho_Air \left\langle T_{f} \left\langle T_{s}, T_{inf} \right\rangle + 273 \right\rangle & \text{i.e.} \quad \rho \left\langle T_{s}, T_{inf} \right\rangle = 1.093 \text{ kg/m^3} \\ k \left\langle T_{s}, T_{inf} \right\rangle &:= k_Air \left\langle T_{f} \left\langle T_{s}, T_{inf} \right\rangle + 273 \right\rangle & \text{i.e.} \quad k \left\langle T_{s}, T_{inf} \right\rangle = 0.028 \quad W/m.K \\ \mu \left\langle T_{s}, T_{inf} \right\rangle &:= mu_Air \left\langle T_{f} \left\langle T_{s}, T_{inf} \right\rangle + 273 \right\rangle & \text{i.e.} \quad \mu \left\langle T_{s}, T_{inf} \right\rangle = 1.953 \cdot 10^{-5} \quad \text{kg/m.s} \\ Pr \left\langle T_{s}, T_{inf} \right\rangle &:= Pr_Air \left\langle T_{f} \left\langle T_{s}, T_{inf} \right\rangle + 273 \right\rangle & \text{i.e.} \quad Pr \left\langle T_{s}, T_{inf} \right\rangle = 0.704 \quad \dots \text{Prandtl No.} \\ \beta \left\langle T_{s}, T_{inf} \right\rangle &:= \frac{1}{T_{f} \left\langle T_{s}, T_{inf} \right\rangle + 273} & \text{i.e.} \quad \beta \left\langle T_{s}, T_{inf} \right\rangle = 3.096 \cdot 10^{-3} \quad 1/K \\ \nu \left\langle T_{s}, T_{inf} \right\rangle &:= \frac{\mu \left\langle T_{s}, T_{inf} \right\rangle}{\rho \left\langle T_{s}, T_{inf} \right\rangle} & \text{i.e.} \quad \nu \left\langle T_{s}, T_{inf} \right\rangle = 1.787 \cdot 10^{-5} \quad m^{*2/s} \end{split}$$

Now:

 $\Delta T(T_s, T_{inf}) := T_s - T_{inf}$

And:
$$\operatorname{Gr}_{D}(T_{s}, T_{inf}) := \frac{g \cdot \beta (T_{s}, T_{inf}) \cdot \Delta T (T_{s}, T_{inf}) \cdot D^{3}}{v (T_{s}, T_{inf})^{2}}$$

i.e
$$\operatorname{Gr}_{D}(T_{s}, T_{inf}) = 9.452 \cdot 10^{5}$$
 Grashoff No

Discover the truth at www.deloitte.ca/careers

95

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

Also:
$$\operatorname{Ra}_{D}(T_{s}, T_{inf}) := \operatorname{Gr}_{D}(T_{s}, T_{inf}) \cdot \operatorname{Pr}(T_{s}, T_{inf})$$

i.e.
$$\operatorname{Ra}_{D}(T_{s}, T_{inf}) = 6.652 \cdot 10^{5}$$
 ...Rayleigh No.

Use Churchill - Chu's eqn. to get Nusselts No. for horizontal cylinder in free convection:

$$\operatorname{Nu}_{D}(\operatorname{T}_{s},\operatorname{T}_{inf}) := \begin{bmatrix} 0.6 + \frac{0.387 \cdot \operatorname{Ra}_{D}(\operatorname{T}_{s},\operatorname{T}_{inf})^{\frac{1}{6}}}{\left[1 + \left(\frac{0.559}{\operatorname{Pr}(\operatorname{T}_{s},\operatorname{T}_{inf})}\right)^{\frac{9}{16}}\right]^{\frac{2}{77}}} \end{bmatrix}^{2} \quad \dots \text{ for wide range of Ra, Ra<=10^{12}}$$

i.e.
$$\operatorname{Nu}_{D}(T_s, T_{inf}) = 12.958$$
Nusselts No.

Therefore: heat transfer coeff. h:

$$h(T_s, T_{inf}) := \frac{Nu_D(T_s, T_{inf}) \cdot k(T_s, T_{inf})}{D}$$

i.e. $h(T_s, T_{inf}) = 5.969$ W/m^2.C heat transfer coeff.

Heat transfer rate by convection, \mathbf{Q}_{conv} :

$$Q_{conv}(T_s, T_{inf}) := h(T_s, T_{inf}) \cdot \pi \cdot D \cdot L \cdot \Delta T(T_s, T_{inf})$$

i.e. $Q_{conv}(T_s, T_{inf}) = 517.519$ W heat transfer by convection.....Ans.

Heat transfer rate by Radiation, Q_{rad} :

$$Q_{rad} \langle T_s, T_{inf}, \epsilon \rangle := \sigma \cdot \epsilon \cdot (\pi \cdot D \cdot L) \cdot \left[\langle T_s + 273 \rangle^4 - \langle T_{inf} + 273 \rangle^4 \right]$$

i.e.
$$Q_{rad}(T_s, T_{inf}, \epsilon) = 532.839$$
 W heat transfer by Radiation.....Ans.

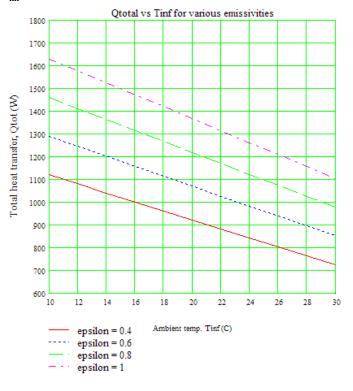
Therefore, Total heat transfer rate, Q_{tot}:

$$Q_{tot}(T_s, T_{inf}, \varepsilon) := Q_{conv}(T_s, T_{inf}) + Q_{rad}(T_s, T_{inf}, \varepsilon)$$

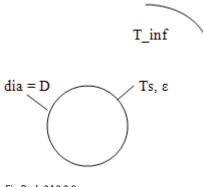
i.e.
$$Q_{tot}(T_s, T_{inf}, \varepsilon) = 1.05 \cdot 10^3 \qquad W \dots \text{ Total heat transfer } \dots \text{Ans.}$$

Now, plot Q_{total} for different values of T_{inf} and ϵ , T_s being held constant at 73 C:

T_s := 73 C


Let $T_{_{\rm inf}}$ vary from 10 C to 30 C; ϵ from 0.4 to 1.0:

T inf := 10, 12.. 30


Sample Table for $\varepsilon = 0.8$:

T inf	$Q_{conv}(T_s, T_{inf})$	$Q_{rad}(T_s, T_{inf}, 0.8)$	$Q_{tot}(T_s, T_{inf}, 0.8)$
10	783.005	676.974	1459.978
12	750.246	661.305	1411.551
14	717.882	645.303	1363.186
16	685.919	628.964	1314.883
18	654.362	612.281	1266.643
20	623.214	595.251	1218.465
22	592.483	577.868	1170.352
24	562.175	560.129	1122.304
26	532.295	542.027	1074.323
28	502.852	523.559	1026.411
30	473.854	504.718	978.572

Plot of \boldsymbol{Q}_{total} against \boldsymbol{T}_{inf} for different values of emissivity, $\boldsymbol{\epsilon}:$

Prob. 2A2.2.8.: Consider a 8 cm dia, 60 W incandescent bulb in a room at 25 C. Emissivity of glass is 0.9. Assuming that 90% of the energy is converted to heat and dissipated by convection and radiation, determine the equilibrium temp of the bulb surface.

Fig.Prob.2A2.2.8

Mathcad Slution:

Use the Mathcad functions, already written, (see Prob. 2A1.2.5) to get properties of Air:

Data:

Let the surface temp be T_s.

Calculations:

Write all quantities as functions of T_s , T_{int} and ε , so that we cal plot the results later by varying any of them:

$$T_f(T_s, T_{inf}) := \frac{T_s + T_{inf}}{2}$$
mean film temp in C

Properties of Air at T_f:

$$\rho \langle T_{s}, T_{inf} \rangle := rho_Air \langle T_{f} \langle T_{s}, T_{inf} \rangle + 273 \rangle \qquad kg/m^{3}$$

$$k \langle T_{s}, T_{inf} \rangle := k_Air \langle T_{f} \langle T_{s}, T_{inf} \rangle + 273 \rangle \qquad W/m.K$$

$$\mu \langle T_{s}, T_{inf} \rangle := mu_Air \langle T_{f} \langle T_{s}, T_{inf} \rangle + 273 \rangle \qquad kg/m.s$$

$$Pr(T_{s}, T_{inf}) \coloneqq Pr_Air(T_{f}(T_{s}, T_{inf}) + 273) \qquad \dots Prandtl No$$
$$\beta(T_{s}, T_{inf}) \coloneqq \frac{1}{T_{f}(T_{s}, T_{inf}) + 273} \qquad 1/K$$

$$v\left(T_{s}, T_{inf}\right) := \frac{\mu\left(T_{s}, T_{inf}\right)}{\rho\left(T_{s}, T_{inf}\right)} \qquad m^{2/s}$$

Now:

 $\Delta T(T_s, T_{inf}) := T_s - T_{inf}$ C

And:
$$\operatorname{Gr}_{\mathbf{D}}(\mathbf{T}_{s}, \mathbf{T}_{inf}) := \frac{g \cdot \beta \left(\mathbf{T}_{s}, \mathbf{T}_{inf}\right) \cdot \Delta T \left(\mathbf{T}_{s}, \mathbf{T}_{inf}\right) \cdot \mathbf{D}^{3}}{v \left(\mathbf{T}_{s}, \mathbf{T}_{inf}\right)^{2}} \qquad \dots \text{Grashoff No.}$$

Also:
$$\operatorname{Ra}_{D}(T_{s}, T_{inf}) \coloneqq \operatorname{Gr}_{D}(T_{s}, T_{inf}) \cdot \operatorname{Pr}(T_{s}, T_{inf})$$
Rayleigh No.

Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

Grant Thornton

Then, use following eqn. to get Nusselts No. for a sphere in free convection:

$$\operatorname{Nu}_{D}(T_{s}, T_{inf}) := 2 + \frac{0.589 \cdot \operatorname{Ra}_{D}(T_{s}, T_{inf})^{\frac{1}{4}}}{\left[1 + \left(\frac{0.469}{\operatorname{Pr}(T_{s}, T_{inf})}\right)^{\frac{9}{16}}\right]^{\frac{9}{16}}} \qquad \dots \text{for Ra} <= 10^{\circ}11, \text{ and } \operatorname{Pr} >= 0.7$$

Therefore: heat transfer coeff. h:

$$h(T_s, T_{inf}) := \frac{Nu_D(T_s, T_{inf}) \cdot k(T_s, T_{inf})}{D} \qquad W/m^2.C \dots \text{ heat transfer coeff}$$

Heat transfer rate by convection, Q_{conv} : $Q_{conv}(T_s, T_{inf}) := h(T_s, T_{inf}) \cdot \pi \cdot D^2 \cdot \Delta T(T_s, T_{inf})$ since surface area of sphere = $\pi^* D^2$

Heat transfer rate by Radiation, Q_{rad}:

$$Q_{rad}(T_s, T_{inf}, \varepsilon) := \sigma \cdot \varepsilon \cdot \langle \pi \cdot D^2 \rangle \cdot \left[\langle T_s + 273 \rangle^4 - \langle T_{inf} + 273 \rangle^4 \right]$$

Therefore, Total heat transfer rate, Q_{tot}:

 $Q_{tot}(T_s, T_{inf}, \varepsilon) \coloneqq Q_{conv}(T_s, T_{inf}) + Q_{rad}(T_s, T_{inf}, \varepsilon)$

Now, this total heat transfer should be equal to $60 \times 0.9 = 54$ W.

Use Solve block of Mathcad to meet this condition:

Start with a guess value of Ts, say Ts = 150 C.

T _s := 150 C guess value

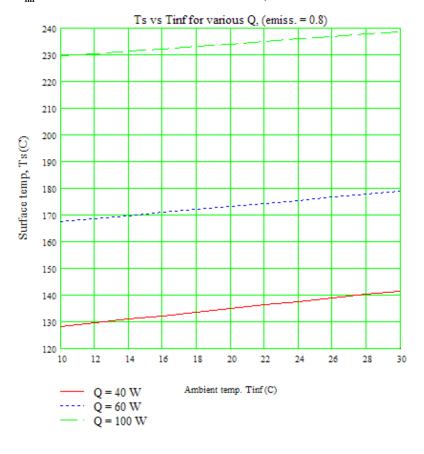
Given

$$Q_{tot}(T_s, T_{inf}, \varepsilon) = 0.9 \cdot Q$$

 $T_s(T_{inf}, Q, \varepsilon) := Find(T_s)$

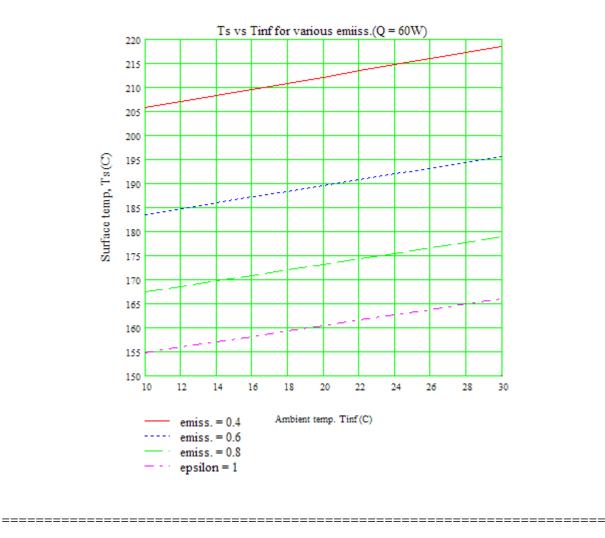
i.e. $T_s(T_{inf}, Q, \epsilon) = 169.298$ C surface temp of bulb under given conditions Ans.

Now, plot $T_{_{s}}$ for different values of $T_{_{inf}}$ and $\epsilon,$ and Q:


Let T_{inf} vary from 10 C to 30 C; ϵ from 0.4 to 1.0:

T inf := 10, 12.. 30

Sample Table for $\varepsilon = 0.8$, Q = 40 W, 60 W and 100 W:


T inf	$T_{s}(T_{inf}, 40, 0.8)$	$T_{s}(T_{inf}, 60, 0.8)$	$T_{s}(T_{inf}, 100, 0.8)$
10	128.344	167.457	229.501
12	129.663	168.605	230.417
14	130.981	169.754	231.333
16	132.299	170.902	232.25
18	133.617	172.051	233.167
20	134.935	173.2	234.086
22	136.255	174.349	235.001
24	137.576	175.499	235.917
26	138.896	176.649	236.834
28	140.217	177.801	237.752
30	141.538	178.952	238.671

Plot of T_s against T_{inf} for different Q values, with emissivity = 0.8:

Download free eBooks at bookboon.com

\$UnitSystem SI Pa C J

"**Prob. 2A2.2.9.** A sphere 20 cm in diameter containing liquid air (-140 C) is covered with 5 cm thick glass wool (k = 0.037 W/m.K), with an emissivity of 0.8. Estimate the surface temp and the total heat transfer to liquid air (i.e. convection + radiation) if the surrounding air is at 20 C"

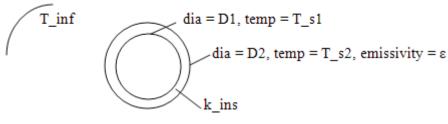
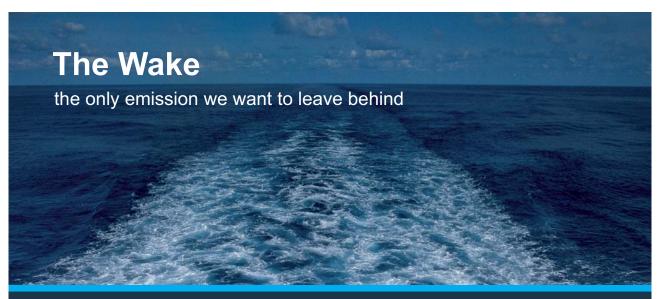



Fig.Prob.2A2.2.9

EES Solution:

"Data:"

 $D_1 = 0.2[m]$ "..dia of spherical container" $k_ins = 0.037 [W/m-C]$ "...thermal cond. of insulation" $t_ins = 0.05[m]$ "...thickness of insulation" $D_2 = D_1 + (t_ins * 2)$ "[m]..outer dia of sphere" $T_s1 = -140[C]$ $T_inf = 20 [C]$ $\{T_s2 = 10$ "[C].... temp of outer surface of insulation assumed. Will be corrected later"} $T_f = (T_s2+T_inf)/2$ "[C]...film temp." beta = 1/(T_f + 273) "[1/K] ... coeff. of vol. expn" $g = 9.81[m/s^2]$ sigma = 5.67E-08 [W/m^2-K^4] "... Stefan Boltzmann constant" epsilon = 0.8 "...emissivity"

Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

Engineering the Future – since 1758. **MAN Diesel & Turbo**

103

"Properties of Air at Tf:"

mu=Viscosity(Air,T=T_f) "[kg/m-s]"
rho=Density(Air,T=T_f,P=1E05) "[kg/m^3]"
nu = mu/rho "[m^2/s]"
cp=Cp(Air,T=T_f) "[J/kg-K]"
k=Conductivity(Air,T=T_f) "[W/m-K]"

"Calculations:"

"Calculate Nusselts No.:"

Gr_D = g * beta * (T_inf-T_s2) * D_2^3 / nu^2 "...Grashoff No." Pr = mu * cp / k "Prandtl No." Ra_D = Gr_D * Pr "...Rayleigh No."

"We get Ra_D = 3.069E07 i.e. < 10^11"

"For a sphere in free convection, we have:"

Nusselt_D = 2 + ((0.589 * Ra_D^(1/4)) / (1 + (0.469 / Pr)^(9/16))^(4/9)) "Finds Nu_D for Ra <= 10^11, and Pr >= 0.7"

Nusselt_D = $h * D_2 / k$ "Finds h"

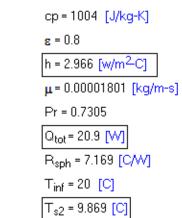
 $Q_{conv} = h * (pi * D_2^2) * (T_{inf} - T_s^2) "[W] \dots$ heat transfer by convection"

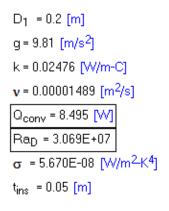
"Heat transfer by radiation:"

 $Q_rad = sigma * epsilon * (pi * D_2^2) * ((T_inf + 273)^4 - (T_s2 + 273)^4) "[W] heat tr by radiation"$

Q_tot = Q_conv + Q_rad "[W] ... total heat transfer"

"But this total heat transfer must be equal to heat tr by conduction through the insulation:"


 $R_sph = (D_2 - D_1) / (2 * pi * k_ins * D_2 * D_1) "[C/W] \dots Thermal resistance of spherical layer of insulation"$


 $Q_{tot} = (T_s2 - T_s1) / R_sph "...finds T_s2"$

Results:

Unit Settings: SI C Pa J mass deg

 $\beta = 0.003473 [1/K]$ $D_2 = 0.3 [m]$ $Gr_D = 4.201E+07$ $k_{ins} = 0.037 [W/m-C]$ $Nusselt_D = 35.93$ $Q_{rad} = 12.41 [W]$ $\rho = 1.209 [kg/m^3]$ $T_f = 14.93 [C]$ $T_{s1} = -140 [C]$

Thus:

Surface temp of insulation = T_s2 = 9.869 C Ans.

Total heat transfer = Q_tot = 20.9 W Ans.

XX RBS Group

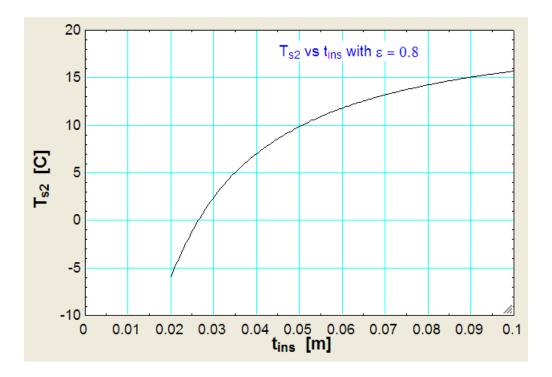
CAREERKICKSTART

An app to keep you in the know

Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?


Click here to get started.

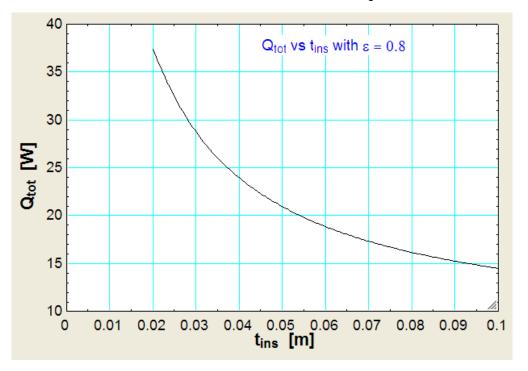
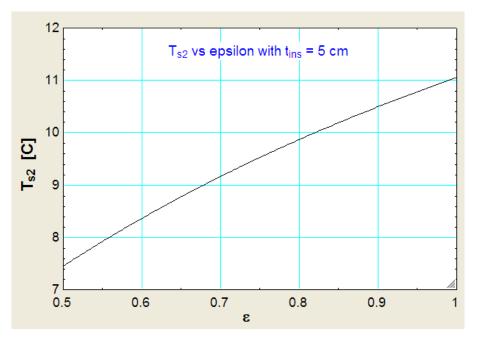


Table 1			
19	1 ⊻ t _{ins} [m]	² ▼ T _{s2} [C]	³ Q _{tot} [₩]
Run 1	0.02	-5.931	37.4
Run 2	0.03	2.451	28.7
Run 3	0.04	7.017	23.92
Run 4	0.05	9.869	20.9
Run 5	0.06	11.81	18.82
Run 6	0.07	13.2	17.3
Run 7	0.08	14.25	16.14
Run 8	0.09	15.05	15.22
Run 9	0.1	15.69	14.48

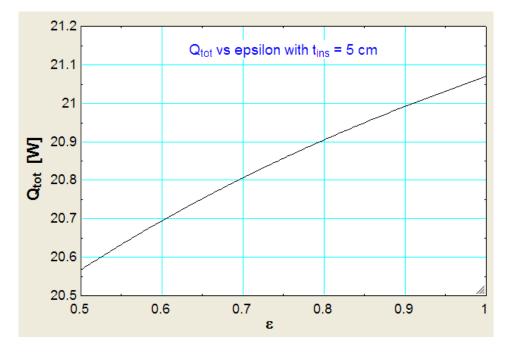
Plot the variation of T_s2 and Q_tot as t_ins varies from 2 cm to 10 cm (with epsilon = 0.8):

Surface temp (T_s2) vs thickness of insulation (t_ins) with epsilon = 0.8:

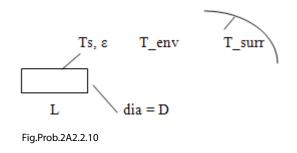

Total heat transfer (Q_tot) vs thickness of insulation (t_ins) with epsilon = 0.8:

Plot the variation of T_s2 and Q_tot as epsilon varies from 0.4 to 1, (with t_ins = 5 cm):

Table 1 Table	92		
111	1 ε	2 ▼ T _{s2} [C]	³ Q _{tot} [W]
Run 1	0.5	7.452	20.57
Run 2	0.55	7.923	20.63
Run 3	0.6	8.365	20.69
Run 4	0.65	8.777	20.75
Run 5	0.7	9.164	20.81
Run 6	0.75	9.528	20.86
Run 7	0.8	9.869	20.9
Run 8	0.85	10.19	20.95
Run 9	0.9	10.49	20.99
Run 10	0.95	10.78	21.03
Run 11	1	11.05	21.07



Surface temp (T_s2) vs emissivity (with t_ins = 5 cm):



Q_tot vs emissivity (with t_ins = 5 cm):

Prob. 2A2.2.10. A wall mounted power transistor dissipates 0.18W in an environment of 35 C. The transistor is 0.45 cm long and 0.4 cm in diameter. The emissivity of outer surface of transistor is 0.1 and the average temp of surrounding surfaces is 25 C. Disregarding heat transfer from the base surface, determine the surface temp of transistor. Also, plot the surface temp for various values of environmental temperatures and emissivities.

Mathcad Solution:

Use the Mathcad functions, already written, (see Prob. 2A1.2.5) to get properties of Air:

Data:

 $T_{surr}(T_{env}) := T_{env} - 10$ C....surr. temp...written as a function of T_env $\epsilon := 0.1$ emissivity g := 9.81 m/s²....accn. due to gravity

We need properties of air at film temperature Tf:

$$T_f(T_s, T_{env}) := \frac{T_s + T_{env}}{2}$$
 C....avg. temperature.

 σ := 5.67 \cdot 10⁻⁸ W/m^2.K^4....Stefan Boltzmann const.

Note: We will be writing T_surr and Tf....etc. as functions of T_env and epsilon since we need to vary T_env and epsilon to plot the graphs.

Properties of Air at Tf:

$$\label{eq:rho_Air} \begin{split} \rho\big(\text{Ts},\text{T}_{env}\big) &\coloneqq \text{rho}_\text{Air}\big(\text{T}_f\big(\text{Ts},\text{T}_{env}\big) + 273\big) & \qquad \text{kg/m^3} \end{split}$$

$$k(Ts, T_{env}) := k_{Air}(T_f(Ts, T_{env}) + 273)$$
 W/m.K

$$\mu(Ts, T_{env}) := mu_Air(T_f(Ts, T_{env}) + 273)$$
 kg/m.s

$$Pr(Ts, T_{env}) := Pr_Air(T_f(Ts, T_{env}) + 273)$$
Prandtl No.

$$\beta(Ts, T_{env}) \coloneqq \frac{1}{T_f(Ts, T_{env}) + 273}$$
 1/K

$$v(Ts, T_{env}) := \frac{\mu(Ts, T_{env})}{\rho(Ts, T_{env})}$$
m^2/s

Remember that here, the diameter 'D' is the characteristic dimension.

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

110

$$\begin{array}{ll} \text{Then}, & \quad \text{Gr}_D(\text{Ts},\text{T}_{env}) \coloneqq \frac{g \cdot \beta \big(\text{Ts},\text{T}_{env}\big) \cdot \big(\text{Ts}-\text{T}_{env}\big) \cdot D^3}{\nu \big(\text{Ts},\text{T}_{env}\big)^2} & \quad \dots \text{Grashof No. as a function of Ts} \end{array}$$

i.e. $Gr_D(Ts, T_{env}) = 425.616$ Grashof number

Then, Rayleigh No .:

$$\begin{split} &Ra_D(\texttt{Ts},\texttt{T}_{env}) \coloneqq \left(\texttt{Gr}_D(\texttt{Ts},\texttt{T}_{env}) \cdot \texttt{Pr}(\texttt{Ts},\texttt{T}_{env})\right) \\ &i.e. \qquad Ra_D(\texttt{Ts},\texttt{T}_{env}) = 294.484 \qquad \dots \text{Rayleigh No}. \end{split}$$

Then, use Churchill and Chu's relation for horizl cylinder, to get Nusselts No. (Ref: 2):

$$Nu(Ts, T_{env}) := \begin{bmatrix} 0.6 + \frac{0.378 \cdot RaD(Ts, T_{env})^{\frac{1}{6}}}{\left[\frac{9}{1 + \left(\frac{0.559}{Pr(Ts, T_{env})}\right)^{\frac{9}{16}}} \right]^{\frac{2}{77}}} \end{bmatrix}^{2} \dots \text{ for } Ra < 10^{\text{h}}12$$

i.e.
$$Nu(Ts, T_{env}) = 1.982$$
 ...Nusselts No.

And,
$$h(Ts, T_{env}) := \frac{Nu(Ts, T_{env}) \cdot k(Ts, T_{env})}{D}$$

i.e. $h(Ts, T_{env}) = 16.091$ W/m^2.C heat tr coeff.

Heat transfer by convection:

Now, area for convective and radiative heat transfer is:

$$A_s := \pi \cdot D \cdot L + \frac{\pi \cdot D^2}{4}$$
 i.e. $A_s = 6.912 \times 10^{-5}$ m^A2 ... area

 $\label{eq:conv} \begin{array}{ll} \text{Therefore:} & Q_{conv} \big(\texttt{Ts} \,, \texttt{T}_{env} \big) \coloneqq \big[\texttt{h} \big(\texttt{Ts} \,, \texttt{T}_{env} \big) \cdot \texttt{A}_{s} \cdot \big(\texttt{Ts} \,- \, \texttt{T}_{env} \big) \big] \end{array}$

i.e.
$$Q_{conv}(Ts, T_{env}) = 0.184$$
 W....heat transfer rate by convection

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

Heat transfer by radiation:

$$Q_{rad}(Ts, T_{env}, \epsilon) := \left[\sigma \cdot \epsilon \cdot A_s \cdot \left[(Ts + 273)^4 - (T_{surr}(T_{env}) + 273)^4 \right] \right]$$

 $Q_{rad}(Ts, T_{env}, \epsilon) = 0.017$ W..... heat transfer by radiation

To find Ts: Use Solve block:

Given

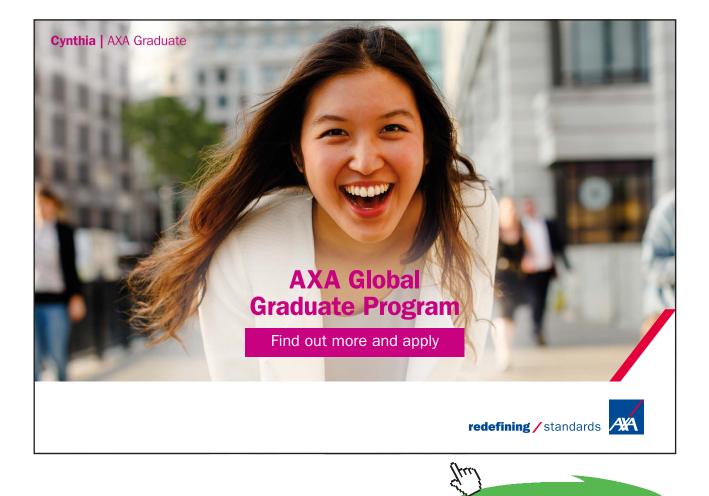
i.e.

$$Q_{conv}(Ts, T_{env}) + Q_{rad}(Ts, T_{env}, \epsilon) = 0.18$$

 $Ts(T_{env}, \epsilon) := Find(Ts)$ $Ts(T_{env}, \epsilon) = 186.304$ C surface temp Ans.

Note that in the Solve block, Ts is written as a function of T_env and epsilon.

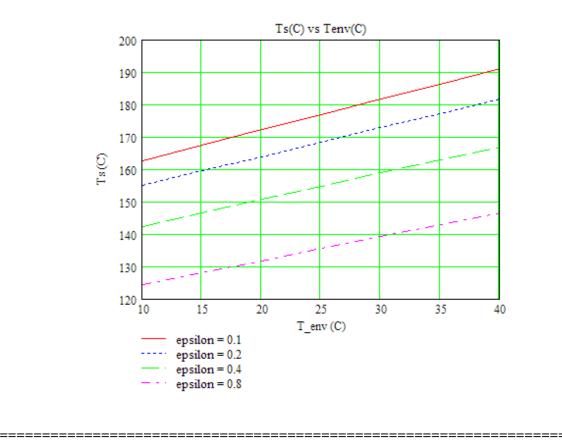
So, now, it is convenient to plot the variation of Ts as a function of T_env and epsilon.


Thus:

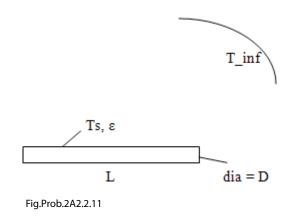
Results are:

$$\begin{split} \epsilon &= 0.1 & T_{env} = 35 \\ Ts(T_{env}, \epsilon) &= 186.304 & C \hdots ans. \\ Gr_D(Ts(T_{env}, \epsilon), T_{env}) &= 422.568 \\ Pr(Ts(T_{env}, \epsilon), T_{env}) &= 0.693 \\ Ra_D(Ts(T_{env}, \epsilon), T_{env}) &= 292.954 \\ Nu(Ts(T_{env}, \epsilon), T_{env}) &= 1.98 \\ h(Ts(T_{env}, \epsilon), T_{env}) &= 15.841 & W/m^{A}2.K \\ Q_{conv}(Ts(T_{env}, \epsilon), T_{env}) &= 0.166 & W \\ Q_{rad}(Ts(T_{env}, \epsilon), T_{env}, \epsilon) &= 0.014 & W \\ Qtot &= Q_{conv} + Q_{rad} &= 0.18 & W \end{split}$$

Now, plot T_s for various values of T_env, with different values of ϵ :


$T_{env} := 10, 1540$	ε := 0.1etc.			
_	- ()	- ()	- (- (
T _{env} =	Ts(T _{env} ,0.1)	$Ts(T_{env}, 0.2)$	$Ts(T_{env}, 0.4)$	$Ts(T_{env}, 0.8)$
10	162.668	154.953	142.42	124.311
15	167.424	159.443	146.545	128.035
20	172.165	163.915	150.654	131.749
25	176.892	168.37	154.746	135.455
30	181.605	172.809	158.821	139.154
35	186.304	177.23	162.881	142.843
40	190.989	181.636	166.925	146.525

Download free eBooks at bookboon.com


Click on the ad to read more

113

Prob. 2A2.2.11. A steam pipe, 100 mm in diameter, maintained at 170 C is exposed to air at 30 C. Length of the pipe is 2 m and is kept horizontal. Determine the heat lost by the pipe per hour. [VTU – May 2007]

Also calculate the heat lost by radiation if emissivity of surface is 0.9. Plot Q_total for ambient temperatures varying from 0 to 40 C.

Note that this is the same problem as 2A2.2.3.

However, now we will solve it with EXCEL.

EXCEL Solution:

WE need properties of Air as temp varies.

We have already written VBA Functions in EXCEL to calculate the properties of Air, in Prob. 2A1.2.13. We will use those Functions.

Following are the steps:

1. Set up the EXCEL worksheet, enter data and name the cells:

	L	$ f_x$	2			
	А	В	С	D	E	F
210		Data:	Fluid =	Air		
211			T_s	170	С	
212			T_inf	30.0000	C	
213			T_f	100.0000	С <	Tal Timf
214			D	0.1	m	$T_f = \frac{T_s + T_{inf}}{2}$
215			L	2.0000	m	2
216			g	9.8100	m/s^2	
217			beta	0.0027	1/K	
218			epsilon	0.9000		
219			sigma	5.6700E-08	W/m^2-K^4	
200						

2. Do the calculations, use VBA Functions to get properties of Air:

	ср	- (● f _x	=air_cp_T((T_f+273))				
	А	В	С	D	E		F	G
220								
221		Calculations:				-		
222		density	rho	0.94706	kg/m^3			
223		th. conductivity	k	0.031607	W/m.C		Using VB/	A Functions for Air
224		Prandtl No.	Pr	0.70052		E		
225		kinematic visc.	nu	2.31375E-05	m^2/s			
226		sp.heat	ср	1011.3	J/kg.K]		

And, further calculations:

	Q_ho	rizl 🔻 🔿 🌆	=h_horizl*(PI()*D*	*L)*(T_s-T_inf)				
	А	В	С	D	E	F	G	Н
229								
230								
231		For horizontal cylinder: us	e Churchill & Chu	's eqn to find Nussel	ts No.: g·b	eta⊹(Ts – Tinnf	C)-D ³	
232		Grashof No.	Gr_D	6877891.932 <	Gr_D =	eta·(T_s - T_inf nu ²	<u></u>	
233		Rayleigh No.	Ra_D	4818100.856				
234		To calculate Nusselts No.			$Ra_D = Gr_D P$	r		1
235			AA	5.0295	<		Γ Δ Δ -	0.387-Ra D ⁶
236			BB	0.8808		2		
237			CC	1.205828931	Nusselt_horizl =	$\left(0.6 + \frac{AA}{AA}\right)^2$ -		16
238			Nusselt_horizl	22.762 <		(cc)	BB =	$\left(\frac{0.559}{Pr}\right)^{\frac{9}{16}}$
239		convective heat tr. coeff.	h_horizl	7.194	W/m^2.C		1	Pr
240		Conv. Heat transfer	Q_horizl	632.8576	w 🔬			8
241		Radiation Heat transfer:					CC = ((1 + BB) ²⁷
242			Q_rad	964.6111	w			
243		Total heat transfer:	Q_tot	1597.4687	w		h_horizl = Nusselt_h	onzl·k
244							D	
245							Q horizi = h horizi $(a + b)$	$T \cdot D \cdot L \cdot (T - S - T - inf)$
246						l		·····
247							, E	4 4
248						Q_rad = epsilo	on sigma $(\pi \cdot D \cdot L) \cdot [(T_{-})]$	$(s + 273)^4 - (T_inf + 273)^4$
249						Q tot = Q ho	$riz1 \pm 0$ rad	
250						<u></u>	and Q and	

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on **+44 (0)20 7000 7573**.

* Figures taken from London Business School's Masters in Management 2010 employment report

116 Download free eBooks at bookboon.com

Thus:

Q_conv = Q_horizl = 632.86 W Heat loss by convection

Q_rad = 964.61 W.... Heat transfer by radiation

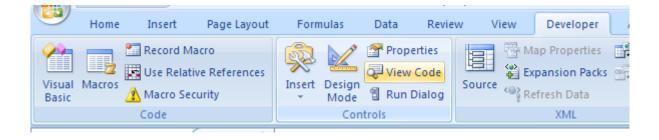
Q_tot = 1597.47 W ... Total heat transfer

3. Now, let us plot the variation of Q_conv, Q_rad and Q_tot as the ambient temp varies from 0 to 40 deg.C.

Since T_f and the properties of Air also change as T_inf varies, it is convenient to write a VBA program to do this calculation. First, set up a Table as shown:

	C258	\bullet (*) f_x				
	А	В	С	D	E	F
253						
254		Plot Q against T_in	f, other conditio	ons remaining th	ne same:	
255						
256						
257		T_in (deg.C)	h_horizl (W/m^2.C	Q_horizl (W)	Q_rad (W)	Q_tot (W)
258		0				
259		5				
260		10				
261		15				
262		20				
263		25				
264		30				
265		35				
266		40				

4. Now, we will write a VBA program to read the values of T_inf, one by one, from this Table and put in cell D212.; then, immediately, all other calculations in remaining cells get updated. The program selects the required quantity (i.e. h_horizl, Q_horizl, Q_rad and Q_ tot, from cells D239, D240, D242 and D243 respectively) and copies them to their respective places in the Table. And, we will have a Command Button to do this:


Go to Developer – Insert-Active X controls:

Basic A Macro Security Code	Mode 🕄 Run
C258 - fx =	0 🗈 🍨 🗹
	α 🚆 ab 📑 📑
253 Acti	veX Controls
254 Plot () against int) A 🛯 🚽 🎘 <mark>)</mark>

Click on the first, left button. And, draw the Command Button in the worksheet to the required size, at the required place:

	C258	- (•)	f.x						
	А	В	С	D	E	F	G	Н	
253									
254		Plot Q against T_i	nf, other conditi	ions remaining t	he same:				
255									
256									
254 255 256 257		T_in (deg.C)	h_horizl (W/m^2.	C Q_horizl (W)	Q_rad (W)	Q_tot (W)		CommandButt	ton1
258		0							
259 260		5							
		10							
261		15							
262		20							
263		25							
264		30							
265		35							
266		40							

Click on Developer-View Code:

And, we get the code already written for the Command button:

C	CommandButton1						
	Private Sub CommandButton1_Click() End Sub						

Now, complete the code to do the desired jobs as mentioned under point 4 above:

C	commandButton1
	Private Sub CommandButton1_Click()
	Dim i As Integer For i = 0 To 8
	Range("D212") = Cells(258 + i, 2)
	Cells(258 + i, 3) = Range("D239")
	Cells(258 + i, 4) = Range("D240")
	Cells(258 + i, 5) = Range("D242")
	Cells(258 + i, 6) = Range("D243")
	Next i
	End Sub

Download free eBooks at bookboon.com

In the above code:

Line 1: defines the Sub

Line 2: dimension statement for i, the counter in For....Next construct

Line 3 to 9: For ... Next slab

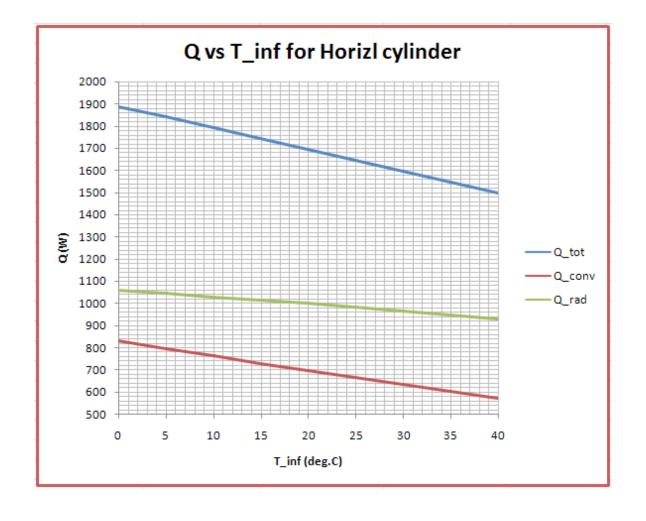
Line 4: Takes the first value of T_inf from the Table and copies it to cell D212 (i.e. T_inf in the original program)

Immediately, all other calculations in other cells are up-dated; and the rest of the program copies them to the respective places in the Table. i.e.

Line 5, 6, 7 and 8: copy values of h_horizl, Q_horizl, Q_rad and Q_tot to respective cells in the Table.

Line 9: this is repeated for the next value of T_inf in the Table.

Line 10: End statement of Subroutine



5. Now, click on the Command Button 1 and the Table gets filled up immediately:

		▼ (* fx	7.77844862681783						
	А	В	С	D	E	F	G	Н	
253									
254		Plot Q against T_in	f, other conditio	ons remaining th	ne same:				
255									
256								[
257		T_in (deg.C)	h_horizl (W/m^2.C	Q_horizl (W)	Q_rad (W)	Q_tot (W)		CommandBu	utton1
258		0	7.778	830.848	1056.771	1887.619			
259		5	7.684	796.583	1043.360	1839.944			
260		10	7.586	762.674	1029.207	1791.881			
261		15	7.489	729.355	1014.283	1743.637			
262		20	7.391	696.617	998.561	1695.177			
263		25	7.293	664.453	982.013	1646.466			
264		30	7.194	632.858	964.611	1597.469			
265		35	7.095	601.825	946.326	1548.151			
266		40	6.995	571.351	927.128	1498.480			

======

6. Plot the results in EXCEL:

VBA Functions for Nusselts No. for Natural convection in Air:

Natural convection in Air for various geometries is an very common occurrence.

It is very convenient in EXCEL to have VBA Functions to find Nusselts No. for these cases. Then, we can easily calculate heat transfer coefficient and the heat transfer rate.

We give below some VBA Functions for average Nusselts No. for different cases:

Remember that we have already written VBA Functions for properties of Air, NH3,...etc. (See, for ex. Prob. 2A1.2.13). In the same Worksheet, in another Module, we shall write these VBA Functions for Natural convection:

```
Option Explicit
 Function NatConv_Air_HCyl_Nusselt_D(T_s As Double, T_inf As Double, L As Double, D As Double) As Double
'Finds Avg. Nusselts No. for Nat Convn in Air at 1 atmosph pressure for a Horizl cylinder
 'Reads property values of Air from Table and interpolates using VBA Functions
 Dim g As Double, beta As Double
 Dim AA As Double, BB As Double, CC As Double
 Dim T_f As Double, rho As Double, k As Double, \mbox{Pr} As Double
 Dim nu As Double, cp As Double
Dim Gr_D As Double, Ra_D As Double
 g = 9.81 \text{ 'm/s}^2...accn due to gravity
 T_f = (T_s + T_inf) / 2
 beta = 1 / (T_f + 273) 'vol. expansivity of Air
 'Properties of Air:
 rho = Air rho T(T f + 273)
 k = Air_k_T (T_f + 273)
 Pr = Air_Pr_T(T_f + 273)
 nu = Air_nu_T(T_f + 273)

cp = Air_cp_T(T_f + 273)
 Gr_D = g * beta * Abs(T_s - T_inf) * D ^ 3 / nu ^ 2 'Grashof No.
```

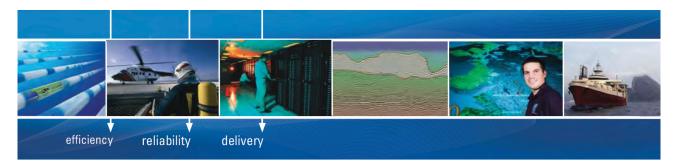
Ra_D = Gr_D * Pr 'Rayleigh No.


```
AA = 0.387 * Ra D^{(1)} (1 / 6)
BB = (0.559 / Pr) ^{(9)} (9 / 16)
CC = (1 + BB) \land (8 / 27)
NatConv_Air_HCyl_Nusselt_D = (0.6 + AA / CC) ^ 2 'For 10^-5 < Ra_D <= 10^12
End Function
Function NatConv_Air_VPlate_Nusselt_L(T_s As Double, T_inf As Double, L As Double) As Double
'Finds Avg. Nusselts No. for Nat Convn in Air at 1 atmosph pressure for a Vertical Plate (height L)
'Reads property values of Air from Table and interpolates using VBA Functions
Dim g As Double, beta As Double
Dim AA As Double, BB As Double, CC As Double
Dim T_f As Double, rho As Double, k As Double, Pr As Double
Dim nu As Double, cp As Double
Dim Gr_L As Double, Ra_L As Double
g = 9.81 'm/s^2....accn due to gravity
T_f = (T_s + T_{inf}) / 2
beta = 1 / (T f + 273) 'vol. expansivity of Air
'Properties of Air:
rho = Air rho T(T f + 273)
k = Air_k T(T_f + 273)
Pr = Air Pr T (T f + 273)
nu = Air_nu_T(T_f + 273)
cp = Air_cp_T(T_f + 273)
Gr_L = g * beta * Abs(T_s - T_inf) * L ^ 3 / nu ^ 2 'Grashof No.
Ra_L = Gr_L * Pr 'Rayleigh No.
AA = 0.387 * Ra L^{(1 / 6)}
BB = (0.492 / Pr) ^ (9 / 16)
CC = (1 + BB) \land (8 / 27)
```

```
NatConv_Air_VPlate_Nusselt_L = (0.825 + AA / CC) ^ 2 'For Ra_L <= 10^12
```

End Function

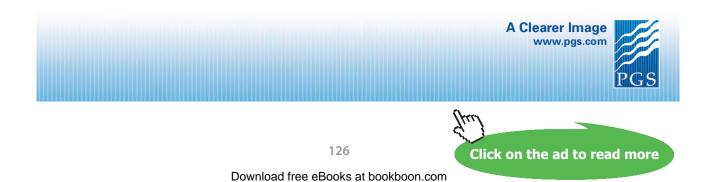
```
Function NatConv_Air_VCyl_Nusselt_L(T_s As Double, T_inf As Double, D As Double, L As Double) As Double
'Finds Avg. Nusselts No. for Nat Convn in Air at 1 atmosph pressure for a Vertical cyl (height L)
'Reads property values of Air from Table and interpolates using VBA Functions
Dim g As Double, beta As Double
Dim AA As Double, BB As Double, CC As Double
Dim T_f As Double, rho As Double, k As Double, Pr As Double
Dim nu As Double, cp As Double
Dim Gr_L As Double, Ra_L As Double
g = 9.81 'm/s^2....accn due to gravity
T_f = (T_s + T_inf) / 2
beta = 1 / (T_f + 273) 'vol. expansivity of Air
'Properties of Air:
rho = Air_rho_T(T_f + 273)
  k = Air_k T (T_f + 273) 
 Pr = Air_Pr_T (T_f + 273) 
 nu = Air_nu_T (T_f + 273) 


cp = Air_cp_T(T_f + 273)
Gr_L = g * beta * Abs(T_s - T_inf) * L ^ 3 / nu ^ 2 'Grashof No.
If (D < 35 * L / Gr L ^ 0.25) Then
  MsgBox (" D must be greater than or equal to Factor (35 * L/Gr L^0.25) !!")
 End
 End If
Ra_L = Gr_L * Pr 'Rayleigh No.
AA = 0.387 * Ra_L ^ (1 / 6)
BB = (0.492 / Pr) ^ (9 / 16)
CC = (1 + BB) \land (8 / 27)
NatConv_Air_VCyl_Nusselt_L = (0.825 + AA / CC) ^ 2 'For Ra_L <= 10^12
End Function
```

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

```
Function NatConv_Air_HPlate_HotUpper_Nusselt_Lc(T_s As Double, T_inf As Double, L As Double, _
W As Double) As Double
'Finds Avg. Nusselts No. for Nat Convn in Air at 1 atmosph pressure for a Horizl Plate (L x W)
'with hot surface facing upwards
'Reads property values of Air from Table and interpolates using VBA Functions
Dim g As Double, beta As Double
Dim Lc As Double
Dim T_f As Double, rho As Double, k As Double, Pr As Double
Dim nu As Double, cp As Double
Dim Gr_Lc As Double, Ra_Lc As Double
g = 9.81 'm/s^2....accn due to gravity
T_f = (T_s + T_inf) / 2
beta = 1 / (T_f + 273) 'vol. expansivity of Air
'Properties of Air:
rho = Air_rho_T(T_f + 273)
k = Air_k_T (T_f + 273)
Pr = Air Pr T (T f + 273)
nu = Air_nu_T(T_f + 273)
cp = Air_cp_T(T_f + 273)
Lc = (L * W) / (2 * (L + W)) 'Characteristic dimension for flat plate
Gr_Lc = g * beta * (T_s - T_inf) * Lc ^ 3 / nu ^ 2 'Grashof No.
Ra_Lc = Gr_Lc * Pr 'Rayleigh No.
If Ra_Lc > 10 ^ 4 And Ra_Lc <= 10 ^ 7 Then
    NatConv Air HPlate HotUpper Nusselt Lc = 0.54 * Ra Lc ^ (1 / 4)
End If
If Ra Lc > 10 ^ 7 And Ra Lc <= 10 ^ 11 Then
     NatConv Air HPlate HotUpper Nusselt Lc = 0.15 * Ra Lc ^ (1 / 3)
End If
End Function
```

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection


```
Function NatConv_Air_HPlate_HotLower_Nusselt_Lc(T_s As Double, T_inf As Double, L As Double, _
W As Double) As Double
'Finds Avg. Nusselts No. for Nat Convn in Air at 1 atmosph pressure for a Horizl Plate (L x W)
'with hot surface facing downwards
'Reads property values of Air from Table and interpolates using VBA Functions
Dim g As Double, beta As Double
Dim Lc As Double
Dim T_f As Double, rho As Double, k As Double, Pr As Double
Dim nu As Double, cp As Double
Dim Gr_Lc As Double, Ra_Lc As Double
g = 9.81 'm/s^2....accn due to gravity
T_f = (T_s + T_inf) / 2
beta = 1 / (T_f + 273) 'vol. expansivity of Air
'Properties of Air:
rho = Air_rho_T(T_f + 273)
k = Air_k_T(T_f + 273)
Pr = Air Pr T (T f + 273)
nu = Air_nu_T(T_f + 273)
cp = Air_cp_T(T_f + 273)
Lc = (L * W) / (2 * (L + W)) 'Characteristic dimension for flat plate
Gr_Lc = g * beta * (T_s - T_inf) * Lc ^ 3 / nu ^ 2 'Grashof No.
Ra_Lc = Gr_Lc * Pr 'Rayleigh No.
```


As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

If Ra_Lc >= 10 ^ 5 And Ra_Lc <= 10 ^ 11 Then

```
NatConv Air HPlate HotLower Nusselt Lc = 0.27 * Ra Lc ^ (1 / 4)
```

End If

End Function

```
Function NatConv_Air_Sphere_Nusselt_D(T_s As Double, T_inf As Double, D As Double) As Double
 'Finds Avg. Nusselts No. for Nat Convn in Air at 1 atmosph pressure for a Sphere of dia = D
 'Reads property values of Air from Table and interpolates using VBA Functions
 Dim g As Double, beta As Double
 Dim AA As Double, BB As Double, CC As Double
 Dim T_f As Double, rho As Double, k As Double, Pr As Double
 Dim nu As Double, cp As Double
 Dim Gr D As Double, Ra D As Double
 g = 9.81 'm/s^2....accn due to gravity
 T f = (T s + T inf) / 2
 beta = 1 / (T_f + 273) 'vol. expansivity of Air
 'Properties of Air:
 rho = Air_rho_T(T_f + 273)
 k = Air k T (T f + 273)
 Pr = Air Pr T (T f + 273)
 nu = Air_nu_T(T_f + 273)
 cp = Air_cp_T(T_f + 273)
 Gr_D = g * beta * Abs(T_s - T_inf) * D ^ 3 / nu ^ 2 'Grashof No.
 Ra D = Gr D * Pr 'Rayleigh No.
 If Pr >= 0.7 And Ra D <= 10 ^ 11 Then
    AA = 0.589 * Ra D^{(1)} (1 / 4)
    BB = (0.469 / Pr) ^ (9 / 16)
    CC = (1 + BB) \land (4 / 9)
    NatConv Air Sphere Nusselt D = 2 + AA / CC
 End If
 End Function
_____
```

Once these Functions are written, they are available for use like any other built-in Functions of EXCEL.

Let us demonstrate the use of these Functions with some examples:

Prob. 2A2.2.12. A square plate $(0.5 \text{ m} \times 0.5 \text{ m})$ with one surface insulated and the other surface maintained at a temp of 385 K is placed in ambient air at 315 K. Calculate the average Nusselts No. and het transfer coeff. h for free convection for the following orientations of the hot surface: (a) The plate is horizontal and hot surface faces up (b) The plate is horizontal and the hot surface faces down. [VTU – Dec. 09–Jan. 2010] (c) In addition, find Nusselts No. and h when plate is held vertical

Note that this is the same as Prob. 2A2.2.2

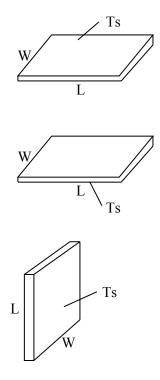


Fig. Prob. 2A2.2.12(a),(b) and (c).

EXCEL Solution steps:

 Go to the worksheet wherein we have written the VBA programs for properties of Air, and the programs for Natural convection given above. For this problem, we have: L = W = 0.5 m, T_s = (385-273) = 112 deg. C, and T_inf = (315 - 273) = 42 deg.C. Enter this data in the worksheet:

	D302	\bullet (f_x	=Air_k_T(D298+273	3)	
	А	В	С	D	E
294					
295		Data:	Fluid =	Air	
296			T_s	112	C
297			T_inf	42.0	C
298			T_f	77.0	C
299			L	0.5	m
300			w	0.5000	m
301			Lc	0.125	m
302			k	0.03	W/m.C

Note that characteristic dimension Lc = Area/Perimeter = (L * W) / ((2 * (L + W))), and k of Air is determined from the VBA function for properties of Air. See the formula bar for the function entered in cell D302.

2. For the hot surface facing up, enter the VBA Function for Nusselts No. in cell D304. To do this, select cell D304 and click on Insert Function icon in EXCEL:

We get:

Insert Function		? 🗙
Search for a function:		
Type a brief descripti Go	on of what you want to do and then click	Go
Or select a <u>c</u> ategory:	Most Recently Used 😽	
Select a functio <u>n</u> :	Most Recently Used	
TREND(known_y's, Returns numbers in a	Financial Date & Time Math & Trig Statistical Elookup & Reference Database Text Logical Information User Defined ✓	sing the least
squares method. Help on this function	ОК	Cancel

Select User Defined category, and select the required Function as shown below:

Insert Function		? 🔀
Search for a function:		
Type a brief descripti Go	Go	
Or select a <u>c</u> ategory:	User Defined 🗸 🗸	
Select a functio <u>n</u> :		
NatConv Air HPlate NatConv_Air_Sphere NatConv_Air_VCyl_N	HotLower_Nusselt_Lc HotUpper_Nusselt_Lc _Nusselt_D usselt_L	
NatConv_Air_VPlate_ NatConv_Air_HPlat No help available. <u>Help on this function</u>	Nusselt_L :e_HotUpper_Nusselt_Lc(T_s,T_inf,L OK	,W)

Functio	n Arguments		? 🛛			
NatConv	/_Air_HPlate_HotUpper_Nusselt_Lc					
T_s	D296	=	112			
T_inf	D297	=	42			
L	D299	=	0.5			
w	D300	=	0.5			
= 27.03169774 No help available.						
Formula result = 27.03169774						
Help on t	Help on this function OK Cancel					

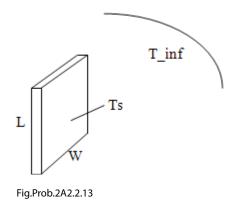
Press OK. We get the following screen. Fill up the values as shown:

Press OK and the calculated value is entered in cell D 304.

Then, h is calculated from the formula: h = Nusselts * k / Lc. These are shown in the following screen shot:

	D304	$ f_x$	=NatConv_Air_HP	ate_HotUpper_Nus	selt_Lc(D296,D297,D2	99,D300)
	А	В	С	D	E	F
300			w	0.5000	m	
301			LC	0.125	m	
302			k	0.03	W/m.C	
303		Horizl plate:				
304		Hot surface facing up:	Nusslts_up	27.0317	Ans.	
305		heat tr coeff	h_up	6.4876	W/m^2.CAns.	

Note in the above the formula entered in cell D304, in the Formula bar.


3. Likewise, complete the calculation for the case of hot surface facing down:

	D307	$ f_{x}$	=NatConv_Air_HP	late_HotLower_Nuss	elt_Lc(D296,D297,D29	99,D300)
	А	В	С	D	E	F
303		Horizl plate:				
304		Hot surface facing up:	Nussits_up	27.0317	Ans.	
305		heat tr coeff	h_up	6.4876	W/m^2.CAns.	
306						
307		Hot surface facing down:	Nussits_down	13.5158	Ans.	
308		heat tr coeff	h_down	3.2438	W/m^2.C Ans.	
200						

Note how easy it becomes to get properties of Air, solve complicated eqns using VBA Functions.

Another example:

Prob. 2A2.2.13. A vertical radiator is 1 m high and 0.5 m wide, and maintained at a temp of 85 C in a room at 20 C. Find the convective heat loss.

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/ OIL & GAS ENGINEERING

ELECTRONICS

AUTOMATION & PROCESS CONTROL

> MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS

ELECTRICAL POWER

Phone: **+61 8 9321 1702** Email: **training@idc-online.com** Website: **www.idc-online.com**

132

Download free eBooks at bookboon.com

Click on the ad to read more

Following are the steps in EXCEL calculations:

D319 - 🕤 f 🖈			=Air_k_T(D315+273	3)	
	А	В	С	D	
312		Data:	Fluid =	Air	
313			T_s	85	С
314			T_inf	20.0	С
315			T_f	52.5	С
316			L	1	m
317			W	0.50	m
318					
319		Th. cond. of Air at T_f	k	0.028246	W/m.C
220					

1. Set up the worksheet as shown:

In the above, note that k of Air is calculated using the VBA Function shown in the Formula bar.

2. Now, use the VBA Function for Avg. Nusselts No. for vertical plate: (see the previous example for procedure). Choose the Function as shown below:

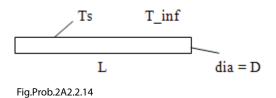
Ir	sert Function			? 🗙		
<u>S</u>	earch for a function:					
	Type a brief descripti Go	Type a brief description of what you want to do and then click Go				
	Or select a <u>c</u> ategory:	*				
S	elect a functio <u>n</u> :					
	NatConv_Air_HPlate_HotUpper_Nusselt_Lc NatConv_Air_Sphere_Nusselt_D NatConv_Air_VCyl_Nusselt_L					
	NatConv Air VPlate	Nusselt L		-		
	nu_h2o P			~		
	NatConv_Air_VPlat No help available.	e_Nusselt_L(T_s,T_inf,L)				
Н	elp on this function	ОК	Car	ncel		

Press OK, and following screen appears; fill it up appropriately:

Functio	n Arguments			? 🛛
NatCon	/_Air_VPlate_Nusselt_L			
T_s	D313		=	85
T_inf	D314	1	=	20
L	D316	1	=	1
	4.11		=	191.1730255
No help a				
	L			
Formula r	esult = 191.1730255			
<u>Help on t</u>	nis function			OK Cancel

Press OK and we get:

D321 - 🕞 🏂 =NatConv_Air_VPlate_Nusselt_L(D313,D314,D3					
	А	В	С	D	E
312		Data:	Fluid =	Air	
313			T_s	85	C
314			T_inf	20.0	C
315			T_f	52.5	C
316			L	1	m
317			w	0.50	m
318					
319		Th. cond. of Air at T_f	k	0.028246	W/m.C
320					
321		Vert. plate:	Nussits_vert	191.1730255	Ans.

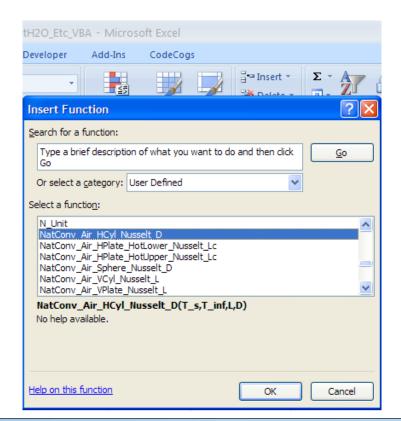

- 3. Now, calculate h and Q:
 - h = Nusselts_vert * k / L
 - $Q = h * (L * W) * (T_s T_inf)$

See the following screen shot:

	D323	\bullet f_x	=D322*(D316*D317		
	А	В	С	D	E
315			T_f	52.5	С
316			L	1	m
317			w	0.50	m
318					
319		Th. cond. of Air at T_f	k	0.028246	W/m.C
320					
321		Vert. plate:	Nusslts_vert	191.1730	Ans.
322		heat tr coeff	h_vert	5.3999	W/m^2.C
323		Heat transfer	Q_vert	175.4959	W Ans.

Another example of a horizl cylinder:

Prob. 2A2.2.14. A horizontal pipe, 10 cm OD is in an ambient air at 30 C. Surface temp is 170 C. Calculate the heat loss by convection only, per metre length of pipe.



Following are the steps in EXCEL Solution:

1. Set up the worksheet:

D334 🗸 🕤 f 🖈			=Air_k_T(D330+273		
	А	В	С	D	
327		Data:	Fluid =	Air	
328			T_s	170	С
329			T_inf	30.0	С
330			T_f	100.0	С
331			L	1	m
332			D	0.10	m
333					
334		Th. cond. of Air at T_f	k	0.031607	W/m.C
225					

2. Now, calculate the Avg. Nusselts No. for Horizl cylinder using the appropriate VBA Function as shown below:

136

Click on the ad to read more

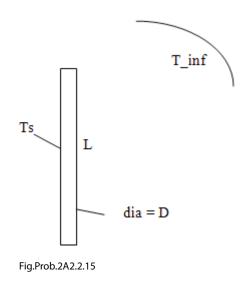
We get:

Functio	n Arguments		? 🛛				
NatConv	/_Air_HCyl_Nusselt_D						
T_s	D328		= 170				
T_inf	D329		= 30				
L	D331		= 1				
D	D332		= 0.1				
			= 22.76223236				
No help a	vailable.						
		D					
Formula result = 22.76223236							
<u>Help on t</u>	Help on this function OK Cancel						

And,

D336 • (***********************************					329,D331,D332)
	А	В	С	D	E
333					
334		Th. cond. of Air at T_f	k	0.031607	W/m.C
335					
336		Horizl cyl:	Nusselts_D	22.7622	Ans.
337		heat tr coeff	h	7.1945	W/m^2.C
338		Heat transfer	Q_conv	316.4288	WAns.

In the above, h and Q_conv are calculated as:


 $h = Nusselts_D * k / D$

 $Q_conv = h * (\pi * D * L) * (T_s - T_inf)$

Another example of a vertical cylinder:

Prob. 2A2.2.15. A vertical pipe 15 cm OD, 1 m long has a surface temp of 90 C and is in a room where the Air is at 30 C. What is the rate of heat loss by Nat. convection?

EXCEL Solution:

1. Set up the worksheet, enter data:

D349 ▼ (
	А	В	С	D			
342		Data:	Fluid =	Air			
343			T_s	90	С		
344			T_inf	30.0	С		
345			T_f	60.0	С		
346			L	1	m		
347			D	0.15	m		
348							
349		Th. cond. of Air at T_f	k	0.028786	W/m.C		

2. Use the VBA Function for Nat. conv in Vert cyl to get Nusselts_L:

Ir	sert Function		?	×					
<u>S</u> e	earch for a function:								
	Type a brief description of what you want to do and then click <u>Go</u>								
	Or select a <u>c</u> ategory:	User Defined 🗸 🗸]						
Se	elect a functio <u>n</u> :								
	N_Unit NatConv_Air_HCyl_Nusselt_D NatConv_Air_HPlate_HotLower_Nusselt_Lc NatConv_Air_HPlate_HotUpper_Nusselt_Lc NatConv_Air_Sphere_Nusselt_D NatConv_Air_VCyl_Nusselt_L								
	NatConv_Air_VPlate_			-					
	NatConv_Air_VCyl_ No help available.	Nusselt_L(T_s,T_inf,D,L)							
H	elp on this function	ОК	Cancel						

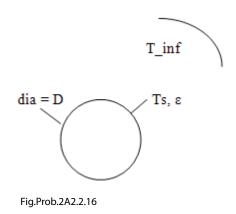
Press OK. Following screen appears; fill it up as shown:

Functio	n Arguments		? 🛛
NatConv	/_Air_VCyl_Nusselt_L		
T_s	D343	=	90
T_inf	D344 💽	=	30
D	D347	=	0.15
L	D346	=	1
		=	180.4359136
No help a	vailable.		
	L		
Formula r	esult = 180.4359		
<u>Help on t</u>	his function		OK Cancel

Press OK. We get:

D351 • (**** =NatConv_Air_VCyl_Nusselt_L(D343,D344,D347,D346)								
	А	В	С	D	E			
348								
349		Th. cond. of Air at T_f	k	0.028786	W/m.C			
350								
351		Vertical cyl:	Nusselts_L	180.4359	Ans.			
352		heat tr coeff	h	5.1940	W/m^2.C			
353		Heat transfer	Q_conv	146.8577	WAns.			

In the above, h and Q_conv are calculated as:


 $h = Nusselts_L * k / L$

 $Q_conv = h * (\pi * D * L) * (T_s - T_inf)$

Prob. 2A2.2.16.: Consider a 8 cm dia, 60 W incandescent bulb in a room at 25 C. Emissivity of glass is 0.9. Assuming that 90% of the energy is converted to heat and dissipated by convection and radiation, determine the equilibrium temp of the bulb surface.

Also plot the surface temp T_s for different ambient temperatures and different emissivity values.

Note: This is the same as Prob. 2A2.2.8.

But, now, we shall solve it with EXCEL.

Following are the steps:

1. Set up the worksheet, enter data and name the cells:

	Q_diss	ip ▼ (● ƒ _x	=0.9*Q			
	А	В	С	D	E	F
210		Data:	Fluid =	Air		
211		Guess Value:	T_s	150	С	
212			T_inf	25.0	С	
213			T_f	87.50	С <	T c ⊢ T inf
214		dia of sphere	D	0.08	m	$T_f = \frac{T_s + T_{inf}}{2}$
215			Q	60.0000	W	2
		Heat dissipated by conv				
216		and radn	Q_dissip	54.0000	w	
217			g	9.8100	m/s^2	
218			beta	0.0028	1/K	
219			epsilon	0.9000		
220			sigma	5.6700E-08	W/m^2-K^4	

Note that temp of bulb surface is not yet known; we have assumed a value, using which we will calculate the convective heat transfer and radiative heat transfer from the bulb. Then, total of convective and radiative heat transfer should be equal to the actual heat dissipated from the bulb, Q_dissip = (0.9 * 60) = 54 W. So, we will apply Goal Seek in EXCEL to meet this condition by changing T_s.

2. Calculate the properties of Air using VBA Functions written earlier:

	ср	$ f_x$	=air_cp_T((T_f+273	3))				
	А	В	С	D	E		F	G
222		Calculations:				-		
223		density	rho	0.97931	kg/m^3		11.5 1/0	
224		th. conductivity	k	0.0307445	W/m.C		Using VBA Functions for A	
225		Prandtl No.	Pr	0.70127		K		
226		kinematic visc.	nu	2.17938E-05	m^2/s			
227		sp.heat	ср	1010.05	J/kg.K]		
228								

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

142

Download free eBooks at bookboon.com

3. Proceed with the calculations for Nusselts No. for sphere in Natural convection. Use the VBA Function written for Sphere in Nat. convection.

	AA	- ∫ _x	NetCentre Air Cal						
	AA	Jx J	=NatConv_Air_spr	ere_Nusselt_D(T_s,	i_ini,u)			1	
	А	В	С	D	E	F	G	Н	
231									
232		For Sphere: usethe VBA F	unction to find Nus	selts No.:					
233									
234		To calculate Nusselts No.							
235		Nusselts No.	Nusselts_D	20.1749	Using VBA Function	$h = \frac{Nusselt}{1}$	ts_D·k		
236			_		_	n =)		
237		convective heat tr. coeff.	h	7.753	W/m^2.C		()		
238		Conv. Heat transfer	Q_conv	19.4863	w <	Q_conv = 1	$h \cdot (\pi \cdot D^2) \cdot (T_s - T_int)$	f)	
239		Radiation Heat transfer:							
240			Q_rad	24.7573	w) <	Q_rad = ep:	silon sigma $(\pi \cdot D^2)$.	T_s + 273) ⁴ - (T_inf	$(+273)^4$
241		Total heat transfer:	Q_tot	44.2435	w				
242			(Q_tot-Q_dissip)	-9.7565	w	Q_tot = Q_	conv + Q_rad		
243				K					
244									
245					Apply Goal Seek by changing cell		42 Zero		
246					by changing cen	Dz11 (i.e. 1_5)			
247									
2/18									

In the above worksheet, equations used are also shown, for clarity. We have to equate sum of $(Q_conv + Q_rad)$ to Q_dissip . i.e. $(Q_tot - Q_dissip)$ should be equal to zero. This is done in cell D242. And, apply Goal Seek to meet this condition by changing T_s, i.e. cell D211:

Go to Data-What If Analysis-Goal Seek:

<u> </u>	Home	Insert	Page Layout	Formulas Data	Re	view	View	Developer	Add-Ir	ns CodeCo	ogs		
From From From From From From From From		From Other Sources *	Existing Connections	Refresh All - Connection	Z	LA	Filte	Clear	Text f			Data Validation 👻 Consolidate What-If Analysis 🏹	 ⇒ Gr ↓ Un ∰ Su
	Ge	t External Dat	a	Connections			Sort &	Filter		Data		Scenario Manage	r
	D242	- (• fx	=Q_tot-Q_dissip								<u>G</u> oal Seek	
	Α		В	С		D		E		F		Data <u>T</u> able	
2.2.4											_		

Click on Goal Seek. We get the following screen. Fill it up as shown:

Goal Seek	? 🔀
S <u>e</u> t cell:	D242 💽
To <u>v</u> alue:	0
By changing cell:	\$D\$211
ОК	Cancel

Press OK. We get the message:

Goal Seek Status	? 🗙
Goal Seeking with Cell D242 found a solution.	Step
Target value: 0 Current value: 0.0000	Pause
ОК	Cancel

Press OK. And read the value of T_s in cell D211:

	G219	\bullet f_x			
	А	В	С	D	E
210		Data:	Fluid =	Air	
211		Guess Value:	T_s	168.7916689	C
212			T_inf	25.0	C
213			T_f	96.90	С <

Thus: Equilibrium temp of the bulb surface (when Q = 60 W, epsilon = 0.9) is: 168.79 deg.C....Ans.

Note: In Problem 2A2.2.8, with Mathcad, we obtained $T_s = 169.298$ C for the same value of Q, T_inf and epsilon. Slight difference in values of T_s is due to the fact that with Mathcad we had obtained the values of properties of Air from Curve fit eqns whereas with EXCEL, we used interpolation for properties of Air from the Data Table.

Also plot T_s for different ambient temperatures and different emissivity values:

	А	В	С	D	E	F
250						
251						
252		Plot T_s against T_i	n <mark>f for various v</mark>	alues of epsilon:	:	
253						
254		epsilon =	0.4	0.6	0.8	1
255		T_inf (deg.C)	T_s (deg.C)	T_s (deg.C)	T_s (deg.C)	T_s (deg.C)
256		0				
257		5				
258		10				
259		15				
260		20				ļ
261		25				
262		30				
263		35				
264		40				

4. We will, first, set up a Table where T_inf is varied from 0 to 40 C, as shown below:

For almost 60 years Maastricht School of Management has been enhancing the management capacity of professionals and organizations around the world through state-of-the-art management education.

Our broad range of Open Enrollment Executive Programs offers you a unique interactive, stimulating and multicultural learning experience.

Be prepared for tomorrow's management challenges and apply today.

For more information, visit www.msm.nl or contact us at +31 43 38 70 808 or via admissions@msm.nl

the globally networked management school

Click on the ad to read more

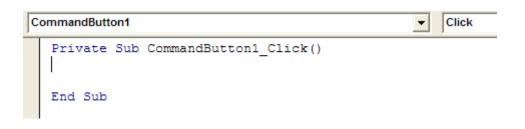
Download free eBooks at bookboon.com

Now, we will write a VBA program which will first read the value of epsilon from cell C254, and then read value of T_inf one by one , starting from cell B256, and copy it to cell D212. Then, with the existing value for T_s, all other values will change. Then, apply Goal Seek to make cell D242 zero by changing T_s (i.e. cell D211). Then copy this value of T_s from cell 211 to cell C256. Now, proceed to the next value of T_inf, i.e. downwards from cell B256 up to cell B264, and repeat the calculations till the column under 'epsilon = 0.4' is completed. Next, set the value of epsilon = 0.6 and repeat the calculations under that column. Similarly, for epsilon = 0.8 and 1. And, we wish this program to be operated from a Command Button.

5. To write the VBA program to perform these tasks, proceed as follows:

Go to Developer – Insert-Active X controls:

	Home	Insert	Page Layout	Form	nulas	Data	Revie	w View	Developer
Vis	ual Macros	Cord N	tive References	Insert	Design Mode	-	perties w Code n Dialog		Map Properties Expansion Packs Refresh Data
		Code		Form	Contro	ls			XML
	G251	•	• <i>f</i> _x		☑ 韋				
	А		В					D	E
250					eX Cont				
251					V 🗄	_			
252		Plot T_s	against T_i	0 🖻	A 🛃	≣ ½	ues of	epsilon	


6. Click on the first, left button. And, draw the Command Button in the worksheet to the required size, at the required place:

	А	В	С	D	E	F	G	Н	
253									
254		epsilon =	0.4	0.6	0.8	1			
255		T_inf (deg.C)	T_s (deg.C)	T_s (deg.C)	T_s (deg.C)	T_s (deg.C)		CommandB	utton1
256 257 258		0							
257		5							
258		10							
259 260		15							
260		20							
261 262 263		25							
262		30							
263		35							
264		40							

7. Click on Developer-View Code:

Home Insert Page Layo	ut Formulas	Data Revie	w View	Developer	
Visual Macros Basic	s 🔆 🐜 🧧	Properties	Ex 😜	ap Properties spansion Packs efresh Data	
Code	Contro	ols		XML	

8. And, we get the code already written for the Command button:

9. Now, complete the code to do the desired jobs as mentioned under point 4 above:

```
CommandButton1 Click()
Dim i As Integer
Dim j As Integer
For j = 0 To 3
Range("D219") = Cells(254, 3 + j)
For i = 0 To 8
Range("D212") = Cells(256 + i, 2)
Range("D242").GoalSeek Goal:=0, ChangingCell:=Range("D211")
Cells(256 + i, 3 + j) = Range("D211")
Next i
Next i
Next j
End Sub
```

In the above code:

Line 1: defines the Sub

Line 2,3: dimension statement for I and j, the counters in For....Next constructs

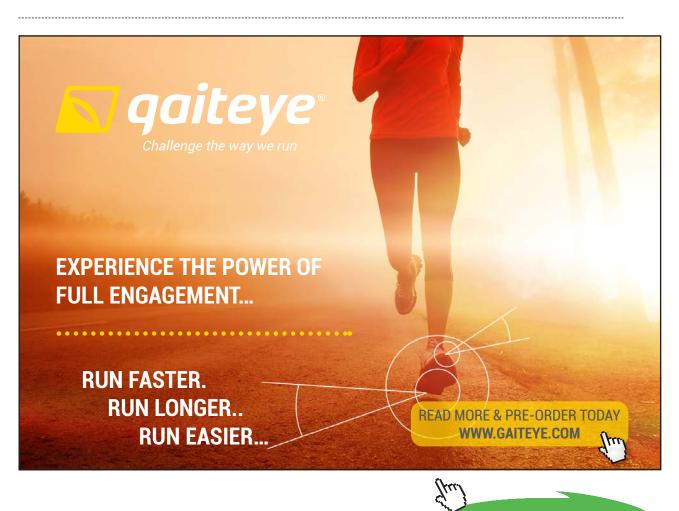
Line 4 to 11: 'For ... Next' slab

Line 5: Takes the first value of epsilon from the cell C254 in Table and copies it to cell D219 (i.e. 'epsilon' in the original program)

Immediately, some calculations in other cells are up-dated

Line 6 to 10: inner 'For....Next' loop to calculate T_s for different values of T_inf using Goal Seek.

Line 7: first value of T_inf from cell B256 is copied to cell D219 in the original program; now, some calculations get updated.

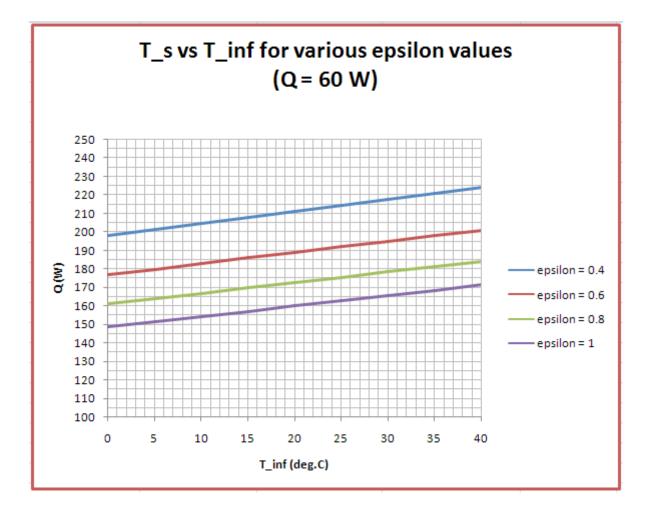

Line 8: This is the Goal Seek operation which sets cell D242 to zero and finds T_s by changing cell D211, which contains the guess value for T_s

Line 9: After the Goal Seek is over, the resulting value of T_s in cell D211 is copied to its respective position in the Table.

Line 10: go to next value of T_inf and repeat these calculations

Line 11: now, go to next value of epsilon in the Table and repeat the calculations

Line 12: End statement of Sub-routine

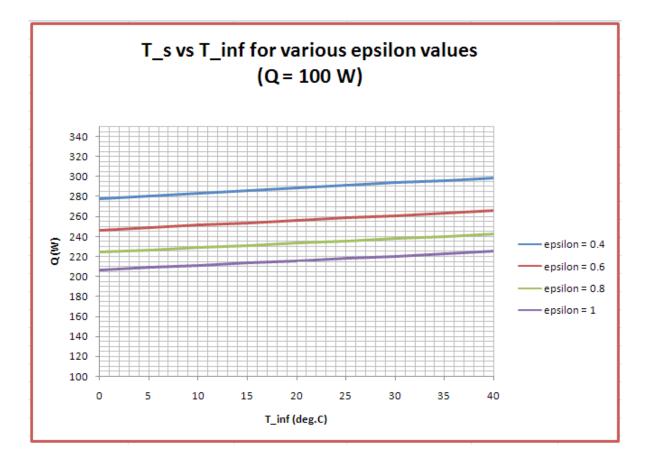

148

Click on the ad to read more

10. Now, click on the Command Button, and the	Table gets filled up with the calculated values:
---	--

253						
254	epsilon =	0.4	0.6	0.8	1	(
255	T_inf (deg.C)	T_s (deg.C)	T_s (deg.C)	T_s (deg.C)	T_s (deg.C)	CommandBut
256	0	198.198	176.819	161.061	148.683	
257	5	201.471	179.859	163.945	151.494	
258	10	204.724	182.885	166.832	154.306	
259	15	207.986	185.897	169.730	157.120	
.60	20	211.226	188.898	172.624	159.952	
261	25	214.445	191.898	175.516	162.793	
262	30	217.646	194.905	178.407	165.639	
263	35	220.836	197.904	181.304	168.492	
264	40	224.032	200.896	184.215	171.353	

11. Plot the results in EXCEL:



12. If we now need to get values of T_s for another value of Q, just change the value of Q in cell D215, and click on the Command Button.

Thus,	for	Q =	100	W,	we	get:
-------	-----	------------	-----	----	----	------

	А	В	С	D	E	F	G	Н	
250									
251									
252		Plot T_s against T_ir	nf for various v	alues of epsilon	:				
253									
254		epsilon =	0.4	0.6	0.8	1			
255		T_inf (deg.C)	T_s (deg.C)	T_s (deg.C)	T_s (deg.C)	T_s (deg.C)		Command	utton1
256		0	278.085	246.624	224.211	206.978			
257		5	280.721	249.034	226.517	209.207			
258		10	283.341	251.460	228.820	211.457			
259		15	285.971	253.878	231.123	213.711			
260		20	288.588	256.289	233.426	215.971			
261		25	291.191	258.695	235.748	218.238			
262		30	293.782	261.097	238.074	220.514			
263		35	296.361	263.509	240.403	222.806			
264		40	298.945	265.926	242.737	225.116			

And, the plot is up-dated:

2A2.3 Natural convection from enclosed spaces:

Prob. 2A2.3.1 : Air gap between the two glass panels of a double-pane window (1.8 m wide \times 1.2 m high) is 2.5 cm. If the two glass surfaces are at 18 C and 4 C, determine the rate of heat transfer through the window by (a) free convection (b) radiation. Effective emissivity between the two plates is 0.82.

Plot these values for air gap thickness varying from 0.5 cm to 5 cm.

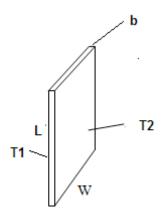


Fig.Prob.2A2.3.1

CLIVER WYMAN

er Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk usep industry knowned with specialized expension and experimentary potential is the management, organizational transformation, and leadership development. With offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

151 Download free eBooks at bookboon.com

Mathcad solution:

Use the Mathcad functions, already written, (see Prob. 2A1.2.5) to get properties of Air.

Data:

L := 1.2 m...height of panels W := 1.8 m...width of panels b := 0.025 m...distance between panels T1 := 18 C....first surface temp. T2 := 4 C....second surface temp. g := 9.81 m/s²....accn. due to gravity We need properties of air at film temperature: $T_f := \frac{T1 + T2}{2}$ $T_f = 11$ C....avg. temperature

 $\sigma := 5.67 \cdot 10^{-8} \quad \text{W/m^2.K^4....Stefan Boltzmann const.}$

Calculations:

Properties of Air at T_f:

$$\begin{split} \rho &:= rho_Air \left(T_{f} + 273 \right) & \text{i.e.} \quad \rho = 1.243 \quad \text{kg/m^3} \\ k &:= k_Air \left(T_{f} + 273 \right) & \text{i.e.} \quad k = 0.025 \quad \text{W/m.K} \\ \mu &:= mu_Air \left(T_{f} + 273 \right) & \text{i.e.} \quad \mu = 1.764 \cdot 10^{-5} \quad \text{kg/m.s} \\ Pr &:= Pr_Air \left(T_{f} + 273 \right) & \text{i.e.} \quad Pr = 0.711 \quad \dots Prandtl \text{ No} \end{split}$$

$$\beta := \frac{1}{T_f + 273}$$
 i.e. $\beta = 3.521 \cdot 10^{-3}$ 1/K
 $v := \frac{\mu}{T_f + 273}$ i.e. $v = 1.419 \cdot 10^{-5} \text{ m}^2/\text{s}$

[≈] effective ^{:=0.82}

ρ

Remember that here, the distance between panels 'b' is the characteristic dimension.

Then,
$$Gr(b) := \frac{g \cdot \beta \cdot (T1 - T2) \cdot b^3}{v^2}$$
 Grashof No. as a function of air gap thickness b

i.e. $Gr(b) = 3.753 \cdot 10^4$ Grashoff number

Then, Rayleigh No.:

 $Ra(b) := Gr(b) \cdot Pr$

i.e. Ra(b) = 2.669•10⁴Rayleigh No.

Note that Grashof No. etc. are written as functions of air gap thickness 'b' so that we can draw the graphs later.

And,
$$\frac{L}{b} = 48 > 3....condition is satisfied.$$

Then, use the following eqn to get Nusselts No. (Ref: 2):

$$Nu(b) := 0.42 \cdot Ra(b)^{\frac{1}{4}} \cdot Pr^{0.012} \cdot \left(\frac{L}{b}\right)^{-0.3} \qquad \dots \text{for } 10 < L/b < 40, \ 1 < Pr < 2*10^{4}, \ 10^{4} < Ra < 10^{7}$$

i.e. $Nu(b) = 1.674 \qquad \dots \text{Nusselts No}.$

Heat transfer by convection:

Now, area for convective and radiative heat transfer is:

 $A_s := L \cdot W$ i.e. $A_s = 2.16$ m^A2 ... area

Therefore: $Q_{conv} = h \cdot A_s \cdot (T1 - T2) = k \cdot Nu \cdot A_s \cdot \frac{(T1 - T2)}{b}$

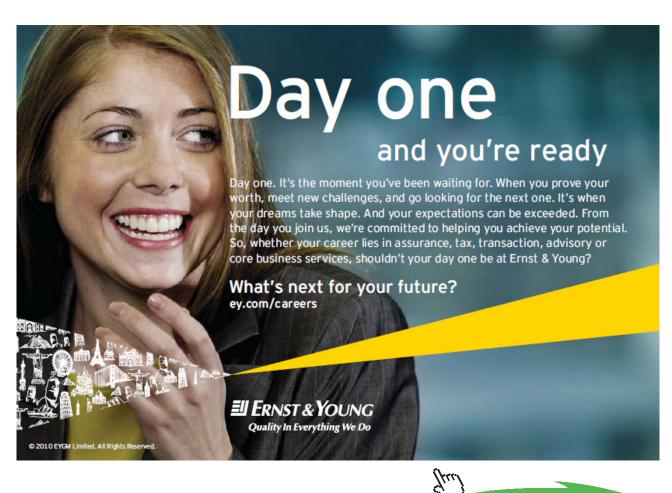
where, $k_{eff}(b) := Nu(b) \cdot k$

i.e. k eff(b) = 0.041 W/(m.K)....effective thermal cond.

Therefore,
$$Q_{conv}(b) := k_{eff}(b) \cdot (A_s) \cdot \frac{(T1 - T2)}{b}$$
 W....heat transfer rate

Heat transfer by radiation:

For heat transfer between two parallel plates, we have:

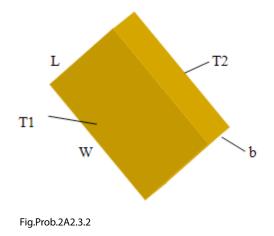

$$Q_{rad} = \frac{\sigma \cdot A_{s} \cdot \left[(T1 + 273)^{4} - (T2 + 273)^{4} \right]}{\frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1} = \varepsilon_{effective} \cdot \sigma \cdot A_{s} \cdot \left[(T1 + 273)^{4} - (T2 + 273)^{4} \right]$$


Therefore:

$$Q_{rad} := \varepsilon_{effective} \cdot \sigma \cdot A_{s} \cdot \left[(T1 + 273)^4 - (T2 + 273)^4 \right]$$

i.e. Q rad = 128.901 W..... heat transfer by radiation Ans.

Note that $\mathbf{Q}_{_{\mathrm{rad}}}$ does not depend on the air gap thickness, b.



Therefore: Total heat transfer:

$$Q_{tot}(b) := Q_{conv}(b) + Q_{rad}$$

i.e. Q_{tot}(b) = 178.944 W Total heat transfer...Ans.

Prob. 2A2.3.2 : In a solar flat plate collector, the plate is of size 1.5 m high and 3m wide and is at a temperature of 80 C. The glass cover plate is at a distance of 2.5 cm from the collector surface and its temp. is 40 C. Space in between contains air at 1 atm. If the collector plate is inclined to the horizontal at θ deg., determine the heat transfer by free convection for $\theta = 0$, 30 and 90 deg.

Mathcad Solution:

Use the Mathcad functions, already written, (see Prob. 2A1.2.5) to get properties of Air.

Data:

L := 1.5 m...height of panels W := 3 m...width of panels b := 0.025 m...distance between panels T1 := 80 C.....first surface temp. T2 := 40 C....second surface temp. g := 9.81 m/s²....accn. due to gravity We need properties of air at film temperature: $T_f := \frac{T1 + T2}{2}$ $T_f = 60$ C....avg. temperature

θ := 30 deg....angle of tilt (to horizontal)

But, while using Mathcad, arguments for trigonometric functions must be in radians.

Calculations:

Properties of Air at T_t:

$$\rho := rho_Air(T_{f} + 273) \quad i.e. \quad \rho = 1.06 \qquad kg/m^{3}$$

$$k := k_Air(T_{f} + 273) \qquad i.e. \quad k = 0.028 \qquad W/m.K$$

$$\mu := mu_Air(T_{f} + 273) \quad i.e. \quad \mu = 2 \cdot 10^{-5} \qquad kg/m.s$$

$$Pr := Pr_Air(T_{f} + 273) \qquad i.e. \quad Pr = 0.702 \qquad ...Prandtl No.$$

$$\beta := \frac{1}{T_{f} + 273} \qquad i.e. \quad \beta = 3.003 \cdot 10^{-3} \qquad 1/K$$

$$v := \frac{\mu}{\rho} \qquad i.e. \quad v = 1.886 \cdot 10^{-5} m^{2}/s$$

Remember that here, the distance between the panels 'b' is the characteristic dimension.

And,
$$\frac{L}{b} = 60$$
 > 12.....condition is satisfied.

Download free eBooks at bookboon.com

Then,	$\operatorname{Gr}_{\mathfrak{b}} \coloneqq \frac{g \cdot \beta \cdot (T1 - v)}{v^2}$	<u>T2)·b³</u>
i.e.	$Gr_{b} = 5.174 \cdot 10^{4}$	Grashoff number
and,	Rab := Grb.Pr	Rayleigh number
i.e.	$Ra_{b} = 3.634 \cdot 10^{4}$	Rayleigh number

Now, different relations are available for horizontal, tilted and vertical flat plate enclosures [Ref. 2].

To incorporate them let us write a Mathcad Function:

Note that for horizontal plates: tilt angle = 0 and for vertical plates, tilt angle = 90 deg. Following function calculates Nu_{b} for tilt angles from 0 to 180 deg.

$$\begin{split} &\mathrm{Nu}_{b} \big(\mathrm{L}, \mathrm{b}, \mathrm{Ra}_{b}, \theta \big) \coloneqq & \mathrm{return} \ \left[0.42 \cdot \mathrm{Ra}_{b}^{\frac{1}{4}} \cdot \mathrm{Pr}^{0.012} \cdot \left(\frac{\mathrm{L}}{\mathrm{b}} \right)^{-0.3} \right] & \mathrm{if} \ \theta = 90 \\ & \mathrm{if} \ \theta \leq 70 \\ & \left| AA1 \leftarrow \left(1 - \frac{1708}{\mathrm{Ra}_{b} \cdot \cos\left(\theta \cdot \frac{\pi}{180}\right)} \right) \right| \\ & BB1 \leftarrow \frac{\left(\mathrm{Ra}_{b} \cdot \cos\left(\theta \cdot \frac{\pi}{180}\right) \right)^{\frac{1}{3}}}{18} - 1 \\ & BB \leftarrow 0 \ \mathrm{if} \ BB1 \leq 0 \\ & BB \leftarrow BB1 \ \mathrm{if} \ BB1 > 0 \\ & AA \leftarrow 0 \ \mathrm{if} \ AA1 \leq 0 \\ & AA \leftarrow AA1 \ \mathrm{if} \ AA1 > 0 \\ & \mathrm{return} \ 1 + 1.44 \cdot (AA) \cdot \left[1 - \frac{1708 \left[\sin \left[1.8 \cdot \left(\theta \cdot \frac{\pi}{180}\right) \right] \right]^{1.6}}{\mathrm{Ra}_{b} \cdot \cos\left(\theta \cdot \frac{\pi}{180}\right)} \right] + BB \\ & \mathrm{return} \ \left[0.42 \cdot \mathrm{Ra}_{b}^{\frac{1}{4}} \cdot \mathrm{Pr}^{0.012} \cdot \left(\frac{\mathrm{L}}{\mathrm{b}} \right)^{-0.3} - 1 \right] \cdot \left(\sin \left(\theta \cdot \frac{\pi}{180}\right) \right)^{\frac{1}{4}} & \mathrm{if} \ \theta < 90 \\ & \mathrm{return} \ \left[1 + \left[0.42 \cdot \mathrm{Ra}_{b}^{\frac{1}{4}} \cdot \mathrm{Pr}^{0.012} \cdot \left(\frac{\mathrm{L}}{\mathrm{b}} \right)^{-0.3} - 1 \right] \cdot \sin \left(\theta \cdot \frac{\pi}{180}\right) \right] & \mathrm{if} \ \theta \leq 180 \end{split}$$

Heat transfer Q, by convection:

Case 1: When the flat plate collector is horizontal, i.e. $\theta = 0$:

$$Q_{\text{conv}}(L,b,\text{Ra}_{b},\theta) := k_{\text{eff}}(L,b,\text{Ra}_{b},\theta) \cdot A_{s} \cdot \frac{(T1-T2)}{b}$$

i.e. $Q_{conv}(L,b,Ra_b,\theta) = 656.227$ W ... heat transfer by natural convection Ans.

Case 2: When the flat plate collector is tilted to horizontal at $\theta = 30$ deg.:

θ := 30tilted to horizontal at 30 deg.

Then:
$$\operatorname{Nu}_{b}(L,b,\operatorname{Ra}_{b},\theta) = 3.063$$
 ...Nusselt Number

And:

 $\mathbf{k}_{eff} \left(L, b, Ra_{b}, \theta \right) \coloneqq \mathbf{k} \cdot \mathrm{Nu}_{b} \left(L, b, Ra_{b}, \theta \right) \quad \text{....effective thermal conductivity}$

i.e. $k_{eff}(L, b, Ra_b, \theta) = 0.087$ W/m.C effective thermal cond.

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Dove

$$Q_{\text{conv}}(L,b,\text{Ra}_{b},\theta) := k_{\text{eff}}(L,b,\text{Ra}_{b},\theta) \cdot A_{s} \cdot \frac{(T1-T2)}{b}$$

i.e. $Q_{conv}(L, b, Ra_b, \theta) = 625.736$ W ... heat transfer by natural convection Ans.

Case 3: When the flat plate collector is vertical, i.e. $\theta = 90$ deg.:

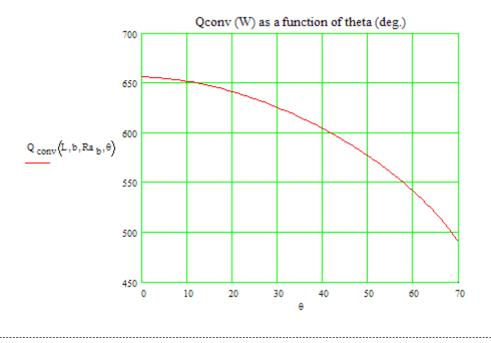
Then:
$$\operatorname{Nu}_{b}(L,b,\operatorname{Ra}_{b},\theta) = 1.691$$
 ...Nusselt Number

And:

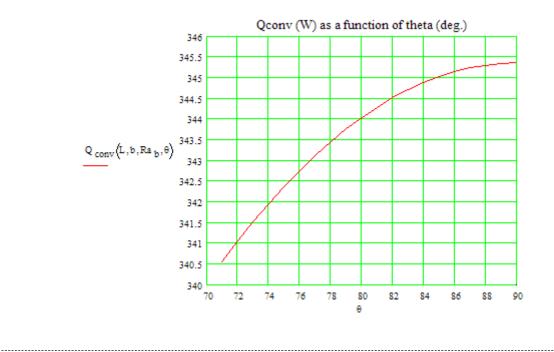
 $\mathbf{k}_{eff} \left(L, b, Ra_{b}, \theta \right) \coloneqq \mathbf{k} \cdot Nu_{b} \left(L, b, Ra_{b}, \theta \right) \quad \text{....effective thermal conductivity}$

i.e. $k_{eff}(L, b, Ra_b, \theta) = 0.048$ W/m.C effective thermal cond.

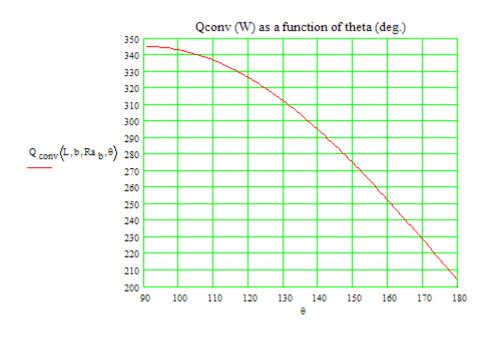
 $Q_{conv}(L,b,Ra_{b},\theta) := k_{eff}(L,b,Ra_{b},\theta) \cdot A_{s} \cdot \frac{(T1 - T2)}{b}$


i.e. $Q_{conv}(L, b, Ra_b, \theta) = 345.362$ W ... heat transfer by natural convection Ans.

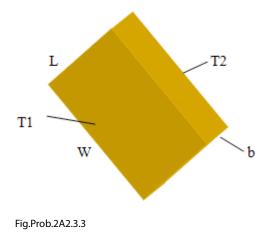
Plot Q_{conv} for various values of θ : (For L/b > 12, critical angle of tilt is 70 deg.)


 $\theta := 0, 10... 180$ deg variation of θ

θ	$\operatorname{Nu}_{b}(L,b,\operatorname{Ra}_{b},\theta)$	$Q_{conv}(L,b,Ra_b,\theta)$
0	3.213	656.227
10	3.192	652.059
20	3.141	641.654
30	3.063	625.736
40	2.959	604.42
50	2.825	577.122
60	2.652	541.739
70	2.407	491.775
80	1.684	344.043
90	1.691	345.362
100	1.68	343.219
110	1.649	336.853
120	1.598	326.459
130	1.529	312.353
140	1.444	294.962
150	1.345	274.816
160	1.236	252.526
170	1.12	228.77
180	1	204.269


$\mathbf{Q}_{_{conv}}$ between theta angles of 0 and 70 deg:

$\boldsymbol{Q}_{_{conv}}$ between theta angles of 71 and 90 deg:



Q_{conv} between theta angles of 91 and 180 deg:

Prob. 2A2.3.3 : A flat plate solar collector of $3 \text{ m} \times 5 \text{ m}$ area has an absorber plate that is to operate at a temp of 70 C. The glass cover is placed 0.05 m from the absorber, and its operating temp is 35 C. Determine the rate of heat loss from the absorber if the 3 m edge is tilted at angles of 0, 30 and 60 deg. to horizontal.

Mathcad Solution:

Use the Mathcad functions, already written, (see Prob. 2A1.2.5) to get properties of Air.

Data:

L := 3	mheight of panels W := 5 mwidth of panels
b := 0.05	mdistance between panels T1 := 70 Cfirst surface temp.
T2 := 35	Csecond surface temp. g := 9.81 m/s ² accn. due to gravity
We need p	properties of air at film temperature: $T_{f} := \frac{T1 + T2}{2}$
$T_{f} = 52.5$	Cavg. temperature

θ := 0 deg....angle of tilt (to horizontal)

But, while using Mathcad, remember that arguments for trigonometric functions must be in radians.

Calculations:

Properties of Air at T_f:

$$\rho := rho_Air(T_{f} + 273) \quad i.e. \quad \rho = 1.085 \quad kg/m^{3}$$

$$k := k_Air(T_{f} + 273) \quad i.e. \quad k = 0.028 \quad W/m.K$$

$$\mu := mu_Air(T_{f} + 273) \quad i.e. \quad \mu = 1.965 \cdot 10^{-5} \quad kg/m.s$$

$$Pr := Pr_Air(T_{f} + 273) \quad i.e. \quad Pr = 0.703 \quad ...Prandtl No.$$

$$\beta := \frac{1}{T_{f} + 273}$$
 i.e. $\beta = 3.072 \cdot 10^{-3}$ 1/K

$$\nu := \frac{\mu}{\rho}$$
 i.e. $\nu = 1.812 \cdot 10^{-5}$ m^2/s

Remember that here, the distance between the panels 'b' is the characteristic dimension.

And, $\frac{L}{b} = 60$ > 12....condition is satisfied.

Then,

$$\operatorname{Gr}_{\mathbf{b}} := \frac{\mathbf{g} \cdot \beta \cdot (\mathbf{T}\mathbf{1} - \mathbf{T}\mathbf{2}) \cdot \mathbf{b}^{3}}{v^{2}}$$

i.e.
$$Gr_b = 4.018 \cdot 10^5$$
 Grashoff number

and, $\operatorname{Ra}_b := \operatorname{Gr}_b \cdot \operatorname{Pr}$...Rayleigh number

Use the Mathcad function to calculate Nu for various conditions (θ between 0 and 70 deg.). Ref.[2]:

$$\begin{split} \mathrm{Nu}_{\mathbf{b}} & \left\{ L, \mathbf{b}, \mathrm{Ra}_{\mathbf{b}}, \theta \right\} &\coloneqq \\ \mathrm{return} \left[0.42 \cdot \mathrm{Ra}_{\mathbf{b}}^{\frac{1}{4}} \cdot \mathrm{Pr}^{0.012} \cdot \left(\frac{\mathrm{L}}{\mathrm{b}} \right)^{-0.3} \right] & \text{if } \theta = 90 \\ \mathrm{if } \theta \leq 70 \\ & \left[\mathrm{AA1} \leftarrow \left(1 - \frac{1708}{\mathrm{Ra}_{\mathbf{b}} \cdot \cos\left(\theta \cdot \frac{\pi}{180}\right)} \right) \\ & \left[\mathrm{BB1} \leftarrow \frac{\left(\mathrm{Ra}_{\mathbf{b}} \cdot \cos\left(\theta \cdot \frac{\pi}{180}\right) \right)^{\frac{1}{3}}}{\mathrm{BB1} + 0} \\ & \left[\mathrm{BB1} \leftarrow \frac{\mathrm{BB1} \leq 0}{\mathrm{BB1} \cdot 18} \right] \\ & \left[\mathrm{BB1} \leftarrow 0 \quad \mathrm{if } \quad \mathrm{BB1} \leq 0 \\ \mathrm{BB} \leftarrow \mathrm{BB1} \quad \mathrm{if } \quad \mathrm{BB1} > 0 \\ \mathrm{AA} \leftarrow 0 \quad \mathrm{if } \quad \mathrm{AA1} \geq 0 \\ \mathrm{AA} \leftarrow \mathrm{AA1} \quad \mathrm{if } \quad \mathrm{AA1} > 0 \\ & \operatorname{return} 1 + 1.44 \cdot (\mathrm{AA}) \cdot \left[1 - \frac{1708 \cdot \left[\sin\left[1.8 \cdot \left(\theta \cdot \frac{\pi}{180}\right) \right] \right]^{1.6}}{\mathrm{Ra}_{\mathbf{b}} \cdot \cos\left(\theta \cdot \frac{\pi}{180}\right)} \right] + \mathrm{BB} \\ & \operatorname{return} \left[0.42 \cdot \mathrm{Ra}_{\mathbf{b}}^{\frac{1}{4}} \cdot \mathrm{Pr}^{0.012} \cdot \left(\frac{\mathrm{L}}{\mathrm{b}} \right)^{-0.3} \right] \cdot \left(\sin\left(\theta \cdot \frac{\pi}{180}\right) \right)^{\frac{1}{4}} & \mathrm{if } \quad \theta < 90 \\ & \operatorname{return} \left[1 + \left[0.42 \cdot \mathrm{Ra}_{\mathbf{b}}^{\frac{1}{4}} \cdot \mathrm{Pr}^{0.012} \cdot \left(\frac{\mathrm{L}}{\mathrm{b}} \right)^{-0.3} - 1 \right] \cdot \sin\left(\theta \cdot \frac{\pi}{180} \right) \right] & \mathrm{if } \quad \theta \leq 180 \end{split}$$

Therefore, $\operatorname{Nu}_{b}(L, b, \operatorname{Ra}_{b}, \theta) = 5.077$ Nusselts No.

Heat transfer Q, by convection:

Case 1: When the flat plate collector is horizontal, i.e.
$$\theta = 0$$
:

$$\theta := 0 \quad \dots \text{horizontal plates}$$
Then: $\operatorname{Nu}_{b}(L, b, \operatorname{Ra}_{b}, \theta) = 5.077$...Nusselt Number
$$A_{s} := L \cdot W \quad \text{i.e.} \quad A_{s} = 15 \quad \text{m}^{2} \dots \text{ area for heat transfer}$$

$$k_{eff}(L, b, \operatorname{Ra}_{b}, \theta) := k \cdot \operatorname{Nu}_{b}(L, b, \operatorname{Ra}_{b}, \theta) \quad \dots \text{ effective thermal conductivity}$$
i.e. $k_{eff}(L, b, \operatorname{Ra}_{b}, \theta) = 0.141$ W/m.C effective thermal cond.
 $Q_{\operatorname{conv}}(L, b, \operatorname{Ra}_{b}, \theta) := k_{eff}(L, b, \operatorname{Ra}_{b}, \theta) \cdot A_{s} \cdot \frac{(T1 - T2)}{b}$
i.e. $Q_{\operatorname{conv}}(L, b, \operatorname{Ra}_{b}, \theta) = 1.483 \cdot 10^{3}$ W ... heat transfer by natural convection Ans.

Case 2: When the flat plate collector is tilted to horizontal at θ = 30 deg.:

θ := 30tilted to horizontal at 30 deg.

Then: $\operatorname{Nu}_{b}(L, b, \operatorname{Ra}_{b}, \theta) = 4.898$...Nusselt Number

And:

$$\mathbf{k}_{eff} \left(L, b, Ra_{b}, \theta \right) \coloneqq \mathbf{k} \cdot Nu_{b} \left(L, b, Ra_{b}, \theta \right) \quad \text{....effective thermal conductivity}$$

i.e. $k_{eff}(L, b, Ra_b, \theta) = 0.136$ W/m.C effective thermal cond.

$$Q_{\text{conv}}(L,b,\text{Ra}_{b},\theta) := k_{\text{eff}}(L,b,\text{Ra}_{b},\theta) \cdot A_{s} \cdot \frac{(T1-T2)}{b}$$

i.e. $Q_{conv}(L,b,Ra_b,\theta) = 1.431 \cdot 10^3$ W ... heat transfer by natural convection Ans.

Case 3: When the flat plate collector is at $\theta = 60$ deg.:

θ := 60inclination to horizontal

Then: $\operatorname{Nu}_{b}(L, b, \operatorname{Ra}_{b}, \theta) = 4.3$...Nusselt Number

And:

 $k_{eff}(L,b,Ra_{b},\theta) := k \cdot Nu_{b}(L,b,Ra_{b},\theta)$ effective thermal conductivity

i.e. $k_{eff}(L, b, Ra_b, \theta) = 0.12$ W/m.C effective thermal cond.

$$Q_{\text{conv}}(L,b,\text{Ra}_{b},\theta) := k_{\text{eff}}(L,b,\text{Ra}_{b},\theta) \cdot A_{s} \cdot \frac{(T1-T2)}{b}$$

i.e. $Q_{\text{conv}}(L, b, \text{Ra}_b, \theta) = 1.256 \cdot 10^3$ W ... heat transfer by natural convection Ans.

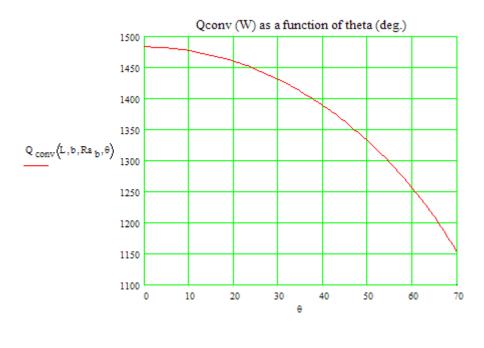
Grant Thornton— a^{REALLY} great place to work.

We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

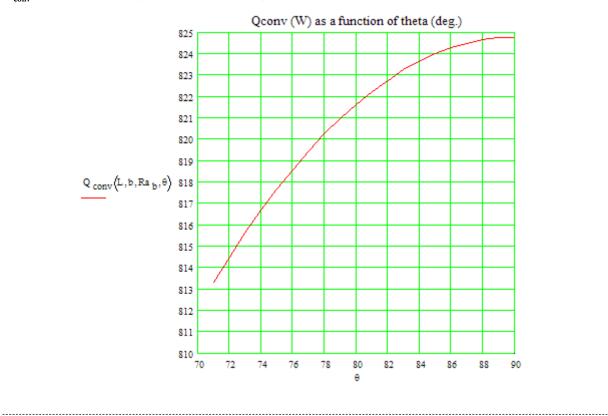
Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers

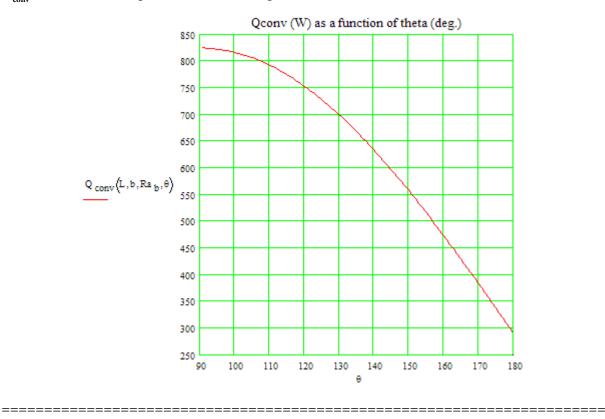
© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd



Plot Q_conv for various values of θ :


For various values of θ :

θ	Nu _b (L,b,Ra _b ,θ)	$Q_{conv}(L,b,Ra_{b},\theta)$
0	5.077	1483.157
10	5.057	1477.305
20	4.998	1459.99
30	4.898	1430.827
40	4.754	1388.807
50	4.56	1331.941
60	4.3	1256.262
70	3.946	1152.841
80	2.813	821.636
90	2.823	824.787
100	2.796	816.694
110	2.713	792.663
120	2.579	753.423
130	2.397	700.166
140	2.172	634.512
150	1.912	558.454
160	1.624	474.303
170	1.317	384.617
180	1	292.121


$\mathbf{Q}_{_{conv}}$ between theta angles of 0 and 70 deg:

$\boldsymbol{Q}_{_{conv}}$ between theta angles of 71 and 90 deg:

\mathbf{Q}_{conv} between theta angles of 91 and 180 deg:

Prob. 2A2.3.4 : A solar collector design consists of concentric tubes, with the outer tube transparent to solar radiation. The tubes are thin walled and the inner and outer cylinder diameters are 0.1 and 0.15 m. The annular space is filled with air at atmospheric pressure. Inner and outer tube surface temperatures are 70 C and 30 C respectively. (a) What is the convection heat loss per metre length of tube? (b) If the emissivity of outer surface of inner tube is 0.2 and the outer cylinder behaves as if it is a black body, estimate the radiation loss. [Ref: 5]

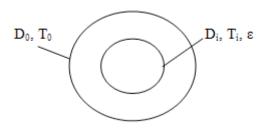
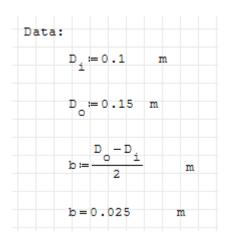
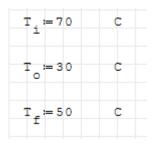


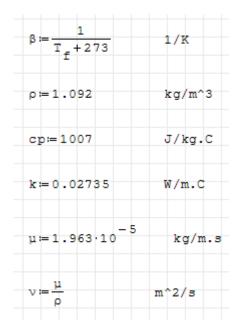
Fig.Prob.2A2.3.4

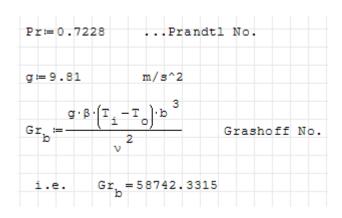
SMath Solution: (Note: SMath is a software similar to Mathcad, with somewhat reduced capabilities, but available totally free)

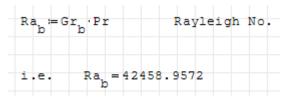
Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

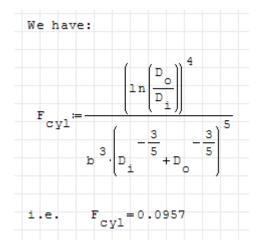

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com

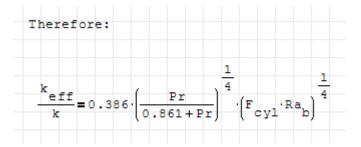

Engineering the Future – since 1758. **MAN Diesel & Turbo**

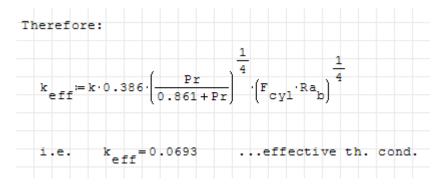


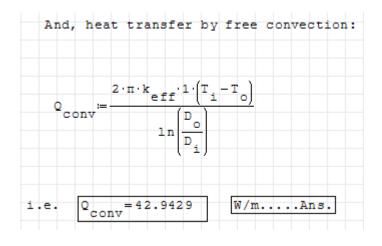

170 Download free eBooks at bookboon.com

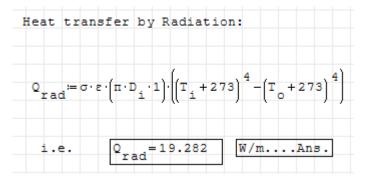





σ≔5.67·10	-8 W/m^2.K^4
ε:=0.2	emissivity







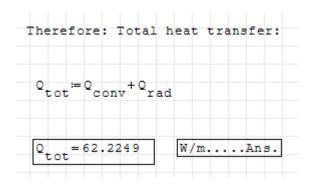
Download free eBooks at bookboon.com

Natural (Or, Free) Convection

XX RBS Group

CAREERKICKSTART

An app to keep you in the know


Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

\$UnitSystem SI Pa K J

"Prob. 2A2.3.5. The surfaces of two concentric spheres, with radii of 75 and 100 mm are maintained at 325 K and 275 K respectively. (a) If the space between the spheres is filled with nitrogen at 5 atm estimate the convection heat transfer rate (b) If the emissivity of surface of inner sphere is 0.3 and the surface of outer sphere is perfectly black, estimate the total heat transfer rate."

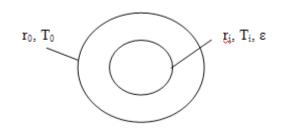


Fig.Prob.2A2.3.5

EES Solution:

"Data:"

 $r_i = 0.075 [m]$

 $r_0 = 0.1 [m]$

 $T_i = 325 [K]$

T_o = 275 [K]

P = 5 [atm] * convert (atm, Pa)

 $T_f = (T_i + T_f) / 2$

 $g = 9.81 [m/s^2]$

sigma = 5.67e-08 [W/m^2-K^4] "...Stefan Boltzmann const."

epsilon = 0.2 "...emissivity"

"Properties of nitrogen at 5 atm:"

beta = 1/T_f "[1/K]"
rho=Density(N2,T=T_f,P=P) "[kg/m^3]"
cp=Cp(N2,T=T_f) "[J/kg-K]"
k=Conductivity(N2,T=T_f) "[W/m-K]"
Pr=Prandtl(N2,T=T_f) "...Prandtl No."
mu=Viscosity(N2,T=T_f) "[kg/m-s]"
nu = mu / rho "[m^2/s]"

"Calculations:"

D_i = 2 * r_i "[m]"

D_o = 2 * r_o "[m]"

 $b = (r_o - r_i) [m]$

 $Gr_b = g * beta * (T_i - T_o) * b^3 / nu^2 "....Grashoff No."$

 $Ra_b = Gr_b * Pr "...Rayleigh No."$

"Effective Thermal conductivity:"

 $F_{sph} = b / ((D_i * D_o)^4 * (D_i^{(-7/5)} + D_o^{(-7/5)})^5)$

 $k_{eff} / k = 0.74 * (Pr / (0.861 + Pr))^{(1/4)} * (F_{sph} * Ra_b)^{(1/4)} "...Finds k_{eff}"$

"Heat transfer by convection:"

 $Q_conv = k_eff * (pi * D_i * D_o / b) * (T_i - T_o) "[W]"$

"Heat transfer by radiation:"

 $Q_rad = sigma * epsilon * (pi * D_i^2) * (T_i^4 - T_o^4) "[W]"$

"Total heat transfer:"

Q_tot = Q_conv + Q_rad "[W] total heat transfer"

Results:

Unit Settings: SI K Pa J mass deg

b = 0.025 [m]
D _i = 0.15 [m]
F _{sph} = 0.004078
k = 0.02759 [W/m-K]
v = 0.000003585 [m ² /s]
Q _{conv} = 26.92 [W]
Ra _b = 1.300E+06
r _o = 0.1 [m]
T _i = 325 [K]

 $\beta = 0.003077 [1/K]$ $D_{o} = 0.2 [m]$ g = 9.81 [m/s²] $k_{eff} = 0.1428 [W/m-K]$ P = 506625 [Pa] $Q_{rad} = 4.359 [W]$ $\rho = 5.252 [kg/m³]$ $\sigma = 5.670E-08 [W/m²-K⁴]$ $T_{o} = 275 [K]$

cp = 1038 [J/kg-K] ϵ = 0.2 Gr_b = 1.835E+06 μ = 0.00001883 [kg/m-s] Pr = 0.7083 Q_{tot} = 31.28 [W] r_i = 0.075 [m] T_f = 325 [K]

ORACLE

Be BRAVE enough to reach for the sky

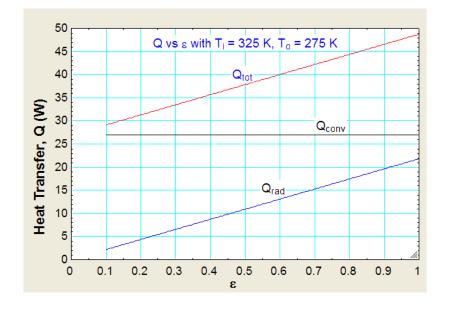
Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

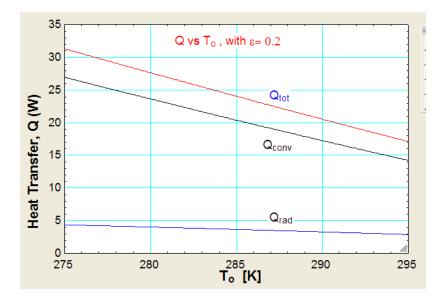
https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

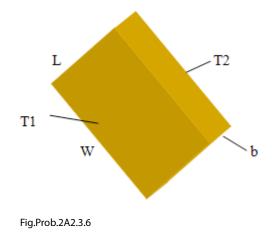


Thus:

Q_conv = 26.92 W Ans. Q_rad = 4.3589 W Ans. Q_tot = 31.28 W Ans.


Plot the variation of Q as epsilon varies from 0.1 to 1:

Es Parametr	ic Table			
Table 1				
110	1 Σ ε	2 Q _{conv} [W]	³ Q _{rad} [₩]	₄
Run 1	0.1	26.92	2.179	29.1
Run 2	0.2	26.92	4.359	31.28
Run 3	0.3	26.92	6.538	33.46
Run 4	0.4	26.92	8.717	35.64
Run 5	0.5	26.92	10.9	37.82
Run 6	0.6	26.92	13.08	40
Run 7	0.7	26.92	15.26	42.18
Run 8	0.8	26.92	17.43	44.35
Run 9	0.9	26.92	19.61	46.53
Run 10	1	26.92	21.79	48.71


💀 Parametric Table						
Table 1 Table 2						
121	¹ T ₀ ■ [K]	2 Q _{conv} [W]	³ Q _{rad} [W]	4		
Run 1	275	26.92	4.359	31.28		
Run 2	276	26.25	4.292	30.54		
Run 3	277	25.58	4.224	29.81		
Run 4	278	24.92	4.155	29.07		
Run 5	279	24.26	4.086	28.34		
Run 6	280	23.6	4.016	27.61		
Run 7	281	22.95	3.945	26.89		
Run 8	282	22.3	3.874	26.17		
Run 9	283	21.65	3.801	25.45		
Run 10	284	21.01	3.728	24.73		
Run 11	285	20.37	3.655	24.02		
Run 12	286	19.73	3.58	23.31		
Run 13	287	19.1	3.504	22.61		
Run 14	288	18.48	3.428	21.91		
Run 15	289	17.85	3.351	21.21		
Run 16	290	17.24	3.274	20.51		
Run 17	291	16.62	3.195	19.82		
Run 18	292	16.01	3.115	19.13		
Run 19	293	15.41	3.035	18.45		
Run 20	294	14.81	2.954	17.76		
Run 21	295	14.22	2.872	17.09		

Plot the variation of Q as T_o varies from 275 to 295 K:

Click on the ad to read more

Prob. 2A2.3.6: In a solar flat plate collector, the plate is of size 1.5 m high and 3m wide and is at a temperature of 80 C. The glass cover plate is at a distance of 2.5 cm from the collector surface and its temp. is 40 C. Space in between contains air at 1 atm. If the collector plate is inclined to the horizontal at θ deg., determine the heat transfer by free convection for $\theta = 0$, 30 and 90 deg.

Note: This problem is the same as Prob.2A2.3.2, which was solved with Mathcad.

Download free eBooks at bookboon.com

Natural convection in Rectangular enclosures (Height, L × Width, W × plate spacing, b) containing air at 1 atm inside the enclosure is practically important. Equations are available for Vertical enclosures ($\theta = 90$ deg), Horizontal enclosures ($\theta = 0$ deg) and Inclined enclosures, inclined at an angle θ to the horizontal. *The latter case is of direct relevance to analysis of Flat plate Solar collectors.*

For Inclined rectangular enclosure, we have, for Average Nusselts No. (based on the plate spacing 'b' as the characteristic dimension):

For (L/b > 12) and at tilt angles θ less than 70 deg.:

$$\operatorname{Nu}_{\mathbf{b}} = 1 + 1.44 \cdot \left(1 - \frac{1708}{\operatorname{Ra}_{\mathbf{b}} \cdot \cos(\theta)}\right) \cdot \left(1 - \frac{1708 \cdot \sin(1.8 \cdot \theta)^{1.6}}{\operatorname{Ra}_{\mathbf{b}} \cdot \cos(\theta)}\right) + \left[\left(\frac{\operatorname{Ra}_{\mathbf{b}} \cdot \cos(\theta)}{5830}\right)^{\frac{1}{3}} - 1\right]$$

If the quantity in the first bracket and the last bracket is negative, then it must be set equal to zero.

When $\theta = 0$, above eqn gives Nu_b for a Horizontal enclosure.

For tilt angles between 70 deg. and 90 deg. Catton recommends that the Nusselt number for a vertical enclosure ($\theta = 90$ deg.) be multiplied by (sin θ)^{1/4}, i.e.

$$Nu_{b}(\theta) = Nu_{b}(\theta = 90) \cdot sin(\theta)^{\frac{1}{4}} \qquad \dots \text{for } 70 < \theta <= 90$$

$$Nu_{b} = 1 + (Nu_{b}(\theta = 90) - 1) \cdot sin\theta$$
 ... for $90 < \theta <= 180$

Also:

$$Nu_{b} = 0.42 \cdot Ra_{b}^{-\frac{1}{4}} \cdot Pr^{0.012} \cdot \left(\frac{L}{b}\right)^{-0.3} \qquad \dots \text{for } 0 < L/b < 40, \ 1 < Pr < 2^{*10^{4}} + 10^{-4} + 10^{-$$

$$Nu_{b} = 0.46 \cdot Ra_{b}^{\frac{1}{3}} \qquad \dots \text{ for } 1 < L/b < 40, \ 1 < Pr < 20 \\ 10^{6} < Ra \ b < 10^{9}$$

Download free eBooks at bookboon.com

And, Effective Thermal conductivity = $k_{eff} = k * Nu_{b}$

Heat tr coeff, $h = k_{eff} / b$, and,

$$Q_{conv} = k_{eff} * (L * W) * (T1 - T2) / b$$

Also, Qconv = h * (L * W) * (T1 - T2)

Now, let us solve this Problem with EXCEL.

VBA Functions for Nu_b for Rectangular enclosures with Air at 1 atm inside:

Since the above shown eqns are a little complicated, it is better to have VBA Functions in EXCEL to calculate Nu_{b} for different cases:

Following are the **two VBA Functions**, which give the Nusselts No. Nu_b for all angles of tilt, θ to the horizontal, i.e. $\theta = 0$ to 180 deg., i.e. Horizontal, Vertical and Tilted enclosures:

```
Function NatConv_Air_InclinedEnclosure_Nusselt_b(T_1 As Double, T_2 As Double, L As Double, b As Double, _ theta As Double) As Double
'Finds Avg. Nusselts No. for an Inclined Enclosure (height L x thickness b)containing Nat Convn in Air
' at 1 atmosph pressure
' Temps T_1 > T_2
'theta is inclination to horizontal (degrees)
'Reads property values of Air from Table and interpolates using VBA Functions
Dim g As Double, beta As Double
Dim AA As Double, BB As Double, CC As Double
Dim T_f As Double, rho As Double, k As Double, Pr As Double
Dim nu As Double, cp As Double
Dim Gr_b As Double, Ra_b As Double
g = 9.81 \text{ 'm/s}^2...accn due to gravity
T_f = (T_1 + T_2) / 2
beta = 1 / (T_f + 273) 'vol. expansivity of Air
'Properties of Air:
rho = Air rho T(T f + 273)
k = Air_k T(T_f + 273)
 \begin{array}{l} \Pr = \text{Air} \Pr T (T_f + 273) \\ \text{nu} = \text{Air} \Pr T (T_f + 273) \\ \text{cp} = \text{Air} \Pr T (T_f + 273) \\ \end{array}
```

```
If (L / b < 12) Then
   MsgBox (" L/b must be greater than 12 !")</pre>
  End
End If
If (L / b) > 12 And theta <= 70 Then
   theta = theta * Application.Pi() / 180 'theta in Radians
   AA = (1 - 1708 / (Ra_b * Cos(theta)))
   BB = (1 - 1708 * ((Sin(1.8 * theta)) ^ 1.6) / (Ra_b * Cos(theta)))
   CC = ((Ra b * Cos(theta) / 5830) ^ (1 / 3)) - 1
   If AA <= 0 Then
     AA = 0
   End If
   If CC <= 0 Then
CC = 0
End If
   NatConv_Air_InclinedEnclosure_Nusselt_b = 1 + 1.44 * AA * BB + CC
 End If
 If (L / b) > 12 And (theta < 90 And theta > 70) Then
 theta = theta * Application.Pi() / 180 'theta in Radians
 NatConv_Air_InclinedEnclosure_Nusselt_b = NatConv_Air_Vert_Enclosure_Nusselt_b(T_1, T_2, L, b) * (Sin(theta)) ^ (1 / 4)
```


Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on **+44 (0)20 7000 7573**.

* Figures taken from London Business School's Masters in Management 2010 employment report

Download free eBooks at bookboon.com

182

```
End If
If theta = 90 Then
NatConv_Air_InclinedEnclosure_Nusselt_b = NatConv_Air_Vert_Enclosure_Nusselt_b(T_1, T_2, L, b)
End If
If (theta > 90 And theta <= 180) Then
theta = theta * Application.Pi() / 180 'theta in Radians
NatConv_Air_InclinedEnclosure_Nusselt_b = 1 + (NatConv_Air_Vert_Enclosure_Nusselt_b(T_1, T_2, L, b) - 1) * Sin(theta)
End If</pre>
```

End Function

 $\begin{array}{l} \Pr = Air_\Pr_T(T_f + 273) \\ nu = Air_nu_T(T_f + 273) \\ cp = Air_cp_T(T_f + 273) \end{array}$

```
Function NatConv Air_Vert_Enclosure_Nusselt_b(T_1 As Double, T_2 As Double, L As Double, _
b As Double) As Double
'Finds Avg. Nusselts No. for a vetical Enclosure (height L x thickness b)containing Nat Convn
'in Air at 1 atmosph pressure
'Temps T_1 > T_2
'Uses eqns from McGreogory and Emery, (Ref: Cengel: Heat and Mass Transfer, 3rd Ed., p. 480 )
'Reads property values of Air from Table and interpolates using VBA Functions
Dim g As Double, beta As Double
Dim AA As Double, BB As Double, CC As Double
Dim T_f As Double, rho As Double, k As Double, Pr As Double
Dim nu As Double, cp As Double
Dim Gr_b As Double, Ra_b As Double
g = 9.81 'm/s^2....accn due to gravity
T f = (T 1 + T 2) / 2
beta = 1 / (T_f + 273) 'vol. expansivity of Air
'Properties of Air:
rho = Air rho T(T f + 273)
k = Air_k T (T_f + 273)
```

```
    Gr_b = g * beta * Abs(T_1 - T_2) * b ^ 3 / nu ^ 2 'Grashof No. \\    Ra_b = Gr_b * Pr 'Rayleigh No. 
If (L / b < 10) Then
 MsgBox (" L/b must be greater than 10!")
 End
End If
If Ra_b < 10 ^ 4 Or Ra_b > 10 ^ 9 Then
   MsgBox (" Ra_b must be between 10^4 and 10^9 !!")
 End
End If
  If (Ra b > 10 ^{4}) And (Ra b <= 10 ^{7}) Then
    NatConv_Air_Vert_Enclosure_Nusselt_b = 0.42 * Ra_b ^ (1 / 4) * Pr ^ 0.012 * (L / b) ^ (-0.3)
  Else
  If (Ra b > 10 ^ 6) And (Ra b <= 10 ^ 9) Then
    NatConv_Air_Vert_Enclosure_Nusselt_b = 0.46 * Ra_b ^ (1 / 3)
  End If
  End If
```

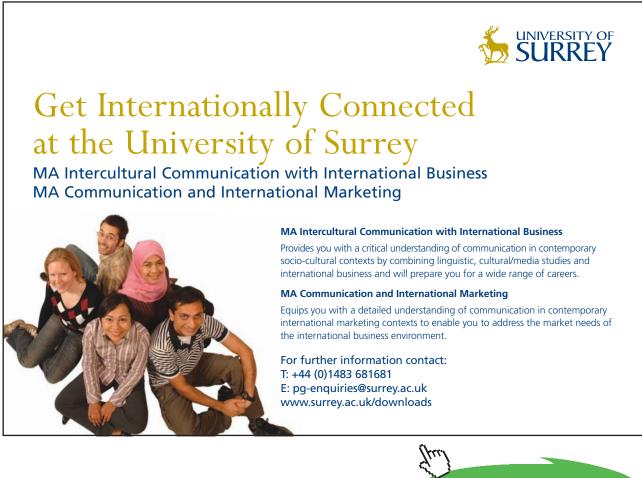
End Function

Insert these VBA Functions in one of the Modules in the same EXCEL Worksheet where we wrote the VBA Functions for properties of Air (see for example, Prob.2A1.2.13), so that all these Functions are available for us, as if they are built-in Functions of EXCEL, to use in solving the Problem.

EXCEL Solution:

Following are the steps:

	T_f	\bullet (9 f_x	=(T_1 + T_2)/2				
	А	В	С	D	E	F	G
209							
210		Data:	Fluid =	Air			
211 212			T_1	80	С		
212			T_2	40.0	c		
213			T_f	60.00	с <		
214			L	1.5	m	T f = 0	$T_1 + T_2)/2$
215			w	3.0	m	(
216			b	0.0250	m		
217			theta	30.0	deg.		
218			g	9.81	m/s^2		
219			beta	0.0030	1/K		
220							


1. Set up the EXCEL worksheet, enter data and name the cells:

2. Use VBA Functions written earlier, to get properties of Air:

	ср	→ (*) f3	air_cp_T((T_f+273	3))				
	А	В	С	D	E	:	F	G
221								
222								
223		Calculations:				-		
224 225 226 227		density	rho	1.06075	kg/m^3			
225		th. conductivity	k	0.028786	W/m.C		Using VB/	A Functions for Air
226		Prandtl No.	Pr	0.703665		14		
227		kinematic visc.	nu	1.89635E-05	m^2/s			
228		sp.heat	ср	1008.65	J/kg.K			
229								
220								


3. Now, proceed with the calculations:

	Nusselts_b - 🕼 =NatConv_Air_InclinedEnclosure_Nusselt_b(T_1,T_2,L,b,theta)						
	А	В	С	D	E		
233		For an Enclosure (theta =	0 to 180 deg.): use	VBA Function to find	Nusselts No.:		
234							
235	To calculate Nusselts No'b' is the characteristic dimension.						
236		Nusselts No.	Nusselts_b	3.0573	Using VBA Function		

Click on the ad to read more Download free eBooks at bookboon.com

Note in this screen shot that Nu_b is calculated in cell D236, using the VBA Function written above. To insert this Function in cell D236, select that cell, and click on Insert Function symbol:

We get the following Window. Here, under User Defined category, the VBA Function we wrote for Inclined Enclosure appears, and we select it:

Insert Function			? 🗙			
Search for a function:						
Type a brief description Go	Type a brief description of what you want to do and then click Go					
Or select a <u>c</u> ategory:	User Defined	~				
Select a functio <u>n</u> :						
NatConv_Air_HPlate_ NatConv_Air_Inclined NatConv_Air_Sphere, NatConv_Air_VCyI_Ni NatConv_Air_Vert_Er NatConv_Air_Vert_Er NatConv_Air_VPlate_	_Nusselt_D usselt_L nclosure_Nusselt_b nclosure2_Nusselt_b					
NatConv_Air_InclinedEnclosure_Nusselt_b(T_1,T_2,L,b,theta) No help available.						
Help on this function		ОК	Cancel			

In the above window, we have selected:

Category: User Defined,

Select a function: Natconv_Air_InclinedEnclosure_Nusselt_b

Now, click OK. We get the following window. Select various parameters as shown:

Function	Arguments			? 🛛				
NatConv	_Air_InclinedEnclosure_Nusselt_b							
T_1	T_1		=	80				
T_2	T_2		=	40				
L	L		=	1.5				
В	b		=	0.025				
Theta	theta		=	30				
			=	3.05725611				
No help av	No help available. Theta							
Formula result = 3.0573								
<u>Help on thi</u>	Help on this function OK Cancel							

Press OK, and the result appears in cell D236:

	Nusselts	5_b - (● <i>f</i> x	=NatConv_Air_Inc	linedEnclosure_Nuss	elt_b(T_1,T_2,L,b,theta)		
	А	В	С	D	E		
230							
231							
232							
233		For an Enclosure (theta =	0 to 180 deg.): use	VBA Function to find	Nusselts No.:		
234							
235		To calculate Nusselts No'b' is the characteristic dimension.					
236		Nusselts No.	Nusselts_b	3.0573	Using VBA Function		

4. Now, complete other calculations for $k_{_{eff}}$ h and $Q_{_{conv}}\!\!:$

	D240	$ f_x$	=h*(L*W)*(T_1-T_2	2)				
	А	В	С	D	E	F	G	Н
236		Nusselts No.	Nusselts_b	3.0573	Using VBA Function	In off i	c* Nusselts _ b	
237						$\kappa_{ejj} = i$	t Ivussens_0	
238		effective th. cond.	k_eff	0.088	W/m.C	$h = k_eff$	·/ b	
239		conv. heat tr coeff	h	3.520	W/m^2.C			
240		Conv. Heat transfer	Q_conv	633.6445	w 🔶	$-Q_conv =$	$h^{*}(L^{*}W)^{*}(T_{-})$	-T_2)
241		Alternatively:	Q_conv2	633.6445	W <		1	*(T 1 T 2)/2
242						Q_{conv2}	$= \kappa _ e J J^{-1} (L^{-1} W)$	* (T_1-T_2) / b

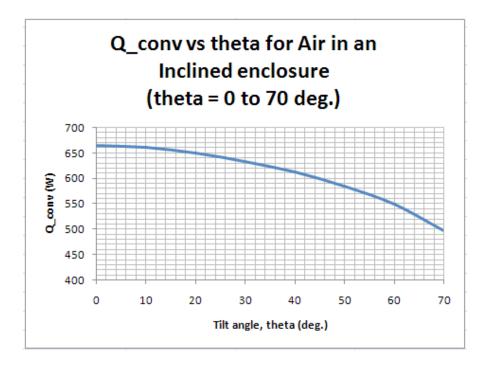
Formulas used are also shown in the Worksheet, for clarity.

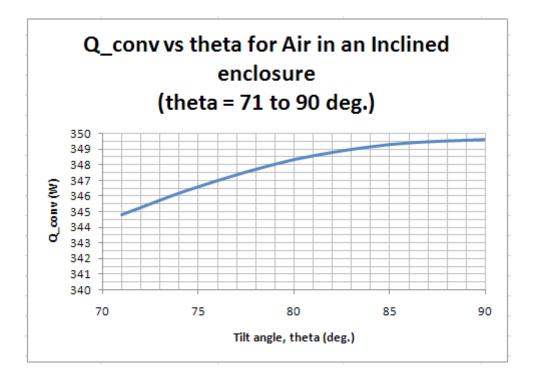
5. To plot Q_{conv} for various values of θ :

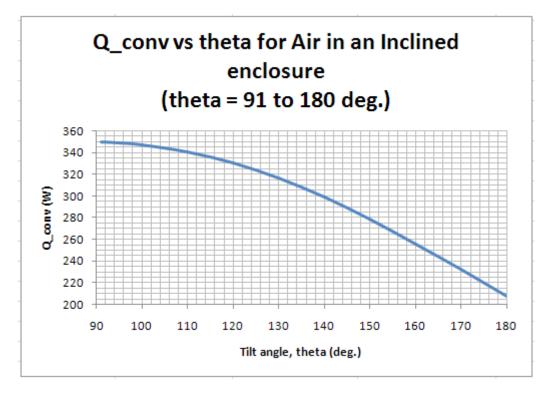
C258	\bullet (• f_x	=NatConv_Air_In	clinedEnclosure_Nusse	elt_b(T_1,T_2,L,b,B2	58)
A	В	С	D	E	F
257	theta (deg.)	Nu_b	k_eff (W/m.C)	h(W/m^2.C)	Q_conv(W)
258	0	3.207	0.092	3.692	664.6414
259	10				
260	20				
261	30				
262	40				
263	50				
264	60				
265	70				
266	71				
267	75				
268	80				
269	85				
270	90				
271	91				
272	95				
273	100				
274	110				
275	120				
276	130				
277	140				
278	150				
279	160				
280	170				
281	180				

Set up a Table as shown below, with θ varying from 0 to 180 deg.:

Now, in the cell C258, we have entered the Function for Nu_b. It can be seen in the Formula bar. Since we want to keep θ as the variable, we have entered it in 'relative reference', i.e. for θ we have written cell B258. Similarly, enter Formulas for k_eff, h and Q_conv.

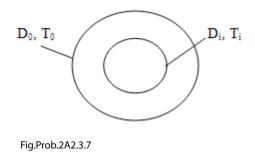





6. Now, select the row containing cells C258 to F258, and drag-copy downwards till cell F281. We see that entire Table gets filled up:

C258	\bullet (• f_x	=NatConv_Air_Inc	linedEnclosure_Nuss	elt_b(T_1,T_2,L,b,B25	8)
A	В	С	D	E	F
257	theta (deg.)	Nu_b	k_eff (W/m.C)	h(W/m^2.C)	Q_conv(W)
258	0	3.207	0.092	3.692	664.6414
259	10	3.186	0.092	3.669	660.3983
260	20	3.135	0.090	3.610	649.8189
261	30	3.057	0.088	3.520	633.6445
262	40	2.953	0.085	3.400	611.9985
263	50	2.819	0.081	3.246	584.2923
264	60	2.646	0.076	3.047	548.3899
265	70	2.401	0.069	2.765	497.6793
266	71	1.664	0.048	1.916	344.7959
267	75	1.673	0.048	1.926	346.6415
268	80	1.681	0.048	1.935	348.3232
269	85	1.685	0.049	1.941	349.3258
270	90	1.687	0.049	1.943	349.6589
271	91	1.687	0.049	1.942	349.6372
272	95	1.684	0.048	1.940	349.1170
273	100	1.677	0.048	1.931	347.4955
274	110	1.646	0.047	1.895	341.0711
275	120	1.595	0.046	1.837	330.5809
276	130	1.526	0.044	1.757	316.3437
277	140	1.442	0.041	1.660	298.7919
278	150	1.344	0.039	1.547	278.4590
279	160	1.235	0.036	1.422	255.9628
280	170	1.119	0.032	1.289	231.9866
281	180	1.000	0.029	1.151	207.2592

7. Now, plot the results in EXCEL:



Note: Comparing these results with those obtained with Mathcad for Prob.2A2.3.2, we see that they match very well.

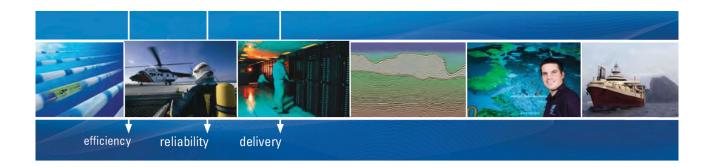
Prob. 2A2.3.7: A long tube of 0.1 m OD is maintained at 150 C. It is surrounded by a cylindrical radiation shield, located concentrically, such that the air gap between the two cylinders is 10 mm. The shield is at a temperature of 30 C. Estimate the convection heat transfer rate per metre length.

EXCEL Solution:

Equations for effective thermal conductivity (k_eff) and the heat transferred (Q) **for cylindrical annuli** are given in the beginning of the Chapter.

However, we reproduce them below for immediate reference:

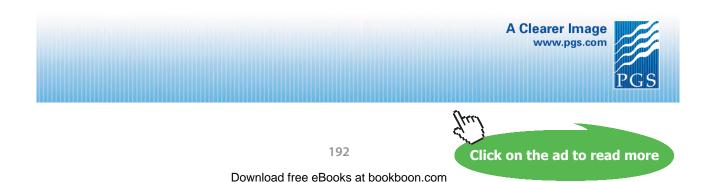
'b' is the gap or thickness of the enclosed fluid layer (i.e. $b = [D_0 - D_i]/2$).


where,

$$Ra_{cc} = \frac{\left(ln\left(\frac{D_{o}}{D_{i}}\right)\right)^{4} \cdot Ra_{b}}{b^{3} \cdot \left[\frac{1}{a_{i}^{3}} + \frac{1}{a_{o}^{3}}\right]^{5}} \qquad \dots (10.65)$$

Now, we need the properties of Air at 1 atm and at given mean temperatures. So, we use the same worksheet where VBA Functions for properties of Air were written. (See, for ex, Prob.2A1.2.13).

Also, we first write VBA Function to calculate k_{eff} and Q for this problem:


```
Function NatConv_Air_ConcentricCylinders_k_effAndQcyl(T_i As Double, T_0 As Double, L As Double, _
D_i As Double, D_0 As Double) As Variant
"Note that output is an Array (k_eff, Qcyl). Use (Ctrl + Shift + Enter) after selecting two
'consecutive cells in a column and entering the Function.
'Finds k eff (W/m.C) and Qcyl (W) for an Enclosure of conc. cylinders of dia D i and D 0, gap 'b', Length L
'contains Air at 1 atmosph pressure
'Temps T_i > T_0
'Reads property values of Air from Table and interpolates using VBA Functions
Dim g As Double, beta As Double
Dim b As Double
Dim T_f As Double, rho As Double, k As Double, Pr As Double
Dim nu As Double, cp As Double
Dim Gr_b As Double, Ra_b As Double
Dim k eff As Double
Dim Qcyl As Double
Dim Ra_cc As Double
g = 9.81 'm/s^2....accn due to gravity
b = (D_0 - D_i) / 2
T_f = (T_i + T_0) / 2
beta = 1 / (T_f + 273) 'vol. expansivity of Air
```


As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers


```
'Properties of Air:
rho = Air_rho_T(T_f + 273)
k = Air_{k} T (T_{f} + 273)
Pr = Air Pr T (T f + 273)
nu = Air_nu_T(T_f + 273)
cp = Air cp T (T f + 273)
    Gr_b = g * beta * Abs(T_i - T_0) * b ^ 3 / nu ^ 2 'Grashof No. \\    Ra_b = Gr_b * Pr 'Rayleigh No. 
Ra_cc = (Application.Ln(D_0 / D_i)) ^ 4 * Ra_b / (b ^ 3 * (D_i ^ (-3 / 5) + D_0 ^ (-3 / 5)) ^ 5)
   If (Ra cc < 100) Or (Ra cc > 10 ^{\circ} 7) Then
    MsgBox (" Ra_cc must be between 100 and 10^7 !!")
    End
   End If
   If (Ra_cc > 100) And (Ra_cc <= 10 ^ 7) Then
     k eff = k * 0.386 * (Pr / (0.861 + Pr)) ^ (1 / 4) * Ra cc ^ (1 / 4)
   End If
   Qcyl = (2 * Application.Pi() * k_eff * L * (T_i - T_0)) / Application.Ln(D_0 / D_i)
   NatConv_Air_ConcentricCylinders_k_effAndQcyl = Application.Transpose(Array(k_eff, Qcyl))
End Function
```

Note that the above Function returns a vertical Array whose first element is k_eff and the second element is Q.

So, while using this Function, we should select two consecutive vertical cells and then hit (Ctrl+Shift+Enter) since it is an Array Function.

Use of this Function is demonstrated below:

1. Set up the EXCEL worksheet, enter the data:

A A	В	С	D	E	F	G
356	Data:	Fluid =	Air			
357		T_i	150	C	(
358		T_0	30.0	$C \qquad T _f =$	$(T_i + T_i)$	0)/2
359		T_f	90.00	c 🖌		
360		L	1	m		
361		D_i	0.1	m		
362		D_0	0.1200	m		
262				T		

2. Now, to enter the Function to get k_eff and Q, we first select two consecutive vertical cells, viz. D365 and D366, and then choose the Insert Function symbol, shown below:

	D365	- (● f _x			
	А	B Ins	ert Function	D	E
362			D_0	0.1200	m
363					
		Use the Array Function to get k_eff and Q:			
364					
365			k_eff		W/m.CAns.
366			Q		WAns.
367					

Now, hit the Insert Function symbol, and we get the following screen. In that screen choose:

Category: User Defined

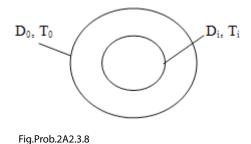
Select Function: NatConv_Air_ConcentricCylinders_k_effAndQcyl

Insert Function	? 🛛
Search for a function:	
Type a brief description of what you want to do and Go	then click <u>G</u> o
Or select a category: User Defined	✓
Select a functio <u>n</u> :	
M_Unit MolWt mu_h2o N_Unit <u>NatConv_Air_ConcentricCylinders_k_effAndQcyl</u> NatConv_Air_ConcentricSpheres_k_effAndQsph NatConv_Air_HCyl_Nusselt_D	
NatConv_Air_ConcentricCylinders_k_effAndQo No help available.	cyl(T_i,T_0,L,D_i,D_0)
Help on this function	OK Cancel

Click OK. We get the following screen, and fill it up as shown:

Functi	on Arguments		? 🛛
NatCor	nv_Air_ConcentricCylinders_k_effAndQo	yl—	
τji	D357	=	150
T_0	D358	=	30
L	D360	=	1
D_i	D361	=	0.1
D_0	D362	=	0.12
No help	available.	=	{0.0372042559681868;153.8564535
	D_0		
Formula	result = 0.0372		
Help on	this function		OK Cancel

Now, IMPORTANT: With (Ctrl + Shift) kept pressed, click OK.



We	get:
----	------

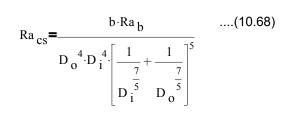
	D36	$5 - f_x$	{=NatConv_Air_Cor	ncentricCylinders_	k_effAndQcyl(D357,D35	58,D360,D361,D36	i2)}
	А	В	С	D	E	F	
362			D_0	0.1200	m		
363							
254		Use the Array Function to get k_eff and Q:					
364 365			144	0.0272	W/m C Am		
			k_eff	0.0372	W/m.CAns.		
366			Q	153.8564536	WAns.		

We see that: k_eff = 0.0372 W/m.C, and Q = 153.856 W ... Ans.

Prob. 2A2.3.8: A sphere of 0.15 m dia. stores a brine at -5 C and is insulated by enclosing it in another sphere of 0.2 m dia and the intervening space contains air at 1 bar. The outside sphere is at 25 C. Estimate the convection heat transfer rate.

EXCEL Solution:

Equations for effective thermal conductivity (k_eff) and the heat transferred (Q) **for Spherical annuli** are given in the beginning of the Chapter.



However, we reproduce them below for immediate reference:

$$Q = \pi \cdot k_{eff} \left(\frac{D_i \cdot D_o}{b} \right) \cdot \left(T_i - T_o \right) \qquad \dots \dots (10.66)$$

$$\frac{k_{eff}}{k} = 0.74 \left(\frac{Pr}{0.861 + Pr} \right)^{\frac{1}{4}} \cdot Ra_{cs}^{\frac{1}{4}} \qquad ...10 < Ra_{cs} < 106.....(10.67)$$

and,

Now, we need the properties of Air at 1 atm and at given mean temperatures. So, we use the same worksheet where VBA Functions for properties of Air were written. (See, for ex, Prob.2A1.2.13).

Also, we first write VBA Function to calculate k_{aff} and Q for this problem:

```
Function NatConv_Air_ConcentricSpheres_k_effAndQsph(T_i As Double, T_0 As Double, _
D_i As Double, D_0 As Double) As Variant
'Note that output is an Array (k_eff, Qsph). Use (Ctrl + Shift + Enter) after selecting two
'consecutive cells in a column and entering the Function.
'Finds k_eff (W/m.C) and Qsph (W) for an Enclosure of conc. cylinders of dia D_i and D_0, gap 'b', Length L
'contains Air at 1 atmosph pressure
'Temps T_i > T_0
'Reads property values of Air from Table and interpolates using VBA Functions
Dim g As Double, beta As Double
Dim b As Double
Dim T f As Double, rho As Double, k As Double, Pr As Double
Dim nu As Double, cp As Double
Dim Gr b As Double, Ra b As Double
Dim k eff As Double
Dim Osph As Double
Dim Ra_cs As Double
g = 9.81 'm/s^2....accn due to gravity
b = (D_0 - D_i) / 2
T f = (T i + T 0) / 2
beta = 1 / (T_f + 273) 'vol. expansivity of Air
```

```
'Properties of Air:
rho = Air rho T(T f + 273)
k = Air k T (T f + 273)
Pr = Air Pr T(T f + 273)
nu = Air_nu_T(T_f + 273)
cp = Air_cp_T(T_f + 273)
Gr_b = g * beta * Abs(T_i - T_0) * b ^ 3 / nu ^ 2 'Grashof No.
Ra b = Gr b * Pr 'Rayleigh No.
Ra_cs = (b * Ra_b) / ((D_0 * D_i) ^ 4 * (D_i ^ (-7 / 5) + D_0 ^ (-7 / 5)) ^ 5)
  If (Ra_cc < 100) Or (Ra_cc > 10 ^ 4) Then
    MsgBox (" Ra cc must be between 100 and 10^4 !!")
    End
  End If
  If (Ra_cs >= 100) And (Ra_cs <= 10 ^ 4) Then
    k eff = k * 0.74 * (Pr / (0.861 + Pr)) ^ (1 / 4) * Ra cs ^ (1 / 4)
  End If
  Qsph = (k_eff * Application.Pi() * (D_i * D_0 / b) * (T_i - T_0))
  NatConv_Air_ConcentricSpheres_k_effAndQsph = Application.Transpose(Array(k_eff, Qsph))
```

End Function

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/ OIL & GAS ENGINEERING

ELECTRONICS

AUTOMATION & PROCESS CONTROL

> MECHANICAL ENGINEERING

INDUSTRIAL DATA COMMS

ELECTRICAL POWER

Phone: **+61 8 9321 1702** Email: **training@idc-online.com** Website: **www.idc-online.com**

Click on the ad to read more

198

Download free eBooks at bookboon.com

Note that the above Function returns a vertical Array whose first element is k_{eff} and the second element is Q_{sph} .

So, while using this Function, we should select two consecutive vertical cells and then hit (Ctrl+Shift+Enter) since it is an Array Function.

Use of this Function is demonstrated below:

1. Set up the EXCEL worksheet, enter the data:

	А	В	С	D	E	F	G
372		Data:	Fluid =	Air			
373			T_i	-5	C		
374			T_0	25.0	$C \qquad T _f =$	$(T_i + T_i)$	0)/2
375			T_f	10.00	c 🖌		
376			D_i	0.2	m		
377			D_0	0.20	m		
0.70					- T		

2. Now, to enter the Function to get k_eff and Q, we first select two consecutive vertical cells, viz. D380 and D381, and then choose the Insert Function symbol, shown below:

	D380	- (● f _x			
	А	B Inse	rt Function F	D	E
378					
379		Use the Array Function to get k_eff and Q:			
380			k_eff		W/m.CAns.
381			Q		WAns.
202					

Now, hit the Insert Function symbol, and we get the following screen. In that screen choose:

Category: User Defined

Select Function: NatConv_Air_ConcentricCylinders_k_effAndQsph

Insert Function					
Search for a function:					
Type a brief description of what you want to do and then click Go					
Or select a category: User Defined					
Select a functio <u>n</u> :					
M_Unit MolWt mu_h2o N_Unit NatConv_Air_ConcentricCylinders_k_effAndQcyl NatConv_Air_ConcentricSpheres_k_effAndQsph NatConv_Air_HCyl_Nusselt_D NatConv_Air_ConcentricSpheres_k_effAndQsph(T_i,T_0,D_i,D_0) No help available.					
Help on this function OK Cancel					

Click OK and we get the following screen. Fill it up as shown:

Functi	on Arguments		? 🛛				
NatCor	nv_Air_ConcentricSpheres_k_effAndQspl	h—)				
τji	D373	=	-5				
T_0	D374 💽	=	25				
D_i	D376	=	0.15				
D_0	D377	=	0.2				
No help	available.	=	{0.0595142009517131;-6.73089755:				
	D_0						
Formula result = 0.0595							
Help on	this function		OK Cancel				

Now, IMPORTANT: With (Ctrl + Shift) kept pressed, click OK.

We get:

	D380	\bullet f_x	fx {=NatConv_Air_ConcentricSpheres_k_effAndQsph(D373,D374,D376,D377)}				
	А	В	С	C D E F			
378							
		Use the Array Function to get k_eff and Q:					
379					-		
380			k_eff	0.0595	W/m.CAns.		
381			Q	-6.730897554	WAns.		
0.00							

Thus: $k_{eff} = 0.0595 \text{ W/m.C}$, and Q = 6.73 W...Ans. (-ve sign for Q indicates that heat transfer is from outside to inside)

2A2.4 Natural convection from rotating cylinders, disks and spheres:

\$UnitSystem SI Pa C J

"**Prob. 2A2.4.1.** A 2 cm OD shaft, 0.7 m long, with surface temp of 90 C is rotating at 20000 RPM in air at 20 C. Determine the convective heat transfer coefficient."

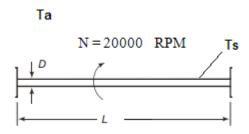


Fig. Prob. 2A2.4.1

EES Solution:

"Data:"

D= 0.02 [m]

L = 0.7 [m]

 $T_s = 90 [C]$

 $T_a = 20 [C]$

P = 1 [atm] * convert (atm, Pa)

 $T_f = (T_a + T_s) / 2$ "[C] mean temp"

 $g = 9.81 [m/s^2]$

N= 20000 [rev/min]

"Properties of Air at 1 atm:"

beta = 1/(T_f + 273) "[1/K]"
rho=Density(Air,T=T_f,P=P) "[kg/m^3]"
cp=Cp(Air,T=T_f) "[J/kg-C]"
k=Conductivity(Air,T=T_f) "[W/m-C]"
Pr=Prandtl(Air,T=T_f) "...Prandtl No."
mu=Viscosity(Air,T=T_f) "[kg/m-s]"
nu = mu / rho "[m^2/s]"

"Calculations:"

omega = N * 2 * pi / 60 "[rad/s]"

"Rotational Reynolds No.:"

Re_omega = pi * D^2 *omega / nu

"Grashof No.:"

 $Gr_D = g * beta * (T_s - T_a) * D^3 / nu^2 "....Grashoff No."$

"Therefore:"

Ra_D = Gr_D * Pr "...Rayleigh No."

"Nusselts Number:"

Nusselt_D_avg = $0.11 * (0.5 * \text{Re_omega}^2 + \text{Ra_D})^{0.35}$

"Heat transfer coeff:"

Nusselt_D_avg = $h_c * D / k "[W/m^2-C] \dots$ finds $h_c"$

Results:

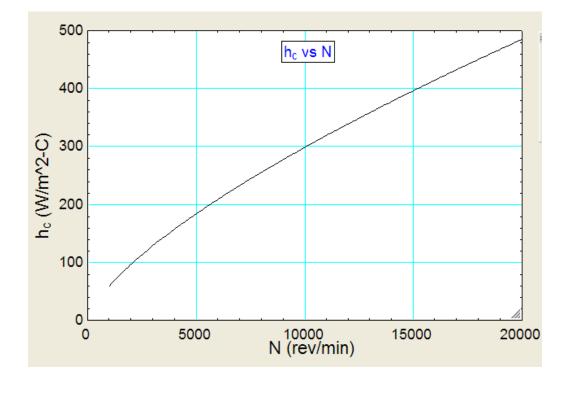
Unit Settings: SI C Pa J mass deg

β = 0.003049	cp = 1006 [J/kg-C]	D = 0.02 [m]
g = 9.81 [m/s ²]	Gr _D = 49147	h _c = 484.8 [W/m ² -C]
k = 0.02772 [W/m-C]	L = 0.7 [m]	μ= 0.00001986 [kg/m-s]
N = 20000 [rev/min]	v = 0.00001846 [m²/s]	Nusselt _{D,avg} = 349.8
ω = 2094 [rad/s]	P =101325 [Pa]	Pr = 0.721
Ra _D = 35435	Re _o = 142569	ρ = 1.076 [kg/m ³]
T _a =20 [C]	T _f = 55 [K]	⊤ _s = 90 [C]

Thus:

Heat transfer coeff, = $h_c = 484.8 \text{ W.m}^2.C \dots$ Ans.

Plot the variation of h_c with rotational speed, N:


120	1 N [rev/min]	² Re _∞ ▼	³ Ra _D ▼	₄ ⊾ h _c [W/m²-C]
Run 1	1000	7128	35435	59.58
Run 2	2000	14257	35435	96.75
Run 3	3000	21385	35435	128.5
Run 4	4000	28514	35435	157.2
Run 5	5000	35642	35435	183.7
Run 6	6000	42771	35435	208.7
Run 7	7000	49899	35435	232.5
Run 8	8000	57028	35435	255.3
Run 9	9000	64156	35435	277.2
Run 10	10000	71284	35435	298.5
Run 11	11000	78413	35435	319
Run 12	12000	85541	35435	339.1
Run 13	13000	92670	35435	358.6
Run 14	14000	99798	35435	377.7
Run 15	15000	106927	35435	396.4
Run 16	16000	114055	35435	414.7
Run 17	17000	121183	35435	432.7
Run 18	18000	128312	35435	450.4
Run 19	19000	135440	35435	467.7
Run 20	20000	142569	35435	484.8

204

Click on the ad to read more

Download free eBooks at bookboon.com

\$UnitSystem SI Pa C J

"**Prob. 2A2.4.2.** Estimate the rate of heat transfer from one side of a 2 m dia disk with a surface temp of 60 C rotating at 800 RPM in 20 C air."

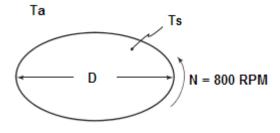


Fig.Prob.2A2.4.2

EES Solution:

"Data:"

D= 2 [m]

 $T_s = 60 [C]$

 $T_a = 20 [C]$

P = 1 [atm] * convert (atm, Pa)

 $T_f = (T_a + T_s) / 2$ "[C] mean temp"

 $g = 9.81 [m/s^2]$

N= 800 [rev/min]

"Properties of Air at 1 atm:"

beta = 1/(T_f + 273) "[1/K]"
rho=Density(Air,T=T_f,P=P) "[kg/m^3]"
cp=Cp(Air,T=T_f) "[J/kg-C]"
k=Conductivity(Air,T=T_f) "[W/m-C]"
Pr=Prandtl(Air,T=T_f) "...Prandtl No."
mu=Viscosity(Air,T=T_f) "[kg/m-s]"
nu = mu / rho "[m^2/s]"

"Calculations:"

omega = N * 2 * pi / 60 "[rad/s]"

"Rotational Reynolds No.:"

Re_omega = omega * D^2/ nu

"We see that Reynolds No. is $1.969E07 > 10^{6}$. Therefore, find crit. rad. r_c and apply the following formula:"

omega * (2 * r_c)^2/ nu = 10^6 "....finds r_c [m]"

 $r_0 = D/2$

"Nusselts Number:"

$$Nusselt_{D,avg} = 0.36 \cdot \left[\omega \cdot \frac{r_0^2}{v}\right]^{0.5} \cdot \left[\frac{r_o}{r_0}\right]^2 + 0.015 \cdot \left[\omega \cdot \frac{r_0^2}{v}\right]^{0.8} \cdot \left[1 - \left(\frac{r_o}{r_0}\right)^{2.6}\right]$$
...for $r_o < r_0$

In EES:

Nusselt_D_avg = 0.36 * (omega * r_0^2 / nu)^0.5 * (r_c / r_0)^2 + 0.015 * (omega * r_0^2 / nu)^0.8 * (1 - (r_c / r_0)^2.6) "...for $r_c < r_0$ "

"Heat transfer coeff:"

Nusselt_D_avg = $h_c * r_0 / k "[W/m^2-C] \dots$ finds h_c "

"Heat transfer:"

 $Q = h_c * (pi * r_0^2) * (T_s - T_a) "[W]"$

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

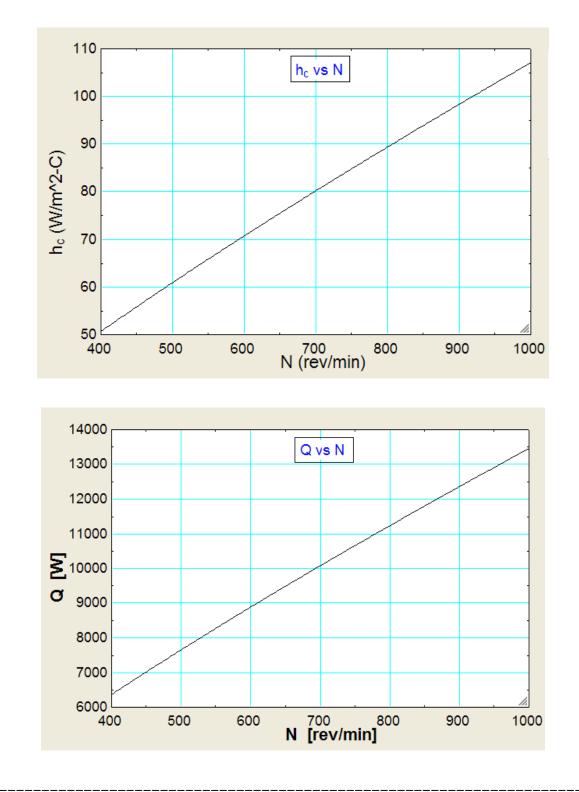
DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

Download free eBooks at bookboon.com

Results:


Unit Settings: SI C Pa J mass deg

β=0.003195 [1/K]	cp=1005 [J/kg-C]	D = 2 [m]
g=9.81 [m/s ²]	h _c = 89.39 [W/m ² -C]	k = 0.02662 [W/m-C]
μ= 0.00001918 [kg/m-s]	N = 800 [rev/min]	v = 0.00001702 [m ² /s]
Nusselt _{D,avg} = 3358	ω = 83.78 [rad/s]	P =101325 [Pa]
Pr = 0.7244	Q = 11233 [W]	Re _@ = 1.969E+07
ρ = 1.127 [kg/m ³]	r ₀ = 1 [m]	r _c = 0.2253 [m]
T _a =20 [C]	T _f = 40 [C]	T _s =60 [C]

Thus:

 $h_c = 89.39 \text{ W/m}^2$ -C..... heat transfer coeff......Ans. Q = 11233 W Heat transfer from one side of disk.....Ans. Plot the variation of h_c and Q with rotational speed, N:

Table 1				
121	1 N [rev/min]	² Re _ω ▼	³ h _c [W/m²-C]	4
Run 1	400	9.847E+06	50.68	6368
Run 2	430	1.059E+07	53.8	6761
Run 3	460	1.132E+07	56.88	7148
Run 4	490	1.206E+07	59.91	7529
Run 5	520	1.280E+07	62.91	7905
Run 6	550	1.354E+07	65.87	8277
Run 7	580	1.428E+07	68.79	8645
Run 8	610	1.502E+07	71.69	9009
Run 9	640	1.576E+07	74.55	9369
Run 10	670	1.649E+07	77.39	9725
Run 11	700	1.723E+07	80.2	10078
Run 12	730	1.797E+07	82.98	10428
Run 13	760	1.871E+07	85.74	10775
Run 14	790	1.945E+07	88.48	11119
Run 15	820	2.019E+07	91.2	11460
Run 16	850	2.093E+07	93.9	11799
Run 17	880	2.166E+07	96.57	12136
Run 18	910	2.240E+07	99.23	12470
Run 19	940	2.314E+07	101.9	12801
Run 20	970	2.388E+07	104.5	13131
Run 21	1000	2.462E+07	107.1	13459

\$UnitSystem SI Pa C J

"**Prob. 2A2.4.3.** A sphere of 0.1m dia is rotating at 20 rpm in a large container of CO2 at atmospheric pressure. If the sphere is at 60 C and the CO2 is at 20 C, estimate the rate of heat transfer."

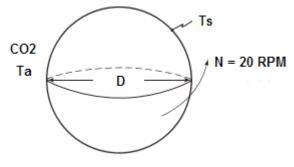


Fig.Prob.2A2.4.3

Click on the ad to read more

Download free eBooks at bookboon.com

EES Solution:

"Data:"

D= 0.1 [m]

 $T_s = 60 [C]$

 $T_a = 20 [C]$

P = 1 [atm] * convert (atm, Pa)

 $T_f = (T_a + T_s) / 2$ "[C] mean temp"

 $g = 9.81 [m/s^2]$

N= 20 [rev/min]

"Properties of CO2 at 1 atm:"

beta = 1/(T_f + 273) "[1/K]"
rho=Density(CO2,T=T_f,P=P) "[kg/m^3]"
cp=Cp(CO2,T=T_f) "[J/kg-C]"
k=Conductivity(CO2,T=T_f) "[W/m-C]"
Pr=Prandtl(CO2,T=T_f) "...Prandtl No."
mu=Viscosity(CO2,T=T_f) "[kg/m-s]"
nu = mu / rho "[m^2/s]"

"Calculations:"

omega = N * 2 * pi / 60 "[rad/s]"

"Rotational Reynolds No.:"

Re_omega = omega * D^2/ nu

"We see that Reynolds No. is 2291 < 5 * 10^4. Therefore, apply the following formula:"

"Nusselts Number:"

Nusselt_{D,avg} = 0.43 · Re_o^{0.5} · Pr^{0.4}Average Nusselts No.

Natural (Or, Free) Convection

In EES:

Nusselt_D_avg = 0.43 * Re_omega^0.5 * Pr^0.4 "....Average Nusselts No."

"Heat transfer coeff:"

Nusselt_D_avg = $h_c * D / k "[W/m^2-C] \dots$ finds $h_c"$

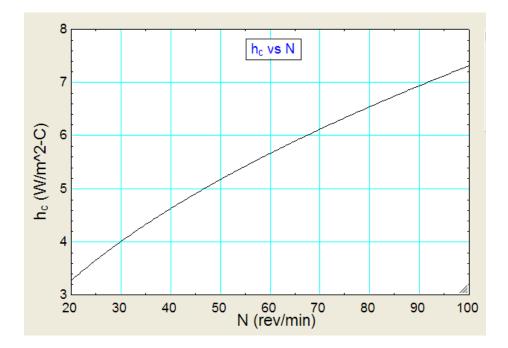
"Heat transfer:"

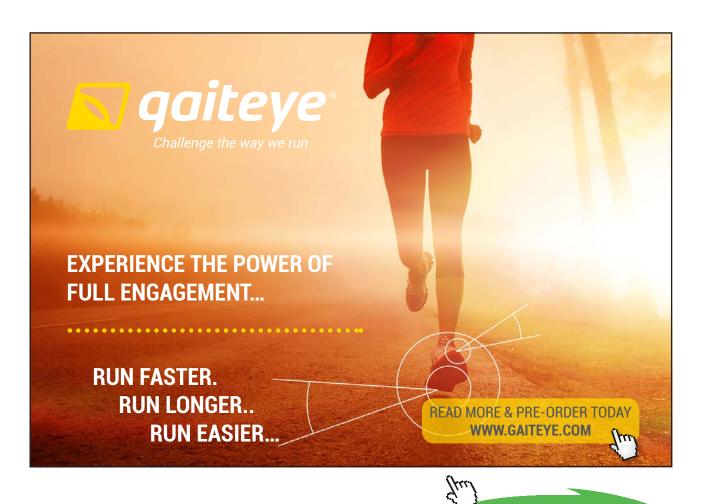
 $Q = h_c * (pi * D^2) * (T_s - T_a) "[W]"$

Results:

Unit Settings: SI C Pa J mass deg

β=0.003195 [1/K]	cp = 857.5 [J/kg-C]	D = 0.1 [m]
g=9.81 [m/s ²]	h _c = 3.27 [W/m ² -C]	k = 0.01778 [W/m-C]
μ= 0.00001566 [kg/m-s]	N = 20 [rev/min]	$v = 0.000009141 \text{ [m}^2/\text{s]}$
Nusselt _{D,avg} = 18.4	ω = 2.094 [rad/s]	P =101325 [Pa]
Pr = 0.7551	Q = 4.109 [W]	Re _o = 2291
ρ = 1.713 [kg/m ³]	T _a =20 [C]	T _f = 40 [C]
T _s =60 [C]		

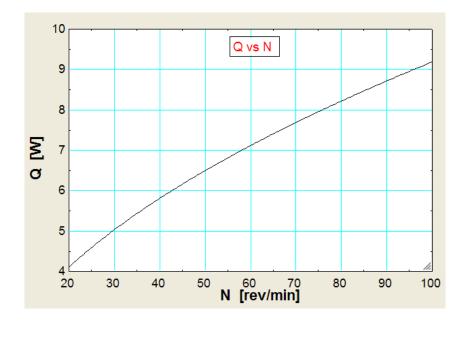

Thus:


h_c = 3.27 W/m^2-C..... heat transfer coeff......Ans.

Q = 4.109 W Heat transfer from sphere.....Ans.

Plot the variation of h_c and Q with rotational speed, N:

Table 1					
▶ 111	1 IN [rev/min]	² Re _∞ ⊻	³	4 Q [₩]	
Run 1	20	2291	3.27	4.109	
Run 2	28	3208	3.869	4.862	
Run 3	36	4124	4.387	5.513	
Run 4	44	5041	4.85	6.095	
Run 5	52	5957	5.273	6.626	
Run 6	60	6874	5.664	7.118	
Run 7	68	7790	6.03	7.577	
Run 8	76	8707	6.375	8.011	
Run 9	84	9623	6.702	8.422	
Run 10	92	10540	7.014	8.814	
Run 11	100	11457	7.312	9.189	



Click on the ad to read more

Download free eBooks at bookboon.com

===================

2A2.5 Natural convection from finned surfaces:

==================

Prob. 2A2.5.1 Consider a vertical heat sink with fins as shown in Fig. The vertical heat sink, 0.35 m wide \times 0.15 m high, is provided with vertical, rectangular fins of 1 mm thickness and 20 mm length. Base and surface temperature of fins is 80 C and the surrounding air is at 20 C. Determine the optimum fin spacing and the rate of heat transfer from the heat sink by natural convection.

Also plot Q against Ts, the base and surface temp of fins. Let Ts vary from 80 C to 120 C.

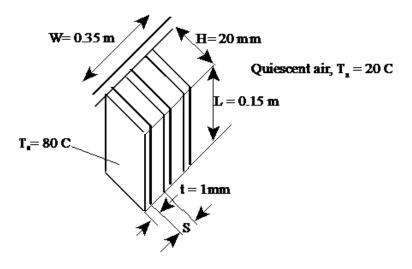


Fig. Free convection from vertical heat sink with fins

Data:

W := 0.35 m...width of base plate of heat sink

- L := 0.15 m....height of base plate of heat sink.
- H := 0.02 m....height of fins
- t := 0.001 m...thickness of fins
- T_s := 80 C.... surface temp.
- T_a := 20 C....temp. of ambient air
- g := 9.81 m/s²....accn. due to gravity

We need properties of air at average temperature T_f = (80 + 20)/2

T_f := 50 C....avg. temperature

Properties of air at 50 C:

$$v := \frac{mu_air(T_{f} + 273)}{rho_air(T_{f} + 273)}$$
 m²/s....kinematic viscosity i.e. $v = 1.788 \times 10^{-5}$
k := k_air(T_{f} + 273) W/(m.K)...thermal cond. i.e. k = 0.028
Pr := Pr_air(T_{f} + 273) ...Prandtl number i.e. Pr = 0.709
 $\beta := \frac{1}{T_{f} + 273}$ 1/K i.e. $\beta = 3.096 \times 10^{-3}$ 1/K

Now, the characteristic length is the length of fins in vertical direction, i.e. L = 0.15 m.

Then,

$$Gr_{L} := \frac{g \cdot \beta \cdot (T_{s} - T_{a}) \cdot L^{3}}{v^{2}} \qquad ...Grashoff number$$

i.e.
$$Gr_{L} = 1.923 \times 10^{7} \qquad ...Grashoff number$$

And, $Ra := Gr_L \cdot Pr$

i.e. Ra = 1.364 × 10⁷ ...Rayleigh number

Optimum fin spacing:

We use following eqn.:

$$S_{opt} := 2.714 \cdot \frac{L}{Ra^4}$$

i.e. $S_{opt} = 6.698 \times 10^{-3} \text{ m}$

S_{opt} = 6.698 mm....Ans. i.e.

No. of fins:

$$n := \frac{W}{S_{opt} + t}$$
 ...no. of fins

- i.e. n = 45.465say 46
- ...no. of fins Ans. i.e. n := 46

CLIVER WYMAN

Oliver Wyman is a leading global management consulting firm that combines deep industry knowledge with specialized expertise in strategy, operations, risk usep industry knows by events because expensions and by operations, take management, organizational transformation, and leadership development. With offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. OUR WORLD An equal opportunity employer.

GET THERE FASTER

Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, you'll find what you're looking for at Oliver Wyman.

Discover the world of Oliver Wyman at oliverwyman.com/careers

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

Heat transfer coeff.:

We have:

$$\label{eq:h} \begin{split} \mathbf{h} &\coloneqq 1.31 \cdot \frac{\mathbf{k}}{\mathbf{S}_{opt}} \quad \dots .(10.79) \\ \text{i.e.} \quad \mathbf{h} &= 5.425 \qquad \mbox{W/(m^2.K)} \dots \mbox{heat transfer coeff.} \end{split}$$

Heat transfer rate:

$$Q := h \cdot (2 \cdot n \cdot L \cdot H) \cdot (T_s - T_a)$$

i.e. Q = 89.842 W.....Ans.

Also plot Q against Ts, the base and surface temp of fins. Let Ts vary from 80 C to 120 C.

Use the 'vectorize' operator of Mathcad to do parallel calculations:

$$\begin{split} \mathbf{i} &:= 0 .. \ 8 \qquad \mathrm{Ts}_{\mathbf{i}} := \ 80 + 5 \cdot \mathbf{i} \qquad \text{..... Define vector Ts} \qquad \mathrm{Check}: \quad \mathrm{Ts}_{\mathbf{g}} = \ 120 \quad \mathrm{C} \\ \mathrm{T}_{\mathbf{f}} &:= \ \frac{\mathrm{Ts} + \mathrm{T}_{\mathbf{a}}}{2} \qquad \qquad \text{... C... avg. temps.} \end{split}$$

i.e. we get for T_f the vector:

 $T_{f} = \begin{bmatrix} 50 \\ 52.5 \\ 55 \\ 57.5 \\ 60 \\ 62.5 \\ 65 \\ 67.5 \\ 70 \end{bmatrix}$

Properties of Air:

$$v := \frac{\overline{mu_air(T_f + 273)}}{rho_air(T_f + 273)} \qquad m^2/s...kinematic viscosity$$

In the above, two vectors, viz. μ and ρ are divided, term by term. Note the use of vectorize operator.

Just to check: observe that we get for vector, v:

 $v = \begin{pmatrix} 1.788 \times 10^{-5} \\ 1.814 \times 10^{-5} \\ 1.84 \times 10^{-5} \\ 1.865 \times 10^{-5} \\ 1.889 \times 10^{-5} \\ 1.912 \times 10^{-5} \\ 1.936 \times 10^{-5} \\ 1.986 \times 10^{-5} \end{pmatrix}$

Also:

 $\mathbf{k} := \mathbf{k}_air(\mathbf{T_f} + 273) \quad W/(m.K)...thermal \ cond.$

 $Pr := Pr_air(T_f + 273)$...Prandtl number

$$\beta := \frac{1}{T_f + 273}$$
 1/K

In the above, for k, Pr and β , vectorize operator is not required since vector to vector operation is not involved.

Then,

$$Gr_{L} := \frac{g \cdot \beta \cdot (Ts - T_{a}) \cdot L^{3}}{v^{2}}$$
...Grashoff number
And,
$$Ra := \overrightarrow{(Gr_{L} \cdot Pr)}$$
....Rayleigh No.

Optimum fin spacing:

We use following eqn.:

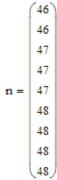
$$S_{opt} := \begin{pmatrix} 2.714 \cdot \frac{L}{\frac{1}{Ra^4}} \end{pmatrix}$$

No. of fins:

© 2010 EYOM Limited. All Rig

$$n := ceil\left(\frac{W}{S_{opt} + t}\right)$$
 ...no. of fins

Day one and you're ready


Day one. It's the moment you've been waiting for. When you prove your worth, meet new challenges, and go looking for the next one. It's when your dreams take shape. And your expectations can be exceeded. From the day you join us, we're committed to helping you achieve your potential. So, whether your career lies in assurance, tax, transaction, advisory or core business services, shouldn't your day one be at Ernst & Young?

What's next for your future? ey.com/careers

JERNST & YOUNG Quality In Everything We Do

Note that function 'ceil' rounds off the no. of fins calculated to a higher integer value. Check:

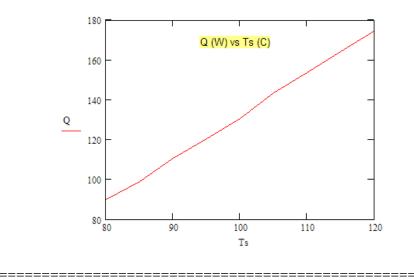
Heat transfer coeff .:

$$\mathbf{h} := \overbrace{\left(1.31 \cdot \frac{\mathbf{k}}{\mathbf{S}_{opt}}\right)} \qquad \qquad \mathsf{W}/(\mathsf{m}^2.\mathsf{K})....\mathsf{heat transfer coeff.}$$

We get:

And,

Heat transfer rate:


$$Q := \left[\overrightarrow{h \cdot (2 \cdot n \cdot L \cdot H) \cdot (Ts - T_a)} \right] \qquad W....Ans.$$

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

•	
1.e.	

	(89.842)
	99.1
	110.859
	120.604
Q =	130.48
	143.461
	153.763
	164.138
	174.57

Plot of Q vs Ts:

Prob. 2A2.5.2 Consider a vertical heat sink with fins as shown in Fig. below.

The vertical heat sink, 0.4 m wide \times 0.15 m high, is provided with vertical, rectangular fins. Length of fins is limited to 20 mm. Base and surface temperature of fins is 70 C and the surrounding air is at 20 C. Determine the fin thickness and no. of fins for optimum spacing if the total heat to be dissipated by natural convection is 50 W.

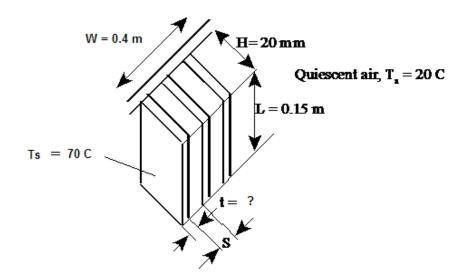


Fig. Free convection from vertical heat sink with fins

EES Solution:

\$UnitSystem SI C Pa J

"Data:"

 $T_a = 20[C]$ $T_s = 70 [C]$ $T_f = (T_a + T_s) / 2$ L = 0.15[m]Height = 0.02[m] W = 0.4[m] $P_1 = 1.01325e05 [Pa]$ $g = 9.81[m/s^2]$ {t = 0.002"[m].....assumed; will be corrected later"}

"Properties of Air at mean temp (T_f):"

rho=Density(Air,T=T_f,P=P_1) "[kg/m^3]" k=Conductivity(Air,T=T_f) "[W/m-C]" cp=Cp(Air,T=T_f) "[J/kg-C]" Pr=Prandtl(Air,T=T_f) mu=Viscosity(Air,T=T_f) "[kg/m-s]" nu = mu / rho "[m^2/s]" beta = 1 / (T_f + 273) "[1/K]"

"Calculations:"

"Here, L is the characteristic dimension to calculate Gr:"

 $Gr_L = g * beta * (T_s - T_a) * L^3 / nu^2 "...Grashof No."$

 $Ra_L = Gr_L * Pr$ "....Rayleigh No."

"Optimum fin spacing:"

 $S_opt = 2.714 * L / Ra_L^{(1/4)}$

"No. of fins:"

n = (W / (S_opt + t)) "...No. of fins"

"To determine h, we use following eqn.:"

h = 1.31 * k /S_opt "[W/m^2-C]"

"Heat transfer rate:"

 $Q = h * (2 * n * L * Height) * (T_s - T_a) "[W]"$

"But, by data:"

Q = 50[W]

Results:

Unit Settings: SI C Pa J mass deg

β=0.003145 [1/K]	cp = 1006 [J/kg-C]	g = 9.81 [m/s ²]	GrL = 1.701E+07
h = 5.144 [m]	Height = 0.02 [m]	k = 0.02699 [W/m-C]	L = 0.15 [m]
µ=0.00001941 [kg/m-s]	n = 32.4	v = 0.00001749 [m ² /s]	Pr = 0.7233
P ₁ =101325 [Pa]	Q = 50 [W]	Ra _L = 1.231E+07	ρ=1.11 [kg/m ³]
S _{opt} = 0.006873 [m]	t = 0.005471 [m]	T _a =20 [C]	T _f = 45 [C]
T _s = 70 [C]	W = 0.4 [m]		

Thus:

S_opt = 6.873 mm = Optimum fin spacing t = 5.471 mm = fin thickness n = 32.4 = No. of fins Since n should be an integer, let us change n = 33 and recalculate:

New results are:

Unit Settings: SI C Pa J mass deg

β = 0.003145 [1/K]	cp = 1006 [J/kg-C]	g = 9.81 [m/s ²]	GrL = 1.701E+07
h = 5.144 [m]	Height = 0.02 [m]	k = 0.02699 [W/m-C]	L = 0.15 [m]
μ=0.00001941 [kg/m-s]	n = 33	v = 0.00001749 [m ² /s]	Pr = 0.7233
P ₁ =101325 [Pa]	Q = 50.92 [W]	Ra _L = 1.231E+07	ρ=1.11 [kg/m ³]
S _{opt} = 0.006873 [m]	t = 0.005248 [m]	T _a =20 [C]	T _f = 45 [C]
T _s = 70 [C]	W = 0.4 [m]		

i.e.

S_opt = 6.873 mm = Optimum fin spacing

t = 5.248 mm = fin thickness

n = 33 = No. of fins

Prob. 2A2.5.3 Consider a vertical heat sink with fins as shown in Fig. The vertical heat sink, 0.35 m wide \times 0.15 m high, is provided with vertical, rectangular fins of 1 mm thickness and 20 mm length. Base and surface temperature of fins is 80 C and the surrounding air is at 20 C. Determine the optimum fin spacing and the rate of heat transfer from the heat sink by natural convection.

Also plot Q against Ts, the base and surface temp of fins. Let Ts vary from 80 C to 120 C.

Hellmann's is one of Unilever's oldest brands having been popular for over 100 years. If you too share a passion for discovery and innovation we will give you the tools and opportunities to provide you with a challenging career. Are you a great scientist who would like to be at the forefront of scientific innovations and developments? Then you will enjoy a career within Unilever Research & Development. For challenging job opportunities, please visit www.unilever.com/rdjobs.

Dove

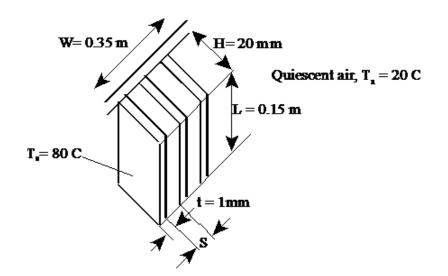


Fig. Free convection from vertical heat sink with fins

Note: This is the same Problem as Prob. 2A2.5.1.

But, now we shall solve this problem with EXCEL.

Properties of Air at different temp are required. So, we will use the EXCEL worksheet wherein we wrote VBA Functions for properties of Air. (See, for ex, Prob.2A1.2.13)

EXCEL Solution:

Following are the steps:

1. Set up the EXCEL worksheet, enter data and name the cells:

	T_f	$ f_x$	=(T_s+T_a)/2				
	А	В	С	D	E	F	0
209							
210		Data:	Fluid =	Air			
211		Surface temp	T_s	80	C		
212		Ambient air temp	T_a	20.0	$\{C}$ $T_{-}f =$	$(T _ s + T _$	(a)/2
213			T_f	50.0	c 🖌		
		Height of base plate					
214		of heat sink	L	0.150	m		
		Width of base plate					
215		of heat sink	w	0.350	m		
216		Height of fins	Н	0.020	m		
217		thickness of fins	t	0.0010	m		
218							
219		accn due to gravity	g	9.81	m/s^2		
220		Vol. expansivity	beta	0.0031	1/K		
221							

2. Calculate properties of Air at T_f, using the VBA Functions already written:

	nu	\bullet (• f_x	=Air_nu_T((T_f+27	(3))				
	А	В	С	D	E		F	G
224		Calculations:				-		
225		density	rho	1.09325	kg/m^3			
226		th. conductivity	k	0.028066	W/m.C		Using VB/	A Functions for Air
227		Prandtl No.	Pr	0.704615		14		
228		kinematic visc.	nu	1.79685E-05	m^2/s			
229		sp.heat	ср	1008.15	J/kg.K]		
230								

3. Continue the calculations as shown below:

	S_opt	. - (∘ <i>f</i> _x	=2.714*L/Ra_L^(1/4	4)			
	А	В	С	D	E	F	G
233							
234		Nat. convection for Fins	on a vertical surface	:			
235							
236		To calculate Grashof No.	'L' is the characteri	stic dimension.	$Gr_L = \frac{g \cdot \beta \cdot (T_s - T_s)}{g \cdot \beta \cdot (T_s - T_s)}$	_a)·L ³	
237					$d_{L} = \frac{1}{nu^2}$		
238		Grashof No.	Gr_L	1.90488E+07	IIU	2.714	T
239		Rayleigh No.	Ra_L	1.34221E+07 <	$- Ra_L = Gr_L \cdot Pr$	$S_opt = \frac{2.714}{1}$	1
240							1
241		Opt. fin spacing	S_opt	0.006726	m 🧹	Ra_L	•
242		No. of fins-calculated	n	45.3026	< −	w	
		No. of fins-rounded to				$n = \frac{n}{S \text{ opt} + t}$	
243		next higher value	N	46.0000	N = CEILING(D242)		
244					,	$h c = \frac{1.31 \cdot k}{1.31 \cdot k}$	
245		Heat tr. coeff	h_c	5.4665	W/m^2.C <	S_opt	
246		Heat tr. rate	Q_conv	90.5245	WAns	- Q conv = h o	$(2 \cdot N \cdot L \cdot H) \cdot (T \ s - T \ a)$
247							

In the above screen shot, the equations used are also shown, for clarity.

Thus: No. of fins = 46, S_opt = 6.726 mm, Q_conv = 90.52 W Ans.

4. Now, plot Q_conv for different values of T_s:

Note that as T_s varies, T_f also varies and the properties of Air will also vary. Therefore, it is more convenient to write a VBA program to calculate different quantities as T_s varies.

The program should to read the values of T_s, one by one, from this Table and put in cell D211.; then, immediately, all other calculations in remaining cells get up-dated. The program selects the required quantity (i.e. S_opt, N, h_c and Q_conv, from cells D241, D243, D245 and D246 respectively) and copies them to their respective places in the Table. And, we will have a Command Button to do this:

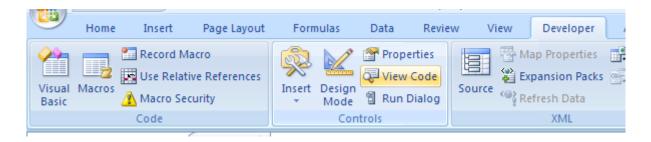
To do this, first set up a Table as shown below:

	А	В	С	D	E	F
254						
255		Plot Q_conv (W) aga	ainst T_s (deg.(C) :		
256						
257						
258		T_s (deg.C)	S_opt (m)	No. of Fins (N)	h_c (W/m^2.C)	Q_conv(W)
259		80				
260		85				
261		90				
262		95				
263		100				
264		105				
265		110				
266		115				
267		120				

Discover the truth at www.deloitte.ca/careers

from Click on the ad to read more

5. And, to set up the Command Button:


Go to Developer- Insert-ActiveX controls:

	Home	Insert	Page Layout	Forn	nulas	Data	Revie	w View	Developer
Visu Basi	al Macros	Carlor Record N Carlor Relate A Macro Se	tive References	Insert	Design Mode		perties w Code n Dialog		Map Properties Expansion Packs Refresh Data
		Code		Form	Control	ls			XML
	E259	•	f _x	<u> </u>	☑ 🗢				
	А		В					D	E
254					eX Cont				
255		Plot Q_c	onv (W) ag	→ ii	A 🗟		:		
256							9		

Click on first top left button. And, draw the Command Button in the worksheet to the required size, at the required place:

A	В	С	D	E	F	G	Н	
257								
258	T_s (deg.C)	S_opt (m)	No. of Fins (N)	h_c (W/m^2.C)	Q_conv(W)		CommandB	utton1
259	80							
260	85							
261	90							
262	95							
263	100							
264	105							
265	110							
258 259 260 261 262 263 264 265 266 266 267	115							
267	120							

Click on Developer-View Code:

And, we get the code already written for the Command button:

C	CommandButton1	▼	Click
	Private Sub CommandButt	ton1_Click()	

6. Now, complete the code to do the desired jobs as mentioned under point 4 above:

```
CommandButton1 Click()
Private Sub CommandButton1_Click()
Dim i As Integer
For i = 0 To 8
Range("D211") = Cells(259 + i, 2)
Cells(259 + i, 3) = Range("D241")
Cells(259 + i, 4) = Range("D243")
Cells(259 + i, 5) = Range("D245")
Cells(259 + i, 6) = Range("D246")
Next i
End Sub
```

In the above program:

Line 1: defines the Sub-program

Line 2: Dimension statement for i, the counter in For....Next loop

Line 3 to 9: For....Next loop

Line 4: Sets T_s i.e. cell D211 to the first value in the Table (i.e. cell B259)

Immediately, all other calculations are updated. And we have to just copy the required values to their respective places in the Table:

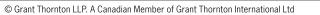
Line 5, 6, 7 and 8: copy values of S_opt, N, h_c and Q_conv from cells D241, D243, D245 and D246 respectively to appropriate cells in the Table.

Line 9: End statement of Sub-program

7. Now, click on the Command Button, and the Table is filled up:

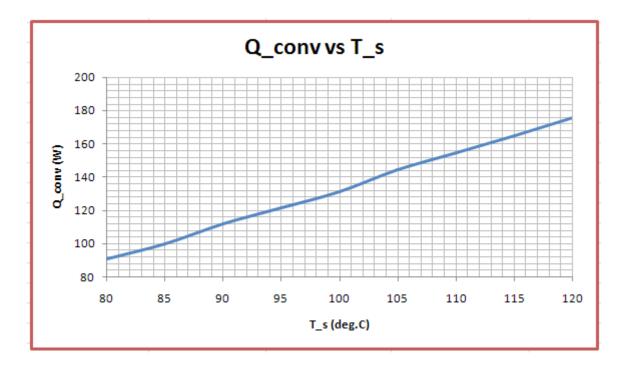
	А	В	С	D	E	F	G	Н	
254									
255		Plot Q_conv (W) ag	ainst T_s (deg.C	:):					
256									
257									
258		T_s (deg.C)	S_opt (m)	No. of Fins (N)	h_c (W/m^2.C)	Q_conv(W)		CommandB	utton1
259		80	0.007	46	5.466	90.5245			
260		85	0.007	46	5.563	99.8012			
261		90	0.007	47	5.653	111.5972			
262		95	0.007	47	5.738	121.3618			
263 264		100	0.006	47	5.818	131.2562			
264		105	0.006	48	5.894	144.2790			
265		110	0.006	48	5.966	154.6276			
266		115	0.006	48	6.034	165.0768			
267		120	0.006	48	6.097	175.5819			

Grant Thornton— a^{REALLY} great place to work.


We're proud to have been recognized as one of Canada's Best Workplaces by the Great Place to Work Institute[™] for the last four years. In 2011 Grant Thornton LLP was ranked as the fifth Best Workplace in Canada, for companies with more than 1,000 employees. We are also very proud to be recognized as one of Canada's top 25 Best Workplaces for Women and as one of Canada's Top Campus Employers.

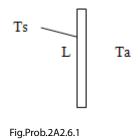
Priyanka Sawant Manager

Audit • Tax • Advisory www.GrantThornton.ca/Careers



Grant Thornton

An instinct for growth


8. Now, plot the graph of Q_conv vs T_s in EXCEL:

Note: Values obtained here match well with those obtained in Prob. 2A2.5.1 using Mathcad.

2A2.6 Combined Natural and Forced convection:

Prob. 2A2.6.1 Consider a 5 m long vertical plate at 85 C in air at 30 C. Determine the forced motion velocity above which natural convection heat transfer from this plate is negligible.

Mathcad Solution:

Data:

L := 5 m....height of plate .

T_s := 85 C.... surface temp.

T_a := 30 C....temp. of ambient air

g := 9.81 m/s²....accn. due to gravity

We need properties of air at average temperature Tf = (85 + 30)/2

T_f := 57.5 C....avg. temperature

Properties of air at 57.5 C:

$$v := \frac{mu_air(T_f + 273)}{rho_air(T_f + 273)}$$

$$m^{2}/s....kinematic viscosity i.e. v = 1.865 \times 10^{-5}$$

$$k := k_air(T_f + 273)$$

$$W/(m.K)...thermal cond. i.e. k = 0.028$$

$$Pr := Pr_air(T_f + 273)$$

$$...Prandtl number i.e. Pr = 0.708$$

$$\beta := \frac{1}{T_f + 273}$$

$$1/K i.e. \beta = 3.026 \times 10^{-3}$$

$$1/K$$

Now, the characteristic length is the length, i.e. L = 5 m.

Then,

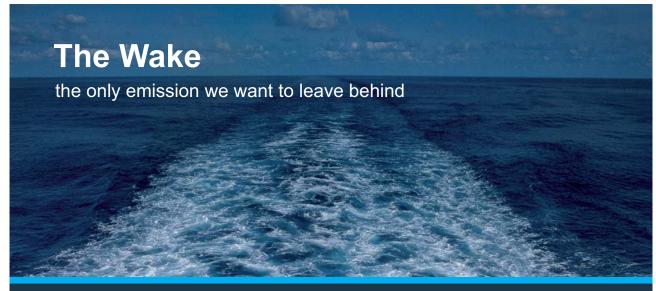
$$Gr_{L} := \frac{g \cdot \beta \cdot (T_{s} - T_{a}) \cdot L^{3}}{v^{2}} \qquad ...Grashoff number$$

i.e.
$$Gr_{L} = 5.867 \times 10^{11} \qquad ...Grashoff number$$

Let the value of velocity, above which natural convection may be neglected be V (m/s).

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

Then:
$$\operatorname{Re}_{L} = \frac{V \cdot L}{v}$$
Reynolds No.


We have:

If
$$\frac{Gr_L}{Re_L^2} < 0.1$$
 ...free convection is negligible

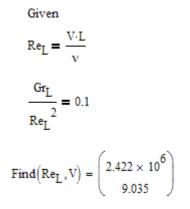
If
$$\frac{\text{Gr}_{L}}{\text{Re}_{L}^{2}} > 10$$
 ...forced convection is negligible

If
$$\frac{Gr_L}{Re_L^2} > 0.1$$
 and $\frac{Gr_L}{Re_L^2} < 10$...mixed convection regime, i.e. both free and forced conv is to be considered.

Find V and Re_L using Solve block:

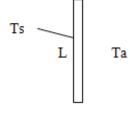
Low-speed Engines Medium-speed Engines Turbochargers Propellers Propulsion Packages PrimeServ

The design of eco-friendly marine power and propulsion solutions is crucial for MAN Diesel & Turbo. Power competencies are offered with the world's largest engine programme – having outputs spanning from 450 to 87,220 kW per engine. Get up front! Find out more at www.mandieselturbo.com


Engineering the Future – since 1758. **MAN Diesel & Turbo**

Download free eBooks at bookboon.com

234



Thus:

$\operatorname{Re}_{L} = 2.422 \cdot 10^{6}$	Reynolds No.beyond which free convection is not negligible
V = 9.035	m/svelocity above which free convection is not negligible Ans.

Prob. 2A2.6.2. Consider a 3 m long vertical plate at 60 C in water at 20 C. Determine the forced motion velocity above which natural convection heat transfer from this plate is negligible.

Data:

- L := 3 m....height of plate .
- T_s := 60 C.... surface temp.
- Ta := 20 C....temp. of ambient air
- g := 9.81 m/s²....accn. due to gravity

We need properties of water at average temperature Tf = (60 + 20)/2

Use the Mathcad functions for properties of Water already written. (See Prob. 2A2.2.4)

T_f := 40 C....avg. temperature

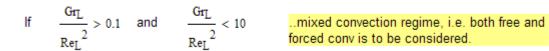
Calclations:

Properties of water at Tf:

$rho := rho_water(T_f)$	i.e.	rho = 992.232 kg/m^3
$cp \coloneqq cp_water(\mathtt{T}_f)$	i.e.	$cp = 4.182 \times 10^{3}$ K/kg.K
$\texttt{mu} \coloneqq \texttt{mu}_\texttt{water}(\texttt{T}_{f})$	i.e.	$mu = 6.542 \times 10^{-4}$ kg/m.s
$k \coloneqq k_water(T_f)$	i.e.	k = 0.631 W/m.K
$Pr := Pr_water(T_f)$	i.e.	Pr = 4.352
$\beta \coloneqq \texttt{beta_water}(\texttt{T}_f)$	i.e.	$\beta = 3.763 \times 10^{-4}$ 1/K
$v := \frac{mu}{rho}$	i.e.	$v = 6.593 \times 10^{-7}$ m^2/s

Now, the characteristic length is the length, i.e. L = 3 m.

Then,


Let the value of velocity, above which natural convection may be neglected be V (m/s).

Then:
$$\operatorname{Re}_{L} = \frac{V \cdot L}{v}$$
Reynolds No.

We have:

If
$$\frac{Gr_L}{Re_L^2} < 0.1$$
 ...free convection is negligible

If
$$\frac{\text{Gr}_{\text{L}}}{\text{Re}_{\text{L}}^2} > 10$$
 ...forced convection is negligible

Find V and Re, using Solve block:

$$Re_L := 1$$
 $V := 1$ Guess values

Given

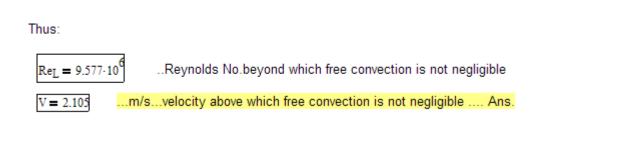
$$Re_{L} = \frac{V \cdot L}{v}$$

$$\frac{Gr_{L}}{Re_{L}^{2}} = 0.1$$
Find(Re_L, V) = $\begin{pmatrix} 9.577 \times 10^{6} \\ 2.105 \end{pmatrix}$

X KBS Group

CAREERKICKSTART

An app to keep you in the know


Whether you're a graduate, school leaver or student, it's a difficult time to start your career. So here at RBS, we're providing a helping hand with our new Facebook app. Bringing together the most relevant and useful careers information, we've created a one-stop shop designed to help you get on the career ladder – whatever your level of education, degree subject or work experience.

And it's not just finance-focused either. That's because it's not about us. It's about you. So download the app and you'll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.

Prob. 2A2.6.3 A 12 cm high and 20 cm wide circuit board dissipates 5 W. The board is cooled by air at 35 C flowing vertically upwards along the 12 cm long side at a velocity of 0.5 m/s. Back surface of board is insulated. Determine the average temp of the surface (i) by ignoring natural convection (ii) considering the contribution of natural convection.

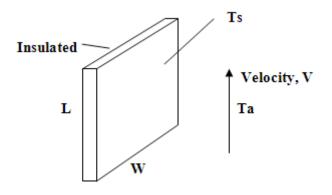


Fig.Prob.2A2.6.3

Mathcad Solution:

Data:

- L := 0.12 m....height of plate .
- W := 0.2 m....width of plate .
- T_s := 85 C.... surface temp.... assumed; will be corrected later.

Ta := 35 C....temp. of ambient air

g := 9.81 m/s²....accn. due to gravity

V := 0.5 m/s ... air velocity

We need properties of air at average temperature Tf = (85 + 35)/2

$$T_{\mathbf{f}}(T_{\mathbf{s}}) \coloneqq \frac{T_{\mathbf{s}} + T_{\mathbf{a}}}{2}$$

$$T_f(T_s) = 60$$
 C....avg. temperature

Note that we write all quantities as functions of Ts.

Properties of air at 60 C:

$$\begin{split} & \mathsf{mu}(\mathtt{T}_{\mathsf{s}}) \coloneqq \mathsf{mu}_\mathsf{air}(\mathtt{T}_{\mathsf{f}}(\mathtt{T}_{\mathsf{s}})+273) & \mathsf{kg/m.s....dyn. viscosity} \\ & \mathsf{rho}(\mathtt{T}_{\mathsf{s}}) \coloneqq \mathsf{rho}_\mathsf{air}(\mathtt{T}_{\mathsf{f}}(\mathtt{T}_{\mathsf{s}})+273) & \mathsf{kg/m^{A}3} \dots \mathsf{density} \\ & \mathsf{v}(\mathtt{T}_{\mathsf{s}}) \coloneqq \frac{\mathsf{mu}_\mathsf{air}(\mathtt{T}_{\mathsf{f}}(\mathtt{T}_{\mathsf{s}})+273)}{\mathsf{rho}_\mathsf{air}(\mathtt{T}_{\mathsf{f}}(\mathtt{T}_{\mathsf{s}})+273)} & \mathsf{m^{2}/s....kinematic viscosity} \\ & \mathsf{k}(\mathtt{T}_{\mathsf{s}}) \coloneqq \mathsf{k}_\mathsf{air}(\mathtt{T}_{\mathsf{f}}(\mathtt{T}_{\mathsf{s}})+273) & \mathsf{W/(m.K)...thermal cond.} \\ & \mathsf{Pr}(\mathtt{T}_{\mathsf{s}}) \coloneqq \mathsf{Pr}_\mathsf{air}(\mathtt{T}_{\mathsf{f}}(\mathtt{T}_{\mathsf{s}})+273) & \dots \mathsf{Pr}\mathsf{andtl number} \\ & \beta(\mathtt{T}_{\mathsf{s}}) \coloneqq \frac{1}{\mathtt{T}_{\mathsf{f}}(\mathtt{T}_{\mathsf{s}})+273} & 1/\mathsf{K} \end{split}$$

Now, the characteristic length is the length, i.e. L = 0.12 m.

Then,

And,

$$\operatorname{Ra}(T_s) := \operatorname{Gr}_L(T_s) \cdot \operatorname{Pr}($$

(T_s) ...Rayleigh number

$$\mathtt{Re}_{L}(\mathtt{T}_{s}) \coloneqq \frac{L \cdot V \cdot \mathtt{rho}(\mathtt{T}_{s})}{\mathtt{mu}(\mathtt{T}_{s})} \qquad \qquad \mathtt{Reynolds} \ \mathtt{No}.$$

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

Case 1: Only Forced convection:

$$\begin{split} \mathrm{Nu}_{\mathbf{forced}}(\mathrm{T}_{\mathbf{s}}) &\coloneqq 0.664 \cdot \mathrm{Re}_{\mathrm{L}}(\mathrm{T}_{\mathbf{s}})^{0.5} \cdot \mathrm{Pr}(\mathrm{T}_{\mathbf{s}})^{\frac{1}{3}} \\ \mathbf{h}_{\mathbf{forced}}(\mathrm{T}_{\mathbf{s}}) &\coloneqq \frac{\mathrm{Nu}_{\mathbf{forced}}(\mathrm{T}_{\mathbf{s}}) \cdot \mathbf{k}(\mathrm{T}_{\mathbf{s}})}{\mathrm{L}} \end{split}$$

 $\mathbf{Q}_{\textbf{forced}}(\mathbf{T}_{s}) \coloneqq \mathbf{h}_{\textbf{forced}}(\mathbf{T}_{s}) \cdot (\mathbf{L} \cdot \mathbf{W}) \cdot (\mathbf{T}_{s} - \mathbf{T}_{a})$

Now, use Solve block to get value of T_s such that Q = 5 W:

Given

$$Q_{forced}(T_s) = 5$$

$$\operatorname{Find}(T_s) = 61.272$$

i.e. T_s := 61.272 C....Ans.....Temp of board considering only forced conv.

Case 2: Considering combined Forced and Natural convection:

$$\frac{\text{Gr}_{L}(T_{s})}{\text{Re}_{L}(T_{s})^{2}} = 0.385$$
 ...This value is between 0.1 and 10. So, it is mixed convection regime.

Then, we have:

$$Nu^{m} = Nu_{forced}^{m} + Nu_{free}^{m}$$
 ...where m = 3

For free convection:

$$\begin{split} \mathrm{Nu}_{\mathrm{free}}\big(\mathrm{T}_{\mathrm{s}}\big) &\coloneqq 0.68 + \frac{0.67 \cdot \mathrm{Ra}\big(\mathrm{T}_{\mathrm{s}}\big)^{\frac{1}{4}}}{\left[\begin{array}{c} 0.67 \cdot \mathrm{Ra}\big(\mathrm{T}_{\mathrm{s}}\big)^{\frac{1}{4}}\end{array}\right]^{\frac{4}{9}}} & \dots \mathrm{Nusselts} \ \mathrm{No.} \\ \dots \mathrm{for} \ 0 < \mathrm{Ra} < 10^{\mathrm{s}}\mathrm{9}, \ \mathrm{and} \\ 0 < \mathrm{Pr} < \infty \end{split}$$

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

$$\mathbf{h_{free}}(\mathbf{T}_{s}) \coloneqq \frac{\mathbf{Nu_{free}}(\mathbf{T}_{s}) \cdot \mathbf{k}(\mathbf{T}_{s})}{L} \qquad \text{W/m^2.C....heat tr coeff}$$

 $\mathsf{Q}_{\mathbf{free}}\!\!\left(\mathsf{T}_{s}\right) \coloneqq \mathbf{h}_{\mathbf{free}}\!\!\left(\mathsf{T}_{s}\right) \!\cdot\! \left(\mathsf{L}\!\cdot\!\mathrm{W}\right) \!\cdot\! \left(\mathsf{T}_{s}-\mathsf{T}_{a}\right) \qquad \mathsf{W}...\mathsf{heat} \mathsf{ transfer}$

$$\operatorname{Nu}_{\operatorname{mixed}}(T_{s}) \coloneqq \left(\operatorname{Nu}_{\operatorname{forced}}(T_{s})^{3} + \operatorname{Nu}_{\operatorname{free}}(T_{s})^{3}\right)^{\frac{1}{3}}$$

$$h_{mixed}(T_s) := \frac{Nu_{mixed}(T_s) \cdot K(T_s)}{L}$$

$$Q_{mixed}(T_s) := h_{mixed}(T_s) \cdot (L \cdot W) \cdot (T_s - T_a)$$

Now, use Solve block to get value of T_s such that $Q_{mixed} = 5$ W:

Given

$$\begin{split} & Q_{mixed}(T_s) = 5 \\ & Find(T_s) = 59.342 \\ & i.e. \quad T_s := 59.342 \\ \end{split}$$

Thus:

Ts = 61.272C....when free convection is not considered.....Ans.Ts = 59.342C....when free convection is considered.....Ans.

Now consider the following extension of the above problem:

Find out the Ts for different ambient temps, Ta, Q being 5 W in each case.

Also, plot the results:

Let Ta vary from 0 deg.C to 40 deg.C:

First, let us write a Mathcad Function for Q in mixed convection, as shown below:

In the following function:

INPUTS:

L = Height of plate (Ch. length), m Ts = surface temp, C Ta = ambient temp, C Area = surface area of plate (height L and width, W), m^2 V = velocity of air flowing upwards

OUTPUT:

Qmixed = heat transfer rate (W), combined: free + forced convection

Be BRAVE enough to reach for the sky

Oracle's business is information - how to manage it, use it, share it, protect it. Oracle is the name behind most of today's most innovative and successful organisations.

Oracle continuously offers international opportunities to top-level graduates, mainly in our Sales, Consulting and Support teams.

If you want to join a company that will invest in your future, Oracle is the company for you to drive your career!

https://campus.oracle.com

ORACLE IS THE INFORMATION COMPANY

242

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

$$\begin{split} \mathrm{Q}_{\mathrm{mixedconv}}(\mathrm{L},\mathrm{T}_{\mathrm{S}},\mathrm{T}_{\mathrm{a}},\mathrm{Area},\mathrm{V}) \coloneqq & \operatorname{T}_{\mathrm{f}} \leftarrow \frac{\mathrm{T}_{\mathrm{S}}+\mathrm{T}_{\mathrm{a}}}{2} \\ \beta \leftarrow \frac{1}{\mathrm{T}_{\mathrm{f}}+273} \\ k \leftarrow \mathrm{k_air}(\mathrm{T}_{\mathrm{f}}+273) \\ v \leftarrow \frac{\mathrm{mu_air}(\mathrm{T}_{\mathrm{f}}+273)}{\mathrm{rbo_air}(\mathrm{T}_{\mathrm{f}}+273)} \\ \mathrm{Pr} \leftarrow \mathrm{Pr_air}(\mathrm{T}_{\mathrm{f}}+273) \\ \mathrm{Gr}_{\mathrm{L}} \leftarrow \frac{9.81\beta\cdot(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{\mathrm{a}})\cdot\mathrm{L}^{3}}{2} \\ \mathrm{Re}_{\mathrm{L}} \leftarrow \frac{\mathrm{L}\cdot\mathrm{V}}{v} \\ \mathrm{Ra}_{\mathrm{L}} \leftarrow \mathrm{Gr}_{\mathrm{L}}\cdot\mathrm{Pr} \\ \mathrm{Nu}_{\mathrm{forced}} \leftarrow 0.664\,\mathrm{Re}_{\mathrm{L}}^{0.5}\cdot\mathrm{Pr}^{\frac{1}{3}} \\ \mathrm{Nu}_{\mathrm{free}} \leftarrow 0.68 + \frac{0.67\,\mathrm{Ra}_{\mathrm{L}}^{\frac{1}{4}}}{\left[1 + \left(\frac{0.492}{\mathrm{Pr}}\right)^{\frac{9}{16}}\right]^{\frac{9}{9}}} \\ \mathrm{Nu}_{\mathrm{mixed}} \leftarrow \left(\mathrm{Nu}_{\mathrm{forced}}^{3} + \mathrm{Nu}_{\mathrm{free}}^{3}\right)^{\frac{1}{3}} \\ \mathrm{Nu}_{\mathrm{mixed}} \leftarrow \frac{\mathrm{Nu}_{\mathrm{mixed}}\mathrm{k}}{\mathrm{L}} \\ \mathrm{Q}_{\mathrm{mixed}} \leftarrow \mathrm{h}_{\mathrm{mixed}}\,\mathrm{Area}\cdot(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{\mathrm{a}}) \\ \mathrm{Q}_{\mathrm{mixed}} \end{split}$$

Ex: Q_{mixedconv}(0.12,60,35,0.024,0.5) = 5.142

In the present case, Q_{mixed} is given as 5 W.

We have to find out values of Ts for different values of Ta.

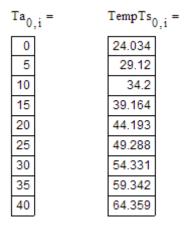
Define a vector for variation of Ta, and then apply the Solve block of Mathcad to find out *corresponding* values of Ts, to satisfy the condition: $Q_{mixed} = 5$ W:

Ta := (0 5 10 15 20 25 30 35 40) ...different ambient temps considered

Ts := (30 30 30 30 30 30 30 30 30 30 30)Guess values

Given

$$\overrightarrow{Q_{\text{mixedconv}}(L, \text{Ts}, \text{Ta}, 0.024, 0.5)} = 5$$

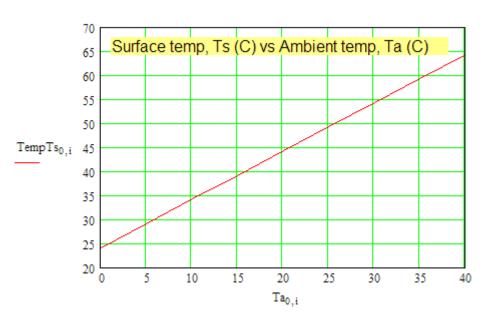

TempTs := Find(Ts)

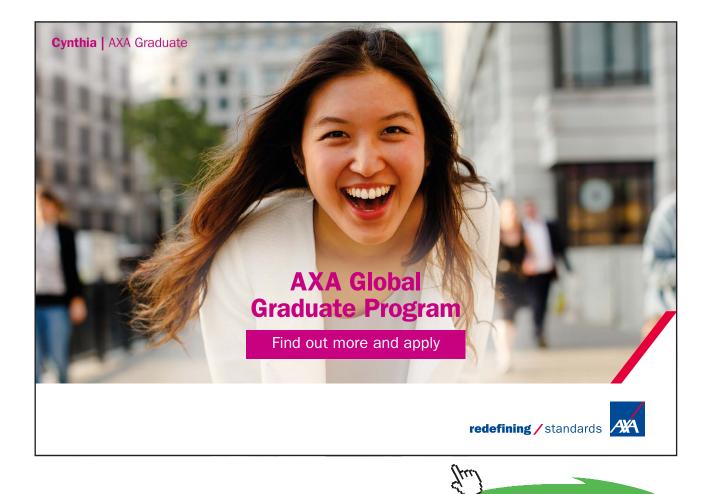
Note the use of 'vectorize operator' inside the Solve block.

i.e. we get the TempTs vector as:

TempTs = (24.034 29.12 34.2 39.164 44.193 49.288 54.331 59.342 64.359)

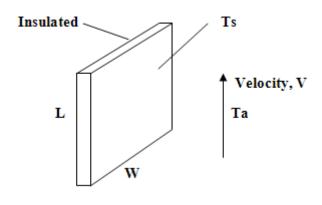
In Tabular form:




Click on the ad to read more

Now, plot TempTs against Ta:

========



Download free eBooks at bookboon.com

245

Prob. 2A2.6.4 Consider a circuit board (size: 150 mm \times 150 mm), insulated on backside, which is to be air cooled with an upward flow velocity of 0.3 m/s, such that its surface temp does not exceed 60 C. Ambient temp is 25 C. Determine the allowable power dissipation from the board.

Mathcad Solution:

Data:

L := 0.15 m W := 0.15 m Area := 0.0225 m^A2 T_s := 60 C T_a := 25 C V := 0.3 m/s

To find Q:

Let us slightly modify the Function written above.

This function is for heated vertical plate, insulated on one side and air flow in the upward direction.

This function will check if the flow is in the free or forced or mixed convection regime, depending on the value of Factor (= Gr/Re^2) and return the corresponding values of Re, Ra, Factor and Q.

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

$$\begin{split} Q_{\text{conv_Vertical_Plate}} (I, T_{\text{s}}, T_{\text{a}}, \text{Area}, \mathbf{V}) \coloneqq & T_{\text{f}} \leftarrow \frac{T_{\text{s}} + T_{\text{a}}}{2} \\ \beta \leftarrow \frac{1}{T_{\text{f}} + 273} \\ g \leftarrow 9.81 \\ k \leftarrow kait(T_{\text{f}} + 273) \\ v \leftarrow \frac{\mathfrak{mu_ait}(T_{\text{f}} + 273)}{\mathfrak{mo_ait}(T_{\text{f}} + 273)} \\ Pt \leftarrow Pt_ait(T_{\text{f}} + 273) \\ Pt \leftarrow Pt_ait(T_{\text{f}} + 273) \\ Q_{\text{f}} \perp \leftarrow \frac{g \cdot \beta \cdot (T_{\text{s}} - T_{\text{a}}) L^3}{\sqrt{2}} \\ Re_{\text{L}} \leftarrow \frac{L^2 \sqrt{2}}{\sqrt{2}} \\ Re_{\text{L}} \leftarrow \frac{L^2 \sqrt{2}}{\sqrt{2}} \\ Re_{\text{L}} \leftarrow G_{\text{f}}.Pr \\ Nu_{\text{forced}} \leftarrow 0.037 \text{Re}_{\text{I}}^{-0.8} \frac{1}{n^3} \text{ if } \text{Re}_{\text{L}} < 5.10^5 \\ Nu_{\text{forced}} \leftarrow 0.037 \text{Re}_{\text{I}}^{-0.8} \frac{1}{n^4} \\ \left[1 + \left(\frac{0.492}{P_{\text{f}}}\right)^{\frac{9}{16}}\right]^{\frac{9}{9}} \\ Factor \leftarrow \frac{G_{\text{f}}}{Re_{\text{I}}^2} \\ return \left(\frac{Re_{\text{r}}}{R_{\text{R}}}\right)^{\frac{9}{16}} \\ Factor < 0.1 \\ \left| \frac{h_{\text{forced}}}{h_{\text{forced}}} \frac{R}{R_{\text{L}}} - \frac{Factor}{C_{\text{f}}} \frac{Q_{\text{forced}}W^*}{L} \\ Q_{\text{forced}} \leftarrow h_{\text{forced}}^{-1} \text{Core}^{-2} \cdot "Q_{\text{forced}}W^*} \\ \frac{Pre_{\text{f}} + Ra^* \cdot \text{Gr}Re^{-2} \cdot "Q_{\text{forced}}W^*}{Re_{\text{L}}} = Ra^* \text{Core}^{-3} \frac{1}{Re_{\text{f}}} \frac{1}{3} \\ nu_{\text{inved}} \leftarrow \left(Nu_{\text{forced}}^3 + Nu_{\text{free}}^{-1} - T_{\text{a}}\right) \\ \frac{Re_{\text{f}} - Ra^* - Ra^* \cdot \text{Gr}Re^{-2} \cdot "Q_{\text{forced}}W^*}{Re_{\text{L}}} = Ra^* \text{Core}^{-3} - Q_{\text{forced}}W^* \\ \frac{Pre_{\text{f}} - Ra^* - Ra^* \cdot \text{Gr}Re^{-2} \cdot "Q_{\text{forced}}W^*}{Re_{\text{L}}} = Ra^* - Q_{\text{forced}}^3 + Nu_{\text{free}}^{-3} \\ \frac{Re_{\text{f}} - Ra^* - Ra^* \cdot \text{Gr}Re^{-2} \cdot "Q_{\text{forced}}W^*}{Re_{\text{L}}} = Ra^* - Q_{\text{forced}}^3 + Nu_{\text{free}}^3 \\ \frac{Re_{\text{inved}} + \frac{Ru_{\text{inved}}A}{R} \\ \frac{Re_{\text{inved}} + Ra^* - Ra^* \cdot \text{Gr}Re^{-2} \cdot "Q_{\text{forced}}W^*}{Re_{\text{L}}} = Ra^* - Q_{\text{inved}}^3 \\ \frac{Re_{\text{inved}}}{R} \\ \frac{Re_{\text{inved}} + Ra^* - Ra^* -$$

Result for the above problem:

$$Q_{conv_Vertical_Plate}(L, T_{s}, T_{a}, Area, V) = \begin{pmatrix} "Re" "Ra" "Gr/Re^{2"} "Qmixed, W" \\ 2.62 \times 10^{3} 8.849 \times 10^{6} 1.814 & 5.31 \end{pmatrix}$$

Also check the above program:

Check: for velocities, V = 0.5, 0.1, 10 and 60 m/s:

$$Q_{\text{conv}_Vertical_Plate}(L, T_{\text{s}}, T_{\text{a}}, \text{Area}, 0.5) = \begin{pmatrix} \text{"Re"} & \text{"Ra"} & \text{"Gr/Re}^{2} & \text{"Qmixed}, W" \\ 4.367 \times 10^{3} & 8.849 \times 10^{6} & 0.653 & 6.239 \end{pmatrix}$$

$$Q_{\text{conv}_Vertical_Plate}(L, T_{\text{s}}, T_{\text{a}}, \text{Area}, 0.1) = \begin{pmatrix} \text{"Re"} & \text{"Ra"} & \text{"Gr/Re}^{2} & \text{"Qfree}, W" \\ 873.468 & 8.849 \times 10^{6} & 16.324 & 4.097 \end{pmatrix}$$

$$Q_{\text{conv}_Vertical_Plate}(L, T_{\text{s}}, T_{\text{a}}, \text{Area}, 10) = \begin{pmatrix} \text{"Re"} & \text{"Ra"} & \text{"Gr/Re}^{2} & \text{"Qforced}, W" \\ 8.735 \times 10^{4} & 8.849 \times 10^{6} & 1.632 \times 10^{-3} & 24.973 \end{pmatrix}$$

$$Q_{\text{conv}_Vertical_Plate}(L, T_{\text{s}}, T_{\text{a}}, \text{Area}, 60) = \begin{pmatrix} \text{"Re"} & \text{"Ra"} & \text{"Gr/Re}^{2} & \text{"Qforced}, W" \\ 5.241 \times 10^{5} & 8.849 \times 10^{6} & 4.534 \times 10^{-5} & 177.173 \end{pmatrix}$$

\$UnitSystem SI C Pa J

"**Prob. 2A2.6.5** A thin vertical flat plate, 60 cm high, 40 cm wide immersed in a fluid parallel to its surface. Plate is at 50 C and the fluid is at 10 C. Fluid is flowing along the 60 cm side. Estimate the Reynolds No. at which the buoyancy effects are essentially negligible for heat transfer from the plate, if the fluid is (i) air, and (ii) water. Then, calculate the corresponding fluid velocities for the two fluids."

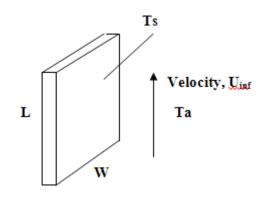


Fig.Prob.2A2.6.5

"EES Solution:"

"Data:"

 $T_s = 50[C]$ $T_a = 10[C]$ L = 0.6[m] W = 0.4[m] $g = 9.81[m/s^2]$ P1 = 101325[Pa] $\{U_inf = 0.1 \text{ ``[m/s]...assumed; will be corrected later''}\}$

Masters in Management

Designed for high-achieving graduates across all disciplines, London Business School's Masters in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access to the School's network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career.

For more information visit **www.london.edu/mm**, email **mim@london.edu** or give us a call on **+44 (0)20 7000 7573**.

* Figures taken from London Business School's Masters in Management 2010 employment report

$T_f = (T_s + T_a)/2$

Fluid\$ = 'Air'

rho = Density(Fluid\$,T=T_f,P=P1)
mu=Viscosity(Fluid\$,T=T_f)
nu = mu / rho
Pr = Prandtl(Fluid\$,T=T_f)
beta = 1/(T_f + 273) "[1/K] ... for Air only"

{

```
Fluid$ = 'Water'
```

rho = Density(Fluid\$,T=T_f,P=P1)
mu=Viscosity(Fluid\$,T=T_f, P = P1)
nu = mu / rho
Pr = Prandtl(Fluid\$,T=T_f, P = P1)
beta=VolExpCoef(Fluid\$,T=T_f,P=P1)

}

 $Re_L = L * U_inf * rho / mu$ $Gr_L = g * beta * (T_s - T_a) * L^3 /nu^2$ $Ra_L = Gr_L * Pr$

Factor = Gr_L / Re_L^2 ".Criteria to determine if buoyancy effects are negligible or not." Factor = 0.1"...Factor < 0.1 means forced convection is predominant; Factor > 10 means free convection (buoyancy effects) is predominant."

Results:

Unit Settings: SI C kPa kJ ma	ass deg	
β=0.0033 [1/K]	Factor = 0.1	Fluid\$ = 'Air'
g = 9.81 [m/s ²]	GrL = 1.082E+15	L = 0.6 [m]
µ=0.00001872 [kg/m-s]	v = 1.608E-08 [m ² /s]	P1 =101325 [Pa]
Pr = 0.7268	Ra _L = 7.867E+14	ReL = 1.040E+08
ρ=1164 [kg/m ³]	T _a =10 [C]	T _f = 30 [C]
T _s = 50 [C]	U _{inf} = 2.788 [m/s]	W = 0.4 [m]

Thus:

With air as the fluid:

buoyancy effects are negligible upto a velocity of 2.788 m/s and at that time, Reynolds No is 1.04E08.

Running the same program for Water, we get:

Unit Settings: SI C kPa kJ mass deg

β = 0.0003734 [1/K]	Factor = 0.1	Fluid\$ = "Water"	g=9.81 [m/s ²]
Gr _L = 5.232E+10	L = 0.6 [m]	µ=0.000806 [kg/m-s]	v = 7.777E-07 [m ² /s]
P1 =101325 [Pa]	Pr = 4.985	Ra _L = 2.608E+11	Re _L = 723331
ρ=1036 [kg/m ³]	T _a =10 [C]	T _f = 30 [C]	T _s = 50 [C]
U _{inf} = 0.9376 [m/s]	W = 0.4 [m]		

With water as the fluid:

buoyancy effects are negligible up to a velocity of 0.9376 m/s and at that time, Reynolds No is 723331

Prob. 2A2.6.6 A 12 cm high and 20 cm wide circuit board dissipates 5 W. The board is cooled by air at 35 C flowing vertically upwards along the 12 cm long side at a velocity of 0.5 m/s. Back surface of board is insulated. Determine the average temp of the surface (i) by ignoring natural convection (ii) considering the contribution of natural convection.

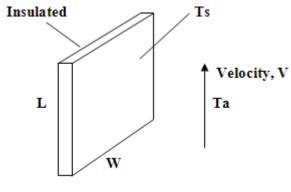


Fig.Prob.2A2.6.6

Note that this is the same as Prob. 2A2.6.3.

But, now, we shall solve it with EXCEL.

We need properties of Air; so, we will use the worksheet where VBA Functions were written for properties of Air. (See for ex: Prob. 2A1.2.13)

Case 1: Consider only Forced convection on plate:

Following are the steps in EXCEL Solution:

1. Set up the EXCEL worksheet, enter data, name the cells:

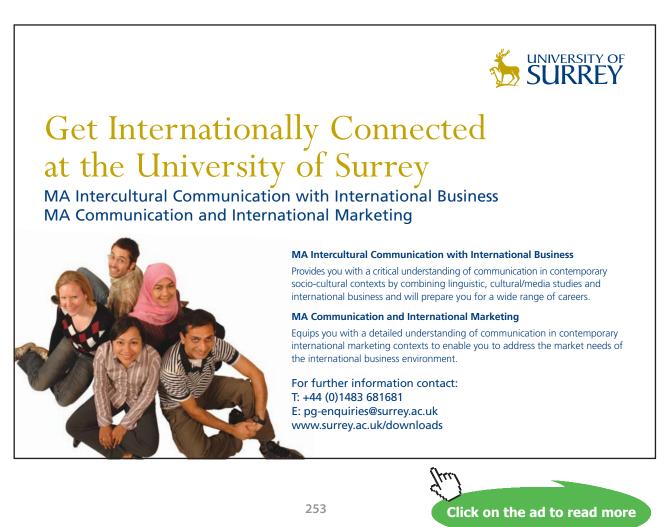
	beta	\bullet (f_x	=1/(T_f+273)				
	А	В	С	D	E	F	e
210		Data:	Fluid =	Air			
211		Surface tempassumed	T_s	100	C		
212		Ambient air temp	T_a	40.0	$C \qquad T _ f = 0$	$(T _ s + T _$	a)/2
213			T_f	70.0	c 🖌		
214		height of plate	L	0.120	m		
215		width of plate	w	0.200	m		
216		Velocity	v	0.500	m/s		
217		heat from PCB	Q	5.0	W		
218		accn due to gravity	g	9.81	m/s^2	$(T_f + 273)$	
219		Vol. expansivity	beta	0.0029	1/K 🖌		

Note that as the surface temp T_s is not yet known, we have assumed a value; its correct value will be found out by 'Goal Seek' in EXCEL later.

2. Calculate properties of Air using VBA Functions already written:

	nu	• (* f _x	=Air_nu_T((T_f+27	73))				
	А	В	С	D	E	E	F	G
222								
223		Calculations:				-		
224		density	rho	1.02939	kg/m^3			
225		th. conductivity	k	0.029503	W/m.C		Using VB/	A Functions for Air
226		Prandtl No.	Pr	0.702745		14		
227		kinematic visc.	nu	0.000019972	m^2/s			
228		sp.heat	ср	1009.15	J/kg.K			

3. Continue the calculations for Forced convection:


	Nu_forc	ed \bullet (9 f_x	=0.664*Re_L^0.5*F	Pr^(1/3)				
	А	В	С	D	E	F	G	Н
234						_		
235		To calculate Grashof No	.'L' is the characteri	istic dimension.	$Gr_L = \frac{g \cdot \beta \cdot (T_s - T_s)}{2}$	[_a)·L ³		
236					$df_{L} = \frac{1}{m^2}$			
237		Grashof No.	Gr_L	7.43407E+06	IIU			
238		Rayleigh No.	Ra_L	5.22426E+06 <	$ Ra_L = Gr_L \cdot Pr$			
239		Reynolds No.	Re_L	3004.206	L·V			
240		Only Forced conv:			$Re_L = \frac{L \cdot V}{nu}$	Makethic	ann using CoalCoal	. hu
241			Nu_forced	32.3568			zero using GoalSeek cell D211 (i.e.T s)	, υγ
242			h_forced	7.9552	W/m^2.C	changing	en bzii (i.e. i_s)	
243			Q_forced	11.4555	W			
244			Q-Q_forced	-6.4555	K			

Note that in the above worksheet, the formulas used are separately shown, for clarity. Note the eqn for Nu_forced in the Formula bar.

Since we have assumed a value for T_s to start with, obviously, the heat dissipated is not exactly 5 W. We make $Q = Q_{\text{forced}}$ by applying Goal Seek, to make cell D244 zero by changing cell D211 (i.e. T_s), as shown below:

Go to Data-What-If Analysis-Goal Seek:

Download free eBooks at bookboon.com

Click on Goal Seek. We get the following screen. Fill it up as shown:

Goal Seek	? 🗙
S <u>e</u> t cell:	D244 💽
To <u>v</u> alue:	0
By <u>c</u> hanging cell:	\$D\$211
ОК	Cancel

Click OK. We get:

Goal Seek Status	? 🔀
Goal Seeking with Cell D244 found a solution.	Step
Target value: 0 Current value: 0.0000	Pause
OK	Cancel

Goal Seek has found a solution. Again, click OK, and note that correct value of T_s is entered in cell D211:

	T_s	\bullet (• f_x	66.1075598601865				
	А	В	С	D	E	F	(
210		Data:	Fluid =	Air			
211		Surface tempassumed	T_s	66.10755986	c		
212		Ambient air temp	T_a	40.0	$T_f = f$	$(T _ s + T _$	a)/2
213			T_f	53.1	с 🖌		
214		height of plate	L	0.120	m		
215		width of plate	W	0.200	m		
216		Velocity	v	0.500	m/s		
217		heat from PCB	Q	5.0	W		
218		accn due to gravity	g	9.81	m/s^2 beta = 1/	$(T_f + 273)$	
219		Vol. expansivity	beta	0.0031	1/K 🖌		

Thus, for only forced convection, T_s = 66.11 deg.C, to dissipate 5 W....Ans.

Case 2. Considering both free and forced convection:

4. Continue with calculations for Mixed convection as shown below:

	Factor	\bullet (• f_x	=Gr_L/Re_L^2					
	А	В	С	D	E	F	G	Н
243			Q_forced	5.0000	W			
244			Q-Q_forced	0.0000 🖌			0.1free convecti	
		Combined Free+Forced						ection is negligible convection regime
245		convection				110.1 5 Fa	(101 < 10 WIXEU)	tonvectionregime
246		Gr_L/Re_L^2	Factor	0.377039879	If Facor is between 0.1	1 and 10 It is n	nixed convection re	egime
247					1		9 4	
248		Calculate Nu_free:	AA	27.560894	$AA = 0.67 \cdot Ra_L^{\frac{1}{4}}$	(0.49	2) 16	
249			BB	1.817256	$AA = 0.67 \cdot Ra_L$	$BB = 1 + \left(\frac{m}{Pr}\right)$	CC = BB	
250			CC	1.304055				
251			Nu_free	21.814757	$Nu_{free} = 0.68 + \frac{AA}{CC}$	for 0 <	Ra_L < 10^9, 0 < Pr	< Infinity
252		For Mixed convection:			1		1	
253			Nu_mixed	36.637703	←	1	2 $3\overline{3}$	
254			h_mixed	8.636078	W/m^2.C	$u_{mixed} = (Nu_{fre})$	$e^{3} + Nu_{forced}^{3}$	
255			Q_mixed	5.411206	Wans.	,		
256			Q-Q_mixed	-0.411206278	< Make this zero us	ing GoalSeek, b	y changing cell D2	11 (i.e. T_s)
257								

We see that criteria to determine if Mixed convection is applicable or not is the Factor Gr_L / Re_L^2. Read the notes shown in the worksheet for details. Formulas used are also shown in the worksheet.

We see that now, Factor = 0.377, i.e. between 0.1 and 10; so, Mixed convection is applicable. Nu_mixed, h_mixed and Q_mixed are calculated as shown. And, apply Goal Seek to make $(Q_Q_mixed) = 0$ by changing T_s:

And, we get:

	D256	\bullet (f_x	= Q-Q_mixed					
	А	В	С	D	E	F	G	Н
252		For Mixed convection:		-	L	-	1	
253 254			Nu_mixed	36.600457	<	/	a a 3	
254			h_mixed	8.606427	W/m^2.C	$Nu_{mixed} = (Nu_{fre})$	e ³ + Nu _{forced} ³	
255			Q_mixed	5.000000	Wans.	~	-	
256			Q-Q_mixed	-5.22338E-12	< Make this zero us	sing GoalSeek, b	oy changing cell D2	11 (i.e. T_s)
					-			

And T_s is:

	T_s	▼ (* f _x	64.2067151983875				
	А	В	С	D	E	F	
210		Data:	Fluid =	Air			
211		Surface tempassumed	T_s	64.2067152			
212		Ambient air temp	T_a	40.0	$T_f = f$	$(T _ s + T _$	a)/2
213			T_f	52.1	c 🖌		

Thus, for Mixed convection, T_s = 64.21 deg.C ... Ans.

Now, considering Mixed convection, with Q = 5 W:

To plot T_s for various values of T_a:

As T_a varies properties of Air will also change, and for each value we have to apply Goal Seek to find the value of T_s. So, it is convenient to make a Table as shown below, and write a VBA program to fill up that Table:

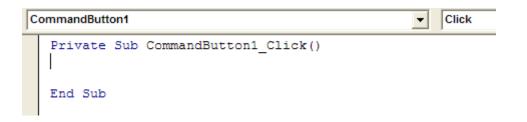
	А	В	С	D	E	F	G			
258										
259		Plot T_s (deg.C) aga	lot T_s (deg.C) against T_s (deg.C) for 'Mixed convection' :							
260										
261										
260 261 263 264 265 266 267 268 269 269 270 271		T_a (deg.C)	Factor	Nu_free	Nu_forced	T_s (deg.C)	Flow			
263		0								
264		5								
265		10								
266		15								
267		20								
268		25								
269		30								
270		35								
271		40								

Following are the steps:

5. to Now, we will write a VBA program to read the values of T_a, one by one, from this Table and put in cell D212.; then, immediately, all other calculations in remaining cells change. The program applies Goal Seek to cell D256 to make it zero by changing cell D211 (i.e. value of T_s). Now, since value of T_s is obtained, we confirm that we are really in the 'Mixed convection' region by checking that Factor (= Gr_L / Re_L^2) is between 0.1 and 10, and then copy the values of Factor (cell D246), Nu_free (cell D251), Nu_forced (cell D241), T_s (cell D211) to their respective places in the Table. Also, we add a remark that flow is in the Mixed conv. Regime. And, we will have a Command Button do this:

Go to Developer – Insert-Active X controls:

9	Home	Insert	Page Layout	t	Form	ulas	Data
Visual Basic	Macros	E Record N Use Relat	tive References		Insert	Design Mode	GC
		Code		JU	Form	Contro	ols
	H215	•	(• fx	:		_	
	Α		В		[^{**2}] Aa	🛢 al	
.58					Activ	eX Con	trols
.59		Plot T_s	(deg.C) ag	ai			IC
.60					2 0	A	


Click on the first, left button. And, draw the Command Button in the worksheet to the required size, at the required place:

	А	В	С	D	E	F	G	Н	
258									
259		Plot T_s (deg.C) aga	inst T_s (deg.C)	for 'Mixed con					
260 261									
261									
262 263 264		T_a (deg.C)	Factor	Nu_free	Nu_forced	T_s (deg.C)	Flow	CommandBut	tton1
263		0							
264		5							
265		10							
266		15							
267		20							
268		25							
269		30							
265 266 267 268 269 270 271		35							
271		40							

Click on Developer-View Code:

Home Ins	sert Page Layout	Formulas	Data	Review	View	Developer	
Visual Macros	cord Macro e Relative References cro Security e	Insert Design Mode	Prop View Run I	Code	🖽 🙀 Exp	p Properties pansion Packs fresh Data XML	

And, we get the code already written for the Command button:

Now, complete the code to do the desired jobs as mentioned under point 1 above:

```
CommandButton1
                                                    Click
                                                 -
  Private Sub CommandButton1_Click()
  Dim i As Integer
  For i = 0 To 8
   Range("D212") = Cells(263 + i, 2)
   Range("D256").GoalSeek Goal:=0, ChangingCell:=Range("D211")
   If Range("D246") < 0.1 Or Range("D246") > 10 Then
      MsgBox ("Factor Gr L/Re L^2 should be between 0.1 and 10 for Mixed convection !!")
      End
   End If
   Cells(263 + i, 3) = Range("D246")
   Cells(263 + i, 4) = Range("D251")
    Cells(263 + i, 5) = Range("D241")
   Cells(263 + i, 6) = Range("D211")
   Cells(263 + i, 7) = "Mixed convn."
  Next i
  End Sub
```


In the above code:

Line 1: defines the Sub

Line 2: dimension statement for i, the counter in For....Next construct

Line 3 to 15: For ... Next slab

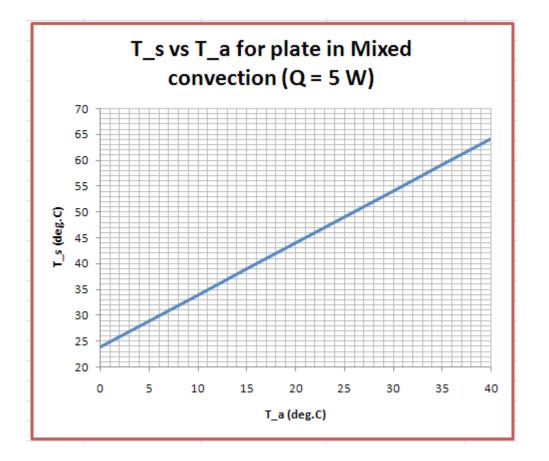
Line 4: Takes the first value of T_a from the Table and copies it to cell D212 (i.e. T_a in the original program)

Immediately, all other calculations in other cells change

Line 5: apply Goal Seek to make cell D256 zero by changing cell D211 (i.e. T_s)

Line 6, 7, 8 and 9: gives a message if conditions for applying 'Mixed convection' eqns are not satisfied

Line 10 to 14: if the Mixed conv condition is satisfied, values of Factor, Nu_free, Nu_forced, Q_conv and the string "Mixed convn are copied to the respective places in the Table


Line 15: this is repeated for the next value of T_a in the Table.

Line 16: End statement of Sub program

6. Now, click on the Command Button 1 and the Table gets filled up immediately:

A	В	С	D	E	F	G	Н	
258								
259	Plot T_s (deg.C) aga	ainst T_s (deg.C)) for 'Mixed con	vection' :				
260								
261							[
262	T_a (deg.C)	Factor	Nu_free	Nu_forced	T_s (deg.C)	Flow	CommandBu	utton1
263	0	0.395	24.839	38.252	23.88	Mixed convn.	<u> </u>	1
264	5	0.388	24.363	37.646	28.92	Mixed convn.		
265	10	0.382	23.908	37.068	33.96	Mixed convn.		
266	15	0.377	23.473	36.515	38.99	Mixed convn.		
267	20	0.371	23.043	35.958	44.04	Mixed convn.		
268	25	0.366	22.632	35.426	49.09	Mixed convn.		
269	30	0.361	22.238	34.916	54.13	Mixed convn.		
270	35	0.355	21.859	34.427	59.16	Mixed convn.		
271	40	0.351	21.489	33.943	64.21	Mixed convn.		

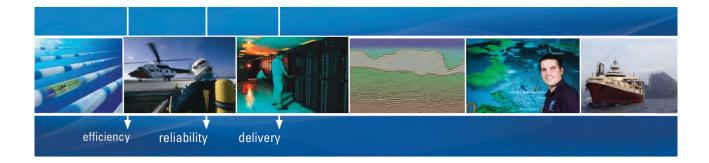
7. Now, plot T_s vs T_a in EXCEL:

Note: Now, comparing with the results for Prob. 2A2.6.3, which was solved with Mathcad, we see that the results obtained now with EXCEL match very well.

Prob. 2A2.6.7 Now, let us write a VBA Function to calculate various quantities involved in Mixed convection conditions, for a vertical flat plate losing heat from one exposed surface.

Inputs: Ts (deg.C), T_inf (deg.C), L (m), W (m), V (m/s)

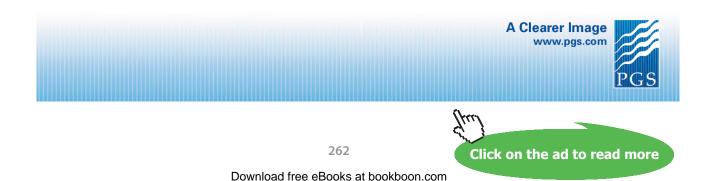
Outputs: Re_L, Ra_L, Factor (= Gr_L / Re_L^2), Q (W), and a Message giving the Flow regime.


The VBA Function is inserted in a Module in the Worksheet, so that it is available in EXCEL just like other built-in Functions.

Following is the program:

```
Function MixedConv_Air_VPlate Q(T_s As Double, T_inf As Double, L As Double, _
W As Double, V As Double) As Variant
'Returns an Array of: Re L, Ra L, Factor (=Ra L / Re L^2), and Q for Mixed/Free Convn
'in Air at 1 atmosph pressure for a Vertical Plate (height L, Width W)
'Reads property values of Air from Table and interpolates using VBA Functions
Dim g As Double, beta As Double
Dim AA As Double, BB As Double, CC As Double
Dim T f As Double, rho As Double, k As Double, Pr As Double
Dim nu As Double, cp As Double
Dim Gr L As Double, Ra L As Double, Re L As Double, Nu L As Double
Dim h free As Double, h forced As Double, h mixed As Double
Dim Q_free As Double, Q_forced As Double, Q_mixed As Double
Dim Message(1 To 4) As String
Dim Factor As Double
Dim Nu_free As Double, Nu_forced As Double, Nu_mixed As Double
g = 9.81 'm/s^2....accn due to gravity
T f = (T s + T inf) / 2
beta = 1 / (T f + 273) 'vol. expansivity of Air
'Properties of Air:
rho = Air rho T(T f + 273)
k = Air k T(T f + 273)
Pr = Air Pr T (T f + 273)
nu = Air_nu_T(T_f + 273)
cp = Air_cp_T(T_f + 273)
Re L = L * V / nu ' Reynolds No.
Message(1) = "Free conv. is negligible"
Message(2) = "Forced conv. is negligible"
Message(3) = "Mixed conv. regime"
Message(4) = "Forced conv., turb. flow regime"
```

```
Gr_L = g * beta * Abs(T_s - T_inf) * L ^ 3 / nu ^ 2 'Grashof No.
Ra_L = Gr_L * Pr 'Rayleigh No.
Nu_forced = 0.664 * Re_L ^ 0.5 * Pr ^ (1 / 3) ' For laminar, forced conv. i.e. Re_L , 10^5
AA = 0.67 * Ra_L ^ (1 / 4)
BB = 1 + (0.492 / Pr) ^ (9 / 16)
CC = (BB) ^ (4 / 9)
Nu_free = 0.68 + AA / CC 'For Ra_L <= 10^9
Factor = Gr_L / Re_L ^ 2
If Re_L >= 5 * 10 ^ 5 Then
Nu_forced = 0.037 * Re_L ^ 0.8 * Pr ^ (1 / 3) '...for turb. forced convn on flat plate
h_forced = Nu_forced * k / L
Q_forced = h_forced * (L * W) * (T_s - T_inf)
MixedConv_Air_VPlate_Q = Application.Transpose(Array(Re_L, Ra_L, Factor, Q_forced, Message(4)))
```


End If

As a leading technology company in the field of geophysical science, PGS can offer exciting opportunities in offshore seismic exploration.

We are looking for new BSc, MSc and PhD graduates with Geoscience, engineering and other numerate backgrounds to join us.

To learn more our career opportunities, please visit www.pgs.com/careers

Software Solutions to Problems on Heat Transfer: Convection – Part-II: Natural (or free) convection

```
If Re_L < 5 * 10 ^ 5 Then
If Factor < 0.1 Then
h_forced = Nu_forced * k / L
Q_forced = h_forced * (L * W) * (T_s - T_inf)
MixedConv_Air_VPlate_Q = Application.Transpose(Array(Re_L, Ra_L, Factor, Q_forced, Message(1)))
ElseIf Factor > 10 Then
h_free = Nu_free * k / L
Q_free = h_free * (L * W) * (T_s - T_inf)
MixedConv_Air_VPlate_Q = Application.Transpose(Array(Re_L, Ra_L, Factor, Q_free, Message(2)))
Else
Nu_mixed = (Nu_free ^ 3 + Nu_forced ^ 3) ^ (1 / 3)
h_mixed = Nu_mixed * k / L
Q_mixed = h_mixed * (L * W) * (T_s - T_inf)
MixedConv_Air_VPlate_Q = Application.Transpose(Array(Re_L, Ra_L, Factor, Q_mixed, Message(3)))
End If
End If
End Function
```

Note that the output of this Function is a vertical Array containing: Re_L, Ra_L, Factor, Q and Message, in that order.

Important: Remember that since it is an Array Function, we have to first select five consecutive cells in a column, enter the function, and **keeping (Ctrl + Shift) pressed, hit Enter**. Then, all the selected 5 cells get filled up with the values of Re_L...etc.

Let us work out some examples:

Prob. A thin vertical flat plate, 60 cm high, 40 cm wide immersed in a fluid parallel to its surface. Plate is at 50 C and the fluid is at 10 C. Fluid is flowing along the 60 cm side. Estimate the Reynolds No. at which the buoyancy effects are essentially negligible for heat transfer from the plate, if the fluid is air.

This is part of the Prob. 2A2.6.5 solved earlier with EES.

Remember that: Factor = Gr_L / Re_L^2 , and when buoyancy effects are negligible, Factor < 0.1.

Now, the velocity is not known.

So, we will take a guess value for Velocity (say, V = 0.5 m/s), and then use the Array Formula written above to calculate various quantities, and then **apply Goal Seek to make Factor = 0.1**:

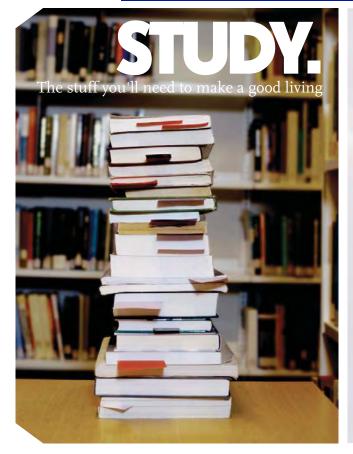
	А	В	С	D	
309					
310					
311		Data:			
312		Surface temp	Ts	50.000	С
313		fluid temp	Та	10.000	С
314		Length of plate	L	0.600	m
315		Width of plate	w	0.400	m
316		VelocityGuess value	V	0.500	m/s
217					

Now, set up the EXCEL worksheet as shown:

Now, we will use the Array Function to calculate various parameters. Set up the worksheet as shown below:

	А	В	С	D	E
315		Width of plate	w	0.400	m
316		VelocityGuess value	v	0.500	m/s
317					
318					
319		Reynolds No.	Re_L		
320		Rayleigh No.	Ra_L		
321		Gr_L / Re_L^2	Factor		
322		Heat transferrred	Q		W
323		Flow regime:	Message		
224					

Now, select cells D319 to D323 and click of *Insert Function* symbol:


	D319	- (● f x			
	А	B Inse	rt Function	D	E
315		Width of plate	w	0.400	m
316		VelocityGuess value	V	0.500	m/s
317					
318					
319		Reynolds No.	Re_L		
320		Rayleigh No.	Ra_L		
321		Gr_L / Re_L^2	Factor		
322		Heat transferrred	Q		w
323		Flow regime:	Message		
				1	T

We get the following screen.

Choose: Category: User Defined

Function: MixedCconv_Air_VPlate_Q:

Insert Function	?×
Search for a function:	
Type a brief description of what you want to do and then click Go	<u>G</u> o
Or select a category: User Defined	
Select a functio <u>n</u> :	
lkprop M_Unit MixedConv_Air_VPlate_Q MolWt mu_h2o N_Unit Namefix	
MixedConv_Air_VPlate_Q(T_s,T_inf,L,W,V) No help available.	
Help on this function OK Ca	ancel

NORWAY. YOUR IDEAL STUDY DESTINATION.

WWW.STUDYINNORWAY.NO FACEBOOK.COM/STUDYINNORWAY

Click OK: We get following screen. Fill it up as shown:

Functio	n Arguments		? 🛛
MixedCo	onv_Air_VPlate_Q		
T_s	D312	1	= 50
T_inf	D313	1	= 10
L	D314	1	= 0.6
w	D315	1	= 0.4
v	D316	1	= 0.5
			= {18705.5742611298;768815726.815
No help a	vailable.		
		v	
Formula r	esult = 18705.57426		
Help on t	his function		OK Cancel

Now, IMPORTANT: since we have an Array Function, hold (Ctrl+Shift) pressed and click on OK.

We get:

	D319	\bullet (• f_x	{=MixedConv_Air_	VPlate_Q(D312,D313	,D314,D315,
	А	В	С	D	E
309					
310					
311		Data:			
312		Surface temp	Ts	50.000	С
313		fluid temp	Та	10.000	С
314		Length of plate	L	0.600	m
315		Width of plate	w	0.400	m
316		VelocityGuess value	v	0.500	m/s
317					
318					
319		Reynolds No.	Re_L	18705.57426	
320		Rayleigh No.	Ra_L	768815726.8	
321		Gr_L / Re_L^2	Factor	3.108118812	
322		Heat transferrred	Q	44.86671965	W
323		Flow regime:	Message	Mixed conv. regime	
324					

Thus, when V = 0.5 m/s (guessed value), we have different parameters; note that Factor = 3.108

So, now, apply Goal Seek to make Factor (i.e. cell D321) equal to 0.1, by changing V (i.e. cell D316) and correspondingly, Reynlods No. will also be calculated:

Go to Data-What-If Analysis – Goal Seek:

<u> </u>	Home	Insert	Page Layout	Formulas	Data	Review View	Developer	Add-Ins	CodeCo	gs		
	m Access m Web m Text	From Other Sources *	Existing Connections	Refresh All * 🕯 Edit	erties	$ \begin{array}{c} \underline{A} \downarrow \\ \underline{Z} \downarrow \\ \underline{Z} \downarrow \\ \underline{A} \downarrow \\ Sort \end{array} $ Filt	ter	Text to Column	Remove s Duplicates	E Co	ta Validation 👻 insolidate hat-If Analysis 🌱	 → Gro ↓ Un ↓ Sul
	Ge	t External Data	1	Connection	ns	Sort 8	k Filter		Data		<u>S</u> cenario Manage	r
	D321 • (*				_	<u>G</u> oal Seek						
	А		В	С		D	E		F		Data <u>T</u> able	

Click on Goal Seek: We get following screen. Fill it up as explained above:

Goal Seek	? 🛛
S <u>e</u> t cell:	D321
To <u>v</u> alue:	0.1
By <u>c</u> hanging cell:	\$D\$316
ОК	Cancel

Technical training on WHAT you need, WHEN you need it

At IDC Technologies we can tailor our technical and engineering training workshops to suit your needs. We have extensive experience in training technical and engineering staff and have trained people in organisations such as General Motors, Shell, Siemens, BHP and Honeywell to name a few.

Our onsite training is cost effective, convenient and completely customisable to the technical and engineering areas you want covered. Our workshops are all comprehensive hands-on learning experiences with ample time given to practical sessions and demonstrations. We communicate well to ensure that workshop content and timing match the knowledge, skills, and abilities of the participants.

We run onsite training all year round and hold the workshops on your premises or a venue of your choice for your convenience.

For a no obligation proposal, contact us today at training@idc-online.com or visit our website for more information: www.idc-online.com/onsite/

> Phone: +61 8 9321 1702 Email: training@idc-online.com Website: www.idc-online.com

OIL & GAS

ENGINEERING

ELECTRONICS

AUTOMATION &

MECHANICAL

ENGINEERING

INDUSTRIAL

DATA COMMS

ELECTRICAL

POWER

PROCESS CONTROL

267

Download free eBooks at bookboon.com

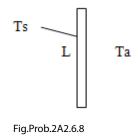
Click on the ad to read more

Click OK: We get:

Goal Seek Status	? 🛛
Goal Seeking with Cell D321 found a solution.	Step
Target value: 0.1 Current value: 0.100000493	Pause
ОК	Cancel

Goal Seek has found a solution. Click OK again, and note the value of V and Re_L:

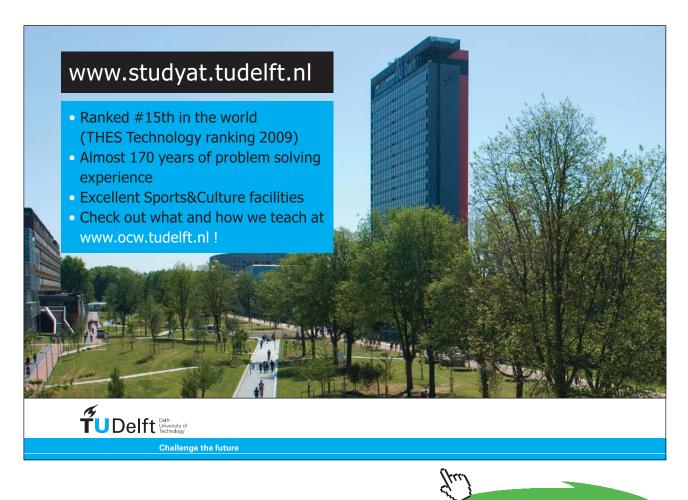
	D319 • (f=MixedConv_Air_VPlate_Q(D312,D313,D314,D315,D316)}								
	А	В	С	D	E				
309									
310									
311		Data:							
312		Surface temp	Ts	50.000	С				
313		fluid temp	Та	10.000	С				
314		Length of plate	L	0.600	m				
315		Width of plate	w	0.400	m				
316		VelocityGuess value	V	2.788	m/s				
317									
318									
319		Reynolds No.	Re_L	104284.2641					
320		Rayleigh No.	Ra_L	768815726.8					
321		Gr_L / Re_L^2	Factor	0.100000493					
322		Heat transferrred	Q	83.72166635	W				
323		Flow regime:	Message	Mixed conv. regime					


Thus, V = 2.788 m/s, Re_L = 1.04284E05 ... Ans.

Note: Results match with those obtained using EES in Prob. 2A2.6.5.

Consider one more example of the use of this Array Function:

Prob. 2A2.6.8 Consider a 5 m long vertical plate at 85 C in air at 30 C. Determine the forced motion velocity above which natural convection heat transfer from this plate is negligible.


This is the same as Prob. 2A2.6.1 solved earlier with Mathcad.

Remember that: Factor = Gr_L / Re_L^2 , and when buoyancy effects are negligible, Factor < 0.1.

Now, the velocity is not known.

So, we will take a guess value for Velocity (say, V = 0.5 m/s), and then use the Array Formula written above to calculate various quantities, and then **apply Goal Seek to make Factor = 0.1**:

So, this is identical to the Problem solved above with EXCEL.

Proceeding on similar lines, set up the worksheet:

With a *guess value of* V = 1 m/s, apply the Array Function (see the Formula bar in the screen shot below) after selecting cells D337 to D341, and keeping (Ctrl+Shift) pressed, hit Enter, and we get:

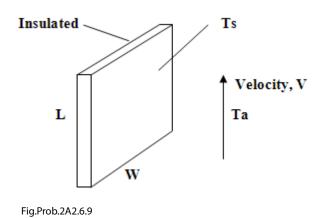
	D339 • (**** {=MixedConv_Air_VPlate_Q(D330,D331,D332,D333,D334)}							
	А	В	С	D	E			
329		Data:						
330		Surface temp	Ts	85.000	С			
331		fluid temp	Та	30.000	С			
332		Length of plate	L	5.000	m			
333		Width of plate	w	1.000	m			
334		VelocityGuess value	v	1.000	m/s			
335								
336								
337		Reynolds No.	Re_L	267168.9443				
338		Rayleigh No.	Ra_L	4.10124E+11				
339		Gr_L / Re_L^2	Factor	8.162632375				
340		Heat transferrred	Q	726.100293	W			
341		Flow regime:	Message	Mixed conv. regime				

Now, to make Factor = 0.1, by changing V, apply Goal Seek: See previous problem for details. We get:

Goal Seek	? 🛛
S <u>e</u> t cell:	D339
To <u>v</u> alue:	0.1
By <u>c</u> hanging cell:	\$D\$334 💽
ОК	Cancel

Click OK: We get:

	D339	\bullet (• f_x	{=MixedConv_Air_\	/Plate_Q(D330,D331,D332,D333,D334)}
	А	В	С	D	E
329		Data:			
330		Surface temp	Ts	85.000	С
331		fluid temp	Та	30.000	С
332		Length of plate	L	5.000	m
333		Width of plate	w	1.000	m
334		VelocityGuess value	v	9.035	m/s
335					
336					
337		Reynolds No.	Re_L	2413797.584	
338		Rayleigh No.	Ra_L	4.10124E+11	
339		Gr_L / Re_L^2	Factor	0.100000113	1
340		Heat transferrred	Q	6612.307812	W
341		Flow regime:	Message	Forced conv., turb. flow regime	


Click OK, and note the values of V and Re_L:

Thus: V = 9.035 m/s, Re_L = 2.413797E06 .. Ans.

Note: Again, results match very well with those obtained using Mathcad in Prob. 2A2.6.1.

One more example to show the convenience of using the above Array Function:

Prob. 2A2.6.9 Consider a circuit board (size: 150 mm \times 150 mm), insulated on backside, which is to be air cooled with an upward flow velocity of 0.3 m/s, such that its surface temp does not exceed 60 C. Ambient temp is 25 C. Determine the allowable power dissipation from the board.

This is the same as Prob.2A2.6.4, solved earlier with Mathcad.

Now, Ts, T_a, L, W and V are given. Find Q:

	D353	\bullet (f_x	0.3		
	А	В	С	D	
347					
348		Data:			
349		Surface temp	Ts	60.000	С
350		fluid temp	Та	25.000	С
351		Length of plate	L	0.150	m
352		Width of plate	w	0.150	m
353		VelocityGuess value	V	0.300	m/s
354					
355					
356		Reynolds No.	Re_L		
357		Rayleigh No.	Ra_L		
358		Gr_L / Re_L^2	Factor		
359		Heat transferrred	Q		W
360		Flow regime:	Message		

Proceeding as with earlier examples, set up the EXCEL worksheet:

Now, select cells D356 to D360, and apply the Array Function (see the Formula bar below), remembering to keep pressed (Ctrl+Shift) and hit Enter:

We get:

	D359	$ f_x$	{=MixedConv_Air_	VPlate_Q(D349,D350,D351,D352,D353))}
	А	В	С	D	E
347					
348		Data:			
349		Surface temp	Ts	60.000	С
350		fluid temp	Та	25.000	С
351		Length of plate	L	0.150	m
352		Width of plate	w	0.150	m
353		VelocityGuess value	V	0.300	m/s
354					
355					
356		Reynolds No.	Re_L	2610.51166	
357		Rayleigh No.	Ra_L	8719624.722	
358		Gr_L / Re_L^2	Factor	1.813787639	
359		Heat transferrred	Q	5.356026099	W Ans.
360		Flow regime:	Message	Mixed conv. regime	

Thus, Q = 5.356 W ... Ans.

Note: Results match with those obtained using Mathcad earlier for Prob.2A2.6.4.

References

- 1. M. Thirumaleshwar, Fundamentals of Heat & Mass Transfer, Pearson Education, India, 2006.
- 2. Yunus A Cengel, Heat and Mass Transfer, 3rd Ed., McGraw Hill Co.
- 3. F.P. Incropera and D.P.DeWitt, *Fundamentals of Heat and Mass Transfer*, 5th Ed., John Wiley & Sons.
- 4. Domkundwar et al, A Course in Heat & Mass Transfer, Dhanpat Rai & Co, 5th Ed, 1999.
- 5. Frank Kreith and Mark S Bohn, *Principles of Heat Transfer*, PWS Publ. Co. (Intl. Thomson Publ.), 5th Ed., 1997.

Study at one of Europe's leading universities

DTU, Technical University of Denmark, is ranked as one of the best technical universities in Europe, and offers internationally recognised Master of Science degrees in 39 English-taught programmes.

DTU offers a unique environment where students have hands-on access to cutting edge facilities and work

closely under the expert supervision of top international researchers.

DTU's central campus is located just north of Copenhagen and life at the University is engaging and vibrant. At DTU, we ensure that your goals and ambitions are met. Tuition is free for EU/EEA citizens.

Visit us at www.dtu.dk

Click on the ad to read more

274

Download free eBooks at bookboon.com